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Abstract
Ectonucleoside triphosphate diphosphohydrolase-1, the major vascular/immune ectonucleotidase, exerts anti-thrombotic
and immunomodulatory actions by hydrolyzing extracellular nucleotides (danger signals). Hypertension is characterized by
vascular wall remodeling, endothelial dysfunction, and immune infiltration. Here our aim was to investigate the impact of
arterial hypertension on CD39 expression and activity in mice. Arterial expression of CD39 was determined by reverse
transcription quantitative real-time PCR in experimental models of hypertension, including angiotensin II (AngII)-treated
mice (1 mg/kg/day, 21 days), deoxycorticosterone acetate-salt mice (1% salt and uninephrectomy, 21 days), and sponta-
neously hypertensive rats. A decrease in CD39 expression occurred in the resistance and conductance arteries of hyperten-
sive animals with no effect on lymphoid organs. In AngII-treated mice, a decrease in CD39 protein levels (Western blot) was
corroborated by reduced arterial nucleotidase activity, as evaluated by fluorescent (etheno)-ADP hydrolysis. Moreover,
serum-soluble ADPase activity, supported by CD39, was significantly decreased in AngII-treated mice. Experiments were
conducted in vitro on vascular cells to determine the elements underlying this downregulation. We found that CD39
transcription was reduced by proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor alpha on vascular
smooth muscle cells and by IL-6 and anti-inflammatory and profibrotic cytokine transforming growth factor beta 1 on
endothelial cells. In addition, CD39 expression was downregulated by mechanical stretch on vascular cells. Arterial
expression and activity of CD39 were decreased in hypertension as a result of both a proinflammatory environment and
mechanical strain exerted on vascular cells. Reduced ectonucleotidase activity may alter the vascular condition, thus
enhancing arterial damage, remodeling, or thrombotic events.
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Abbreviations
ADO Adenosine
ADP Adenosine 5′-diphosphate
AMP Adenosine 5′-monophosphate
ATP Adenosine 5′-triphosphate

AngII Angiotensin II
DOCA Deoxycorticosterone acetate

EC Endothelial cell
IL Interleukin

IFN-γ Interferon gamma
MRA Mesenteric resistance artery
SHR Spontaneously hypertensive rat

NTPDase Nucleoside triphosphate diphosphohydrolase
RT-qPCR Reverse transcription quantitative real-time PCR
TGF-β1 Transforming growth factor beta 1
TNF-α Tumor necrosis factor alpha
VSMC Vascular smooth muscle cell

Introduction

Signaling by extracellular adenine nucleotides and nucleo-
sides (i.e., purinergic signaling) serves as intercellular com-
munication. Extracellular nucleotides and adenosine (ADO)
act as cofactors, which amplify biological responses or exert
feedback to a primary stimulus through the activation of P2
(P2X and P2Y) and P1 receptors. In the vasculature, extracel-
lular nucleotides are considered Bdanger signals^ because they
cause platelet aggregation, inflammation, and vascular perme-
ability [1, 2]. P1 and P2 receptor activation also contributes to
the regulation of vasomotricity [3], promoting relaxation or
constriction depending on either endothelial or vascular
smooth muscle activation. In pathological conditions, nucleo-
tides have been shown to promote atherothrombosis and to
contribute to other inflammatory diseases such as sepsis and
inflammatory bowel disease [4].

Extracellular nucleotides are metabolized by membrane-
bound ectonucleotidases. Among which, the nucleoside tri-
phosphate diphosphohydrolases (NTPDases) play a major
role as regulators of purinergic signaling in the cardiovascular
system [5]. NTPDase1 (CD39), the major ectonucleotidase
expressed in the vascular wall, converts adenosine 5′-triphos-
phate (ATP) and adenosine 5′-diphosphate (ADP) into aden-
osine 5′-monophosphate (AMP). AMP is hydrolyzed by a
second enzyme, ecto-5′-nucleotidase (CD73), to generate
ADO, which is usually considered a vasculoprotective mole-
cule that displays vasodilatory and anti-inflammatory effects
[6]. CD39 constitutes the rate-limiting enzyme in the hydro-
lysis of nucleotides into ADO, consequently modulating dan-
ger and protective signals in the vasculature. An increase in
the expression of CD39 has been shown to be a key mecha-
nism in preventing vascular permeability, leukocyte extrava-
sation [7], and tissue damage [8] after ischemia. We have
shown previously that CD39 controls vasoconstriction and
vasodilation, depending on P2 receptor activation [9, 10], thus
potentially contributing to the regulation of peripheral arterial

resistance and blood pressure. An important role for this en-
zyme is that, by reducing ATP and ADP concentration and
favoring ADO accumulation, it exerts anti-thrombotic and
anti-inflammatory effects [6]. Together, these data underline
the wide spectrum of potential vascular protection effects
exerted by CD39.

Hypertension represents the main risk factor for cardiovas-
cular ischemic and thromboembolic complications. It is asso-
ciated with arterial functional and structural remodeling and
endothelial dysfunction, which is mainly attributed to oxida-
tive stress [11] and elevated arterial tone, consequently in-
creasing peripheral vascular resistance and systemic blood
pressure. In the longer term, arterial remodeling involves hy-
pertrophy, fibrosis, and proteolytic alterations of the extracel-
lular matrix [12]. In recent decades, numerous studies have
shown that hypertension may be considered a chronic inflam-
matory disease in which innate immune cell infiltration in the
perivascular environment, together with pro- and anti-
inflammatory cytokines, plays a central role [13, 14].
Immune cells such as macrophages and T lymphocytes con-
tribute to endothelial dysfunction, arterial remodeling, and
elevated blood pressure [14]. Angiotensin II (AngII) plays a
pivotal role in these effects not only by promoting vasocon-
striction and oxidative stress, leading to endothelial dysfunc-
tion, but also by recruiting, activating, and polarizing immune
cells [15]. In this context, extracellular nucleotides and their
associated regulatory ectonucleotidases are privileged
candidates.

To the best of our knowledge, no data are yet available on
the impact of systemic hypertension on CD39.With the aim of
anticipating the development of vascular purinergic homeo-
stasis, here we investigated the impact of systemic arterial
hypertension on NTPDase1/CD39 expression in vivo and in
vascular cells in vitro in conditions that mimic the vascular
environment of hypertension.

Materials and methods

Complete materials and methods are available in the online-
only supplementary material.

Animals

Animals were manipulated in accordance with European
Community Standards on the Care and Use of Laboratory
Animals (authorization No. 6422). C57Bl6/J male mice (15–
20 weeks old) were treated with AngII (1 mg/kg/day) by using
an osmotic pump (ALZET model 2004) for 12 or 21 days.
Alternatively, mice were treated with deoxycorticosterone ac-
etate (DOCA; Innovative Research of America) and salt
(NaCl 1% in drinking water) associated with uninephrectomy
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for 21 days. Spontaneously hypertensive rats (SHRs; 16weeks
old) were compared with Wistar Kyoto (WKY) rats.

Cell culture

Mouse vascular smooth muscle cells (VSMCs) were obtained
from collagenase-digested mouse aorta. Mouse endothelial
cells (ECs) (Mile Sven 1; MS1) were obtained from ATCC.
Cells were cultured in 24-well plates and starved 24 h before
stimulation. The origin and concentration of the recombinant
molecules used are presented in Table S1.

Alternatively, cyclic stretch was imposed on cells by using
type I collagen-coated six-well plates (Bioflex, Dunn
Labortechnik, GMBH) connected to a Flexercell Strain Unit
FX-4000 (Flexcell). CD39 mRNA expression was measured
by using reverse transcription quantitative real-time PCR (RT-
qPCR).

RT-qPCR analysis

Tissues from AngII-infused mice, DOCA-salt mice, and SHR
rats and their respective controls were stored at − 20 °C in
RNAlater Stabilization Reagent (Qiagen). RNA extraction
was performed with the RNeasy® Micro Kit (Qiagen).

RNA extract was used to synthesize cDNA. RT-qPCR was
performed with SYBR® Select Master Mix (Applied
Biosystems) by using a LightCycler 480 Real-Time PCR
System (Roche). Sequences of primer pairs are represented
in Table S2.

Western blot

Arterial CD39 protein expression was assessed in mouse ab-
dominal aorta homogenates by using antibody directed against
mouse CD39 (mN1-2c 1/600; ectonucleotidases-ab.com).

Measurement of CD39 activity

Serum (3 μl) or aorta homogenate protein (5–10 μg) was
added to the reaction mixture (Hank’s Balanced Salt
Solution containing HEPES 10 mM, CaCl2, 2 mM, and
MgCl2, 1 mM at pH 7.5). The reaction also contained an
inhibitor of adenylate kinase (Ap5a; 80 μg/ml) and of alkaline
phosphatase (levamisole; 1 mg/ml). The reaction was started
at 37 °C by adding etheno-ADP (100 μM) fluorescent deriv-
ative as a substrate. Hydrolysis was stopped by precipitation
with 10% trichloroacetic acid. A fraction of the supernatant
was used for HPLC etheno-ADP and etheno-AMP determi-
nation. Etheno-ADP, etheno-AMP, and atheno-ADO were
separated by HPLC on a C18 reversed-phase column, and
ADPase activity was calculated by measuring fluorescent
etheno-ADP hydrolysis.

Data analysis

Multiple groups were compared by using a one-way analysis
of variance (ANOVA) or a two-way ANOVA with post-test
Bonferroni’s correction. Two groups were compared by using
an unpaired Student’s t test (two-tailed); p values of < 0.05
were considered statistically significant.

Results

Reduced CD39 expression and activity in arteries
of hypertensive animals

Hypertension was induced pharmacologically by AngII in-
fusion or DOCA-salt treatment in mice or genetically in
SHR rats. The associated increase in systolic blood pressure
and heart hypertrophic remodeling was validated in all hy-
pertensive groups compared with suitable controls
(Table 1). Among the actors of purinergic signaling,
CD39 mRNAwas the only one to be systematically down-
regulated. Indeed, the CD39 arterial transcript was signifi-
cantly decreased in three different experimental models of
hypertension (Fig. 1). This decrease was observed both in
mesenteric resistant arteries (MRAs) and in large elastic
arteries (thoracic aorta) in the two mouse models (Fig. 1a,
b) and in the MRA but not in the aorta in SHR rats. We
further evaluated other members of the NTPDase family:
NTPDase2, 3, and 8. NTPDase2 (CD39L1) was the only
other member expressed in aortas but, in contrast to that of
CD39, its expression was not significantly modified by
AngII treatment (Fig. S1). To evaluate the potential impact
of hypertension on CD39 expression in immune cells, we
measured it in lymphoid organs. No changes were found in
the spleen (Fig. 1c) and lymph nodes (Fig. 1d) of AngII-
treated animals compared with those of controls.

Focusing on AngII-treated mice, we investigated CD39 pro-
tein expression by Western blot. The expression of CD39

Table 1 Validation of experimental models of hypertension

SBP HW/BW (×1000)

Sham 96 ± 2, n = 4 5.3 ± 0.1, n = 4

Angll 138 ± 6, n = 5 *** 7.0 ± 0.3, n = 5 **

Sham 101 ± 3, n = 6 4.4 ± 0.1, n = 6

DOCA-salt 123 ± 4, n = 6 * 5.0 ± 0.1, n = 5 **

WKY 77 ± 1, n = 6 3.0 ± 0.1, n = 6

SHR 104 ± 3, n = 6 *** 4.0 ± 0.1, n = 6***

Systolic blood pressure (SBP mmHg) and hypertrophic cardiac remodel-
ing (evaluated by heart weight to body weight ratio, HW/BW) were
measured in the three models of hypertension, AngII-infused mice,
DOCA-salt mice, and SHR rats
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protein in abdominal aorta was not significantly changed
12 days after the start of AngII treatment (Fig. 2a), but it de-
creased by ≈ 30% after 21 days of treatment (Fig. 2b), corrob-
orating the RT-qPCR results. These data suggest a slow regula-
tory process that likely occurs as a consequence of hypertension.
To evaluate the vascular activity of CD39, we measured hydro-
lysis of fluorescent etheno-ADP in aortic homogenates.
Compared with wild-type, ADPase activity was reduced
by 45% while is virtually disappeared in aortic homogenates
of Entpd1+/− and Entpd1−/−mice, respectively (Fig. S2), sug-
gested the dominant contribution of CD39 in vascular ADP
hydrolysis and a gene dosage effect, as previously shown [9,
16]. In homogenates from AngII-treated mice, tissular activity
of CD39 was also affected, as shown by the reduced hydrolysis
of etheno-ADP compared with that of control mice (Fig. 2c).

An important finding was that in AngII- and DOCA-salt-
treated mice, CD39 mRNA expression was significantly
negatively correlated to cardiac remodeling, a hallmark of
hypertension (Fig. 3a, c). No such correlation was observed
in SHR rats (Fig. 3d), which can be explained by the ab-
sence of significant CD39 mRNA downregulation in SHR
thoracic aorta compared with that in their WKY controls.

Finally, in AngII-treated mice, CD39 activity was also neg-
atively correlated to cardiac remodeling, although this re-
sult did not reach significance (Fig. 3b).

Decrease in circulating CD39 ADPase activity
in the serum of AngII-treated mice

We further measured circulating ADPase activity in the se-
rum of AngII-treated mice. Serum ADPase activity was
abolished in Entpd1−/− mice, demonstrating that it mostly
relies on CD39. In accordance with a delayed impact of
hypertension on CD39 protein expression, ADPase activity
was not significantly reduced after 12 days of AngII treat-
ment compared with that of non-treated control animals
(Fig. 4a). However, corroborating protein expression and
tissular activity, a significant decrease in soluble ADPase
activity was observed in hypertensive mice after 21 days of
treatment with AngII (Fig. 4b).

CA

DB

Fig. 1 Alteration of vascular
CD39 mRNA expression in
hypertensive mice. Vascular
CD39 mRNA expression in (a)
MRA and (b) thoracic aorta in
three different models of
hypertension (AngII-infused mice
n = 7, DOCA-salt mice n = 6,
WKYand SHR rats n = 5). CD39
expression in spleen (c) and
lymph nodes (d) n = 4–7. Each
experimental model of
hypertension was compared with
its control. Data are presented as
means ± SEM. *p < 0.05,
**p < 0.01, and ***p < 0.001
(Student’s t test) vs. wild-type
controls
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Reduction of CD39 mRNA expression in response
to proinflammatory cytokines and mechanical strain

In order to identify elements underlying CD39 mRNA down-
regulation, we conducted in vitro experiments. We stimulated
ECs or VSMCs with vasoactive molecules and pro- and anti-
inflammatory cytokines that are potentially encountered with-
in the vasculature during hypertension. Results showed a de-
crease in CD39 mRNA expression in ECs in response to pro-
inflammatory cytokine interleukin 6 (IL-6) and profibrotic
cytokine transforming growth factor beta 1 (TGF-β1) and an
increase in response to ATP. In VSMCs, a reduction in CD39
expression was measured in response to tumor necrosis factor
alpha (TNF-α) and interleukin 1 beta (IL1-β), while it was
upregulated by monocyte and macrophage attracting protein 1
(MCP-1 or CCL2; Table 2).

Besides pharmacological stimuli, we wanted to mimic
in vitro mechanical strains encountered in hypertension.
Orbital shear stress upregulated CD39 expression in mouse
ECs compared with static conditions (Fig. S3), corroborating

a recent report on CD39 downregulation by turbulent flow
compared with laminar flow [16]. In addition, sinusoidal
stretch was applied to ECs and VSMCs with the Flexcell
method (15% elongation; 0.5 Hz) for 6, 24, and 72 h

Day 12A

Ctrl AngII Ctrl AngII Ctrl AngIICtrl AngII Ctrl AngII

B Day 21

C

CD39

SMC actin

78 kDa

42 kDa �

Fig. 2 CD39 protein expression and ADPase activity in hypertensive
mice. Quantification of CD39 protein expression from abdominal aorta
was assessed byWestern blot after 12 days (n = 5–6) (a) and 21 days (n =
19) (b) of AngII treatment. Measurement of ADPase activity from the
abdominal aorta (n = 18 in control mice and n = 22 in AngII mice)
specific to CD39 was assessed by HPLC using the abdominal aorta of
Entpd1−/− mice (n = 6) as a negative control (c). Data are presented as
means ± SEM. *p < 0.05 and ***p < 0.001 (Student’s t test) vs. wild-type
controls

A

C

B

D

Fig. 3 Link between cardiac remodeling and CD39 downregulation in
hypertensive animals. Correlation between cardiac remodeling and CD39
mRNA expression in thoracic aorta (n = 14) (a) or ADPase activity in
abdominal aorta homogenates (n = 39) (b) in AngII-infused mice.
Correlation between cardiac remodeling and CD39 mRNA expression
in thoracic aorta in DOCA-salt (n = 9) (c) and SHR rats (n = 10) (d).
*p < 0.05, **p < 0.01

Day 12 Day 21
A B

Fig. 4 Soluble ADPase activity in AngII-infused mice. ADP hydrolysis
in sera of hypertensive mice 12 days (n = 3 in control mice and n = 5 in
AngII-infused mice) (a) and 21 days (n = 9 in control mice and n = 10 in
AngII mice) (b) after AngII treatment. This activity is abolished inEntpd1
−/−mice (n = 3 in each experiment). Data are presented asmeans ± SEM.
*p < 0.05, **p < 0.01, and ***p < 0.001 (one-way ANOVA) vs. wild-
type controls
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(Fig. 5). We validated the effect of stretch by evaluating the
upregulation of Mmp2 in VSMCs [17] and Hif1-α in ECs
[18] (Table S3). Contrasting with the effect of shear, ECs
stretch induced a progressive downregulation in CD39
mRNA which was significant at (72 h). A fast decrease in
expression (after 6 h) was observed in VSMC (Fig. 5).

Discussion

In the present work, we showed that a decrease in CD39
occurs in the vasculature of three different experimental
models of hypertension. In AngII-treated animals, the CD39
decrease was not measured in the lymphoid organs neither in
the kidneys (data not shown and [19]), suggesting a vascular-
specific alteration. Moreover, the more pronounced drop in
CD39 expression in the thoracic aorta (≈ 50%) compared with
that in theMRA (≈ 25%) suggests that large elastic arteries are
more affected than resistance arteries. Considering the
vasculoprotective effects reported for CD39, we anticipate
that this decrease may worsen the vascular prognosis of
hypertension.

Reduced ectonucleotidase activity by increasing
pericellular nucleotide bioavailability results in enhanced
P2 receptor activation. This enhances P2 receptor-
dependent vascular effects that are mostly deleterious in
the context of hypertension, such as proliferation (hypertro-
phic remodeling), apoptosis, and fibrosis [20] or excessive
constriction [9]. Pathological blood pressure rise has been
linked to specific P2 receptor activation. For instance, other
groups and ours recently reported that the P2Y6 receptor is
involved in microvascular tone, blood pressure rise, and
fibrosis caused by AngII infusion [21, 22]. Deficiency of
CD39 exacerbates P2Y6-dependent vasoconstriction [9]
and this may increase peripheral arterial resistance in vivo
and worsen hypertension. The P2X7 receptor was shown by
another group to contribute to blood pressure elevation in
DOCA-salt mice [23]. Here again, a drop in CD39 might
exacerbate deleterious signaling of P2X7 receptors, such as
macrophage IL-1β secretion, as discussed earlier.
Considering that nucleotides are unequivocal danger sig-
nals in vascular conditions, CD39 activity is most likely a
protector. In contrast, the presence of ADO, the final prod-
uct of their hydrolysis, is more ambiguous. Indeed, upreg-
ulation of CD73/5′-nucleotidase activity has been shown to
promote hypertension through ADO accumulation and
endothelin formation in the kidney [19]. Since CD39 con-
stitutes the rate-limiting enzyme of the ATP to ADO hydro-
lytic chain, a decrease in its activity might be in this case
Bbeneficial^ regarding its contribution to renal ADO
accumulation.

On the other hand, together with nitric oxide and prostacy-
clin, endothelial CD39 represents a well-identified anti-throm-
botic mechanism through hydrolysis of the key platelet acti-
vator ADP [24, 25]. In addition, by contributing to ADO gen-
eration and EC sealing, it prevents endothelial permeability
[26]. Hence, a reduction in CD39 activity such as that ob-
served in our experimental models of hypertension may in-
crease platelet activation, promote vascular permeability, and
favor immune cell infiltration to have an impact on vascular
remodeling, as well as thrombogenesis.

Table 2 CD39 expression in vascular cells

VSMC EC

CD39 expression (% of unstimulated )

TNF-α 61.3 ± 5.3* 80.7 ± 7.4

IFNγ 141.2 ± 30.5 105.5 ± 7.5

MCP1 125.0 ± 3.3** 127.3 ± 14.2

IL-6 116.1 ± 6.3 61.3 ± 6.0*

IL-1β 47.4 ± 4.4** 82.8 ± 9.9

IL-27 131.2 ± 26.0 100.5 ± 6.0

IL-17a 107.8 ± 14.2 113.1 ± 9.8

IL-12 118.4 ± 23.7 96.4 ± 8.8

IL-10 114.9 ± 14.3 122.2 ± 16.1

TGF-β1 78.5 ± 4.2 50.9 ± 6.4*

AngII 98.5 ± 20.6 89 ± 12.6

ET-1 93.3 ± 4.3 105.9 ± 12.3

ATP 82.3 ± 5.8 136.6 ± 6.3*

ADP 79.7 ± 11.4 119.2 ± 14.1

UTP 77.0 ± 10.0 94.7 ± 11.0

UDP 92.8 ± 4.4 85.3 ± 13.7

ADO 107.4 ± 11.3 125.0 ± 12.3

Relative expression of CD39 in ECs and VSMCs stimulated in the pres-
ence of various cytokines, endothelin-1 (ET-1), AngII, nucleotides, and
nucleosides for 24 h. Data represent mean relative expression ±SEM of
three and four to six independent experiment for EC and VSMC respec-
tively. Comparison was done using ratio based t test on raw expression
data

*p < 0.05,
**p < 0.01

A B

Fig. 5 Regulation of CD39 mRNA expression on vascular cells in vitro
by mechanical stretch. CD39 expression on VSMCs (a) and ECs (b) after
mechanical stretch for 6, 24, and 72 h. Data represent mean ± SEM of
relative CD39 expression normalized to time-matched controls of five
independent VSMC cultures and three (for 72 h) or five (for 6, 24 h)
independent EC cultures. *p < 0.05, **p < 0.01 vs. time-matched control.
The p value of stretch effect is shown (two-way ANOVA)
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Interestingly, other data from the literature suggest that
CD39 is affected in many types of vascular dysfunction, such
as xenotransplantation-associated endothelial activation [27],
atherogenesis [28], and aortic aneurism [29]. What these path-
ological conditions have in common is that they are associated
with thrombo-inflammatorymanifestations; as a consequence,
we hypothesize that the disappearance of vascular CD39 may
contribute to a hypertension-associated thrombo-inflammato-
ry state.

Conversely, we showed that an inflammatory environment
affects CD39 expression. Experiments conducted in vitro
highlighted the modulation of CD39 by various cytokines.
In VSMCs specifically, we report a decrease in CD39
mRNA expression in response to proinflammatory TNF-α
and IL1-β. TNF-α has been previously reported to decrease
CD39 activity in ECs through oxidative inactivation of the
enzyme, resulting in enhanced ADP-dependent platelet re-
cruitment [27, 30]. TNF-α is well-known to mediate endothe-
lial damage in resistant hypertension [31] and is responsible
for matrix remodeling and modulation of the VSMC pheno-
type [32]. We also report for the first time downregulation of
CD39 by IL-1β. This cytokine is massively produced by
monocytes/macrophages that play a key role in arterial remod-
eling [33]. The present data suggest that immune infiltration
and released cytokines may contribute to arterial remodeling
partly through vascular CD39 downregulation. Major deter-
minants of arterial remodeling, i.e., reactive oxygen species,
metalloproteinase release, VSMC phenotypic changes, and
apoptosis [3], have been shown to depend on P2 receptor
signaling. These mechanisms could be overactivated with
CD39 downregulation. On the other hand, ATP has been re-
ported to induce IL-1β (and IL-18) secretion by monocytes/
macrophages [34, 35]. This effect involves the P2X7 receptor
and is largely dependent on CD39 activity [36]. Consequently,
reduced ectonucleotidase activity through an increase in ATP
concentration could enhance the infiltration of macrophage
IL-1β secretion, creating a deleterious amplifying loop.
Such a mechanism could participate in the previously reported
cross-talk that exists between VSMCs and monocytes
throughout IL-1β production [37]. In contrast, CD39 was up-
regulated in response to MCP-1.

In ECs, we found that CD39 was downregulated by IL-6
and TGF-β1. Mice invalidated for IL-6 are protected against
AngII-dependent hypertension [38], underlying the important
role of this cytokine in hypertension. An important finding by
Thiolat et al. is that the IL-6 receptor blockade enhances the
immunosuppressive phenotype in T regulatory cells [39]
through CD39 overexpression, which highlights the mecha-
nisms common to immune and non-immune cells. An inter-
action between CD39 expression and the anti-inflammatory/
profibrotic cytokine TGF-β1 has not been reported. ECs ex-
posed to TGF-β1 undergo endothelial-mesenchymal transi-
tion, which results in endothelial phenotype loss and the

appearance of markers of myofibroblastic differentiation and
therefore fibrosis [40, 41]. Several P2 receptors participate in
cardiac, vascular, and lung fibrosis [42], and one can hypoth-
esize that the profibrotic action of TGF-β1 partly relies on
CD39 downregulation. In contrast, CD39 was upregulated in
response to ATP, suggesting a feedback mechanism involving
P2 receptors activation. Since we did not observe a direct
effect of AngII in vitro, these cytokines (IL-6, IL-1β,
TNF-α, TGF-β1) likely represent intermediates between
AngII receptor activation, immune cells, and CD39 downreg-
ulation. This relies once more on the immune component of
AngII-dependent hypertension.

We also found that mechanical forces modulate CD39.
Kanthi et al. recently reported that endothelial CD39 is de-
creased by perturbed flow in the context of atherosclerotic
plaque development and clearly demonstrated in an in vitro
approach the sensitivity of the enzyme to shear stress [16]. We
show here that stretch reduced CD39 transcription in both
VSMCs and ECs. Of note, one may hypothesize that the more
pronounced stretch imposed on large arteries (≈ 15–20%)
compared with small arteries (≈ 5%) during hypertension
may correlate with the higher repression of CD39 observed
in large arteries. Interestingly, a mechanical stretch applied to
cardiomyocytes has been described as inducing secretion of
cytokines such as TNF-α, leading to modulation of gene ex-
pression and cellular function [43]. In this work, we link
CD39 downregulation to TNF-α and mechanical stretch inde-
pendently, and an overlap of the two pathways cannot be
excluded.

Future experiments would be needed to define the mecha-
nisms by which proinflammatory molecules, cell strains, or a
combination are responsible for CD39 downregulation.

The protection exerted by CD39 against thrombosis and
ischemia-reperfusion injury has drawn particular interest to
its therapeutic potential. Recent work suggested a protec-
tive effect of soluble forms of nucleotidases to counter
thrombosis by scavenging pro-aggregating ADP [44] and
reperfusion lesions [45]. In the context of hypertension, few
data are available; however, transgenic mice that systemi-
cally overexpress CD39 have been shown to be protected
against preeclampsia in a model of Th1 lymphocyte injec-
tion [46]. More recently, Visovatti et al. demonstrated a
protective role of apyrase, a soluble enzyme with CD39-
like activity, in pulmonary arterial hypertension in Entpd1
−/− mice [47]. These results seem to lend credence to the
idea that Bextra^ CD39 activity can exert a protective effect
against blood pressure elevation. However, in these studies,
the etiology of hypertension (Th1 injection/hypoxia) and
the models used (CD39TG vs. apyrase treatment of
Entpd1−/− animals) do not allow identification of the
mechanisms involved in this protection. The beneficial ef-
fect of Badditional^ CD39 activity, however, does not allow
anticipation of the potential deficit caused by the 50% loss
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in CD39 expression that we report here. In the context of
primary hypertension, the potential protection exerted by a
soluble CD39 or equivalent ATPDase undoubtedly de-
serves special attention.

Beside the soluble enzyme, substances that increase endog-
enous CD39 such as IL-27 [48] and/or statins [49] could be
envisaged as potential treatments and/or reinterpreted in light
of these new data.

Many soluble nucleotidase and kinase activities exist in
blood circulation [50]. Among these, ADPase activity is large-
ly dependent on CD39 (abrogated in Entpd1−/− mice;
Fig. 2c). Here, we demonstrated a significant decrease in sol-
uble ADPase activity specific to CD39 in the circulation of
hypertensive mice. This finding is in agreement with the work
of Jalkanen et al., who reported that levels of ADP in the sera
of hypertensive patients were significantly increased as a
probable consequence of decreased levels of CD39 [51].
Circulating ADPase activity, if not a therapeutic option, may
thus serve as a potential biomarker in primary hypertension.

Our data show that the arterial expression and function-
ality of CD39 is decreased in hypertension. Reduced nu-
cleotidase activity may enhance pathology-associated vas-
cular damage, increasing endothelial permeability and in-
flammation and increasing the risk of end-organ damage
and thrombogenesis.
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