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A noninvasive brain–computer interface
approach for predicting motion
intention of activities of daily living
tasks for an upper-limb wearable robot

DSV Bandara, Jumpei Arata and Kazuo Kiguchi

Abstract
Brain–computer interfaces are emerging as an important research area and are intended to create an understanding
between a computer and the human brain to ensure that robot–human interactions become more intuitive and user-
friendly. However, encoding of brain information to derive the intended motion of the user in real time continues to
present a problem with respect to the control of wearable robots with multiple degrees of freedom. In this study, a new
approach to control several degrees of freedom in a wearable robot is proposed and its feasibility is studied by estimating
the user’s motion intention in real time, in terms of the user’s intended tasks to perform, by using electroencephalography
signals measured from the scalp of the user. A time-delayed feature matrix is introduced to provide inputs to neural
network and support vector machine-based classifiers that harvest the dynamic nature of the electroencephalography
signals for motion intention prediction. The experimental results indicate the effectiveness of the proposed methodology
in the estimation of user motion intention, in terms of intended task to perform.
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Introduction

A brain–computer interface (BCI) provides a method of

communication between the human brain and an external

device that is based on the neural activity generated by the

brain and is independent of normal output pathways such as

the peripheral nerves and muscles.1 Recently, both nonin-

vasive2–10 and invasive11–16 BCI technologies have been

proposed for various purposes. The ultimate goal of BCI

studies is to enable anthropomorphic movement of wear-

able robotic devices, such as a prosthesis17–19 or exoskele-

ton20–22 acting as an assistive device,4 based on the

intended motion of the user in real time for more effective

use of these devices in assisting with activities of daily

living (ADL or ADLs) or rehabilitation tasks. These

devices correspond to highly dexterous robotic devices

with multiple degrees of freedom (DoFs). Therefore, the

control signals should be capable of actuating all required

DoFs of these robots when wearable robots are controlled.

Consequently, several DoFs of motion must be determined

using an electroencephalography (EEG)-based method or
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another motion intention identification method. To date,

several different motion estimation methods4,5,7,13,23–27

have been proposed for each specific BCI application.

In one previous study,23 a prosthetic hand was operated

with 1-DoF for its open and closed positions by classifying

EEG patterns that occurred while the user imagined left-

and right-hand movements. Palanker et al.24 proposed an

EEG-based control architecture for a wheelchair-mounted

robotic arm. Their method used visual stimulation of the

subject provided via a visual matrix that includes either a

symbolic array or an alphabetic array that corresponds to

the required motion. In another previous study,5 Hayashi

and Kiguchi proposed a neural network–based method to

identify the intended motion of the subject. Their method

predicted whether the subject’s intention involved either

moving or not moving the hand within a single DoF.

Additionally, several studies4,7,13,25–27 also attempted to

identify the intended motion of the subject with respect to

the intended task. Pfurtscheller et al.25 examined the reactiv-

ity of the EEG rhythms (known as mu rhythms) in associa-

tion with the subject imagining movement of the right hand,

the left hand, the foot, and the tongue and attempted to

discriminate each individual task using the mu rhythms.

Another method based on principal component analysis and

a support vector machine (SVM) classifier was proposed by

Vallabhaneni and He26 to classify the movements of the left

and right hands. In an extant study,27 a steady-state visually

evoked potential (SSVEP)-based meal assistive robot was

proposed. In this method, the subjects selected any solid

food item that they wanted to eat from three different bowls

by looking at the light-emitting diode (LED) matrices corre-

sponding to those bowls, which were blinking at different

frequencies. The SSVEP generated was then used to control

the multi-DoFs meal assistive robot. In a previous study,4 a

motor imagery-based robotic arm control method was pro-

posed to perform reaching and grasping tasks. In this

method, the subjects performed motor imagery-based tasks

to control different cursor movements on a computer mon-

itor, and the same motor imagery commands were later

extended to control a robotic arm with multiple DoFs when

performing reaching and grasping tasks.

In most of the studies mentioned above, the motor ima-

gery or motor execution by the subject that triggers the EEG

pattern differs from the motion that is generated by the robot.

In contrast, the intended motion of the subjects could be

predicted using different means. Most studies followed an

approach in which they defined a third-party brain trigger for

a selected DoF or task. Furthermore, in a few of these stud-

ies, the subject operated only a single DoF of the robot or the

simultaneous operation of several DoFs was not possible, so

this did not provide an intuitive user experience when per-

forming ADLs.

Conversely, two different approaches were proposed to

identify the intended motion of the user. One method

involved prediction of the direction and the speed of the

joints that the user wanted to actuate. In this case, a number

of individual joint motion predictions were necessary to pre-

dict a user’s upper-limb motion. In this approach, the pre-

diction complexity increases with the introduction of each

additional DoF. In another approach, it was possible to iden-

tify the ultimate goal of the user’s intended motion and the

guide the robotic device from the initial position to the

required end position. In this case, it was necessary to predict

the intended motion in terms of the user’s intended task, and

the prediction complexity was independent of the number of

DoFs involved. A few of the above studies4,5,23 also

attempted to predict some motor tasks. However, with the

exception of one study,27 none of the other studies examined

or predicted ADLs, although this is more important in the

control of wearable robots.

In summary, the available BCI techniques that can be

used to operate wearable robotic systems include one or

both of the following drawbacks, which do not correspond

to the control requirements for wearable robots. Either the

techniques do not provide the user with adequate DoFs to

allow the required ADL tasks to be performed or the motor

imagery/execution that is used to trigger the EEG is not

always similar to the output from the robot. Therefore, the

robots cannot be controlled intuitively. In addition, EEG

signals contain dynamic information about the intended

motion, and the available methods do not understand this

dynamic information accurately.

This study therefore proposes a new approach to control

several DoFs of a wearable robot by estimating the user’s

motion intention in real time, in terms of the user’s intended

tasks to perform, by using EEG signals measured from the

scalp of the user. The study is expected to correspond to an

initial one to perform the same tasks using noninvasive BCI

techniques, for example, EEG. Initially, the locations and

frequency ranges of the required brain activations are iden-

tified for each task during an offline analysis. These brain

activations are triggered by the same tasks that would be

performed by the robot. The information from the offline

analysis is used along with a time-delayed feature matrix to

provide input to the classifiers, and this helps the classifier to

understand the dynamic nature of the EEG features that are

introduced in the proposed method. Neural network– and

SVM-based classifiers are also used to predict the intended

motion in real time. Subsequently, the effectiveness of the

neural network–based classifier and that of the SVM-based

classifier are both compared to that of the proposed

approach, which is used to control several DoFs of a wear-

able robot to perform a similar intended human motion in

real time using a suitable kinematics model for the selected

tasks. The next section presents the study methodology and

the following sections present the results and a discussion of

the study. Finally, our conclusions are presented.

Method

The proposed methodology for control of the wearable robot

comprises a data collection process with a two-stage data
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analysis process, composed of offline analysis and real-time

motion prediction, and an inverse kinematics-based motion

generation process to control the robot. The key steps in the

methodology are shown in Figure 1. Initially, the EEG data

are collected from the test subjects for two ADL tasks. The

subsequent offline analysis (shown in the dark background

area in Figure 1) focuses on identification of the brain beha-

vior because different brain regions are activated based on

the task to be performed. Additionally, voltages with differ-

ent frequency ranges are emitted by the brain when different

tasks are to be performed by the body. Therefore, one impor-

tant step in the development of a real-time controller for a

wearable robot involves development of a better under-

standing of the locations in the brain and the range of fre-

quencies that are generated for the tasks to be performed. In

the next step, the subject-specific findings from the offline

analysis are used to develop a more dynamic prediction

methodology for real-time motion prediction.

The current study focuses solely on prediction of the

intended motion based on each subject’s EEG signals.

However, as shown in Figure 1, the results are to be

extended to control a multi-DoF wearable robot using an

inverse kinematics model28 that has been developed appro-

priately for the expected tasks.

To diminish the effects of the noise that is generated among

the electrodes and to normalize the recordings across all chan-

nels, a step that is common to both processes involves initial

calculation of the common average reference (CAR) as shown

in the following, where N denotes the number of channels

used in the recordings, XiðtÞ denotes the raw EEG signal from

the ith channel at time t, X CAR;iðtÞ denotes the CAR-corrected

EEG signal of the ith channel at time t, and XkðtÞ denotes the

EEG signal of the kth channel for average calculations

X CAR;iðtÞ ¼ XiðtÞ �
1

N

XN

k¼1

XkðtÞ ð1Þ

The details of each step in the process are explained in

the following sections.

Experimental setup

In this study, EEG signals were recorded for six healthy male

subjects who were all aged in the range of 24 to 28 years. A

gamma.cap (Gtec Co., Germany) with 16 electrode locations,

a g.Gammabox (Gtec Co.), and a biosignal amplifier (Nihon

Kohden Co., Tokyo, Japan) were used to record the EEG

signals of the test subjects. A standard 10–20 electrode system

was followed for placement of the electrodes on each sub-

ject’s scalp and into the brain cap. Sixteen electrodes were

placed at the F3, F4, F7, F8, C3, C4, T3, T4, P3, P4, O1, O2,

Fz, Cz, Pz, and Oz positions, as shown in Figure 2(a). The

Figure 1. Proposed approach for wearable robot control (dark background, offline analysis; , raw EEG; ,
preprocessed EEG; , filtered EEG).

Figure 2. Experimental setup. (a) The 10–20 electrode system
and the channel locations. (b) The experimental platform.
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sampling frequency for measurement of the EEG signals was

set at 1000 Hz. The left ear lobe was used as the reference

point for the EEG recordings.

The experimental platform is shown in Figure 2(b). In

these experiments, the subjects were expected to sit on a

chair in front of a table and perform two ADL tasks (i.e.

movement of an object and drinking). The experiment

begins with an audible cue to the subject: “Start.” The

subject remained still for the first 10 s of the test. The

subject was instructed to relax his hands on his legs

when a task was not being performed. An object was

placed on the table in front of the subject at 8 s, and the

subject was instructed to perform the task of moving the

object at 10 s, which involved moving the object from

right to left following an audible cue corresponding to

“Start.” The subject moved back to his relaxed position

after moving the object to his left. Subsequently, there

was a 4-s interval prior to the start of the next experi-

ment. A cup was placed on the table in front of the

subject at the time of 2 s within this interval. At the

end of the 4-s interval, the audible “Start” cue was again

given, and each subject performed the required drinking

task by moving the cup toward his mouth in a manner

similar to the ADL. The subject drank and then replaced

the cup in its original position before returning to the

rest position. The subject was intended to perform these

tasks at a self-paced rhythm. These procedures were

performed 40 times over a period of 357 s. The intervals

between each task were randomly selected to be either 3

or 4 s in length. The order in which the tasks were

performed was also random. The experimental task

schedule for 24 of these tasks is shown in Figure 3.

The experimental procedure was approved by the insti-

tutional ethical review board. All the subjects were given

detailed written information about the experiments and

were given a chance to clarify any doubts. Then the sub-

jects signed a consent form to confirm their consent to

participation in the experiment.

Offline analysis

During the offline analysis, the frequency distributions in

the raw EEG signals were studied using fast Fourier trans-

forms (FFTs), which are expressed as

X ½k� ¼
XN�1

t¼0

X CAR;iðtÞe
�2pjtk=N ð2Þ

where X CAR;iðtÞ denotes the time series EEG signal, and N

denotes the total number of data points in the signal. FFT

analyses were performed individually on each channel for

the CAR-calculated EEG signals. It was then possible to

identify the locations and the frequency bands of the acti-

vated electrodes by examining the FFT analysis results.

Real-time prediction

The results that were obtained during the offline analysis

procedure were used to create the feature matrix required

for real-time analysis.

Feature matrix

The initial step for the real-time prediction process involves

extraction of features from the raw EEG signals. In this

study, the EEG band power29,30 is used as the feature for

the prediction algorithm. The EEG power band was calcu-

lated based on the results of the offline frequency analysis.

Accordingly, the four channel locations that showed the

best activation results were selected by observation for use

in the real-time analysis in this study. The CAR-calculated

EEG signals were then used to calculate the EEG power

bands based on the results of the FFT analysis.

One major challenge in EEG-based studies involves

understanding of the dynamic information, which changes

over time. In this study, a feature matrix of time-delayed

inputs is used by the classifiers for this purpose. Therefore,

the feature matrix from the selected electrode provides

three inputs to the classifier, as shown in equation (3),

where IPiðtÞ denotes the input to the classifier at time t and

EEGiðtÞ denotes the EEG band power in the selected ith

channel at time t:

IPiðtÞ ¼
EEGiðtÞ

EEGiðt � DtÞ
EEGiðt � 2DtÞ

2
64

3
75 ð3Þ

Therefore, the input training matrix dimensions corre-

spond to ðð3� nÞ � lÞ, where n denotes the number of

electrodes that were selected from the FFT analysis and l

denotes the number of time steps. The number of rows

corresponds to ð3� nÞ because each electrode provides

three inputs to the classifier at the three different time steps.

The input feature vector for the classifier thus corresponds

to equation (4)

Figure 3. Task schedule for 24 tasks in the experiment (1, movement; �1, drinking; 0, resting).
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IPðtÞ ¼

EEG1ðtÞ
EEG1ðt � DtÞ

EEG1ðt � 2DtÞ

EEG2ðtÞ

. . . . . . . . .

EEGnðtÞ

EEG1ðt þ 1Þ
EEG1ðt þ 1� DtÞ

EEG1ðt þ 1� 2DtÞ

EEG2ðt þ 1Þ
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EEGnðt þ 1Þ
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EEG1ðt þ 2� DtÞ

EEG1ðt þ 2� 2DtÞ

EEG2ðt þ 2Þ
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EEGnðt þ 1Þ
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EEG1ðlÞ
EEG1ðl � DtÞ

EEG1ðl � 2DtÞ

EEG2ðlÞ

. . . . . . . . .

EEGnðlÞ

2
6666666666664

3
7777777777775

ð4Þ

To determine Dt, neural network–based classifica-

tions were performed for three randomly selected data

sets with different Dt values corresponding to 50 ms,

100 ms, 250 ms, 500 ms, 1 s, and 2 s. Following the

evaluation, Dt was selected to be 1 s for the entire study

because the highest classification accuracy was pro-

duced for Dt ¼ 1 s.

Neural network–based prediction

Artificial neural networks are widely used to solve a broad

range of classification problems. In this study, seven

neural networks were trained: six networks were trained

using one individual subject’s data and one was trained

with the data from all the subjects. Each neural network

consists of three layers: the input, the hidden, and the

output ones. The hidden layer contains 30 neurons and

was determined by comparison with the results for struc-

tures containing 20, 30, 40, and 50 neurons in their hidden

layers. The neural network structure is shown in Figure 4.

A sigmoidal transfer function was used as an activation

function in both the hidden and output layers to calculate

the outputs from each layer. Each neural network was

trained using the error-back propagation algorithm and

the feature matrix that was derived during the offline

analysis process. The entire experiment accounts for three

different tasks during the training of the neural network,

that is, moving an object, drinking, and resting. With

respect to the required training values, 1 was assigned to

moving the object,�1 was assigned to drinking, and 0 was

assigned to resting, as shown in Figure 3. The output

during the prediction process from the neural network

corresponds to the values ranging from �1 to 1 that are

used to represent each of the above tasks. Therefore, six

different neural networks were trained for the six subjects

using each individual subject’s training data. A seventh

neural network was trained using a combination of the

training data from all the subjects.

SVM-based prediction

The SVM31 performs classification using linear decision

hyperplanes in the feature space. During the training state,

these hyperplanes are calculated to separate the training data

using different labels. However, these data are transformed

into a new vector space using a kernel function when it is not

possible to separate the training data in a linear manner.

In the linear classification procedure, the hyperplane is

calculated as shown in equation (5), which is upper

bounded in terms of the margin as indicated by equation (6)

y ¼ sgnððw:xiÞ þ bÞ ð5Þ

yððw:xiÞ þ bÞ � 1; i ¼ 1; :::; n ð6Þ

The SVM is also extended to perform multiclass classifi-

cation. This study focuses on classification of a three-class

problem. Given the choice of the use of one-against-many and

one-against-one approaches in the SVM, this study used the

one-against-one approach, which is more efficient for use

with training data from the ith and jth classes, and the classi-

fication problem is solved as shown in equation (7):31

Minimize

1

2
ðwijÞT wij þ C

X
t

ðeijÞt ð7Þ
Figure 4. Structure of the trained neural network.
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Subject to

ðwijÞT’ðxtÞ þ bij � 1� ðeijÞt ; if xi in the i th class

ðwijÞT’ðxtÞ þ bij � �1þ ðeijÞt ; if xi in the j th class; and ðeijÞt � 0

The SVM classifier was implemented using the LIBSVM

library.32 A radial basis function was used as the kernel

function. Additionally, C and e were randomly selected to

produce superior classification rates. In a manner similar to

the neural network approach, six different SVM models

were trained for the six subjects using their individual train-

ing data and a separate SVM model was then trained using a

combination of the training data for all the subjects.

Results

Frequency analysis

The frequency analysis results show the distributions of the

magnitudes of the frequencies for each channel. The fre-

quency distributions of channel locations F7 and C5 for

subject 1 are shown in Figure 5(a) and (b), respectively.

Specifically, F7 shows good activation when compared with

the performance of C5. For all six subjects, channel locations

F7, F8, T3, and T4 showed good activation based on obser-

vation and comparison processes. These channels were

therefore selected for use in the real-time prediction proce-

dure. The activations were in the frequency range below 4

Hz in all the selected electrode locations above. The selected

electrode locations and their frequency ranges were similar

for all six subjects. The EEG signals from the selected chan-

nels were high-pass filtered at 4 Hz, and the resulting values

were squared to perform the EEG power band derivation.

The resulting time series activations of the EEG patterns at

F7 and F8 are shown in Figure 6, where M denotes the object

movement state and D denotes the drinking state. A rhyth-

mic activation was observed in both channels for the object

movement state. With regard to the drinking state, a certain

degree of activation did exist, but no rhythmic pattern was

observed. During the resting state, no activation was

observed. The derived band power signals were then used

to create the input feature matrix for the classifiers and a

ð3� 4� lÞ feature matrix was created and used as the input.

Neural network–based prediction

The trained neural networks for the six subjects were then

used to predict the intended task. The output from the

neural network for the task prediction process is shown in

Figure 7(a). This predicts values in the range of 1 to �1 for

the expected tasks. The orange color indicates the expected

output, and the blue color denotes the real output. The

output signal from the neural network was rounded off, and

the resulting output is shown in Figure 7(b). Similarly, the

neural network that was trained using the data from all

Figure 5. FFT results for electrodes (a) F7 and (b) C5 for subject 1. FFT: fast Fourier transform.

Figure 6. Activation of electrodes F7 and F8 (where D is drinking and M is moving).
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subjects was also used to predict the intended tasks of the

six subjects individually. The results that were obtained

from neural network–based prediction are summarized in

Table 1. The prediction accuracies were calculated based

on comparisons of the real and predicted classes at each

instant in time. For the individually trained neural net-

works, the highest accuracy and the average accuracy for

the resting state corresponded to values of 80.4% and

70.1%, respectively. For the object moving state, their

highest accuracy and average accuracy values corre-

sponded to 81.6% and 72.4%, respectively. For the drink-

ing state, their highest accuracy and average accuracy

values corresponded to 58.2% and 49.9%, respectively. The

highest individual accuracy of 70.5% was achieved for

subject 1. For all six subjects, the average overall accuracy

was 65.8%. In addition to the accuracy, the latency between

the real execution of motion and the prediction was calcu-

lated based on the time difference between the real and

predicted starting points of the motion. The average latency

corresponded to 300 ms for the individually trained neural

network–based classifier, based on the average for all six

subjects. For the neural network that was trained using

the data from all six subjects, the highest accuracy and

the average accuracy with respect to the resting state cor-

responded to 87.4% and 72.5%, respectively. For the object

moving state, the highest accuracy and average accuracy

values corresponded to 80.3% and 72.6%, respectively. For

the drinking state, the highest accuracy was 80.2%, while

the average accuracy was 59.5%. The highest individual

accuracy of 74.8% was recorded for subject 2. The average

overall accuracy for all six subjects in this case was 69.4%.

The overall average latency for this type of neural network

prediction was 250 ms.

SVM-based prediction

In a manner similar to the neural network–based prediction

case, the same data were used to predict the tasks intended

by the subjects that used the trained SVM models. Figure 8

shows the task prediction results for two subjects. The

orange color denotes the expected output, while the blue

color denotes the real output. Table 2 shows a summary of

the results for all six subjects. For the SVM models that were

trained using data from individual subjects, the highest accu-

racy with respect to the resting state corresponded to 94.5%,

while the average accuracy corresponded to 86.6%. For the

object moving state, the highest accuracy was 83.8% and the

average accuracy was 77.6%. For the drinking state, the

highest accuracy was 59.8% and the average accuracy was

39.1%. Subject 2 showed the highest overall individual accu-

racy of 74.6%. The average overall accuracy for all six

subjects was 73.1%. On average, the latency between the

real execution of motion and the predicted execution was

found to be 600 ms when using the SVM for all six subjects.

In contrast, for the SVM model that was trained with the data

from all six subjects, with regard to the resting state, the

highest accuracy was 97% and the average accuracy was

90.4%. Additionally, a highest accuracy value of 84.3% and

an average accuracy of 73.4% were recorded for the moving

state. For the drinking state, the highest accuracy was 47.4%,

while the average accuracy was 27.7%. However, the model

recorded a lowest accuracy of 4.3% for the drinking state.

Figure 7. Comparison of actual tasks with predicted tasks for the neural network (1, moving;�1, drinking). (a) Actual output from the
neural network. (b) Rounded output.

Table 1. Percentages of estimation accuracies for six subjects produced by the neural network–based prediction.

Individual training Collective training

Resting Moving Drinking Overall Resting Moving Drinking Overall

Subject 1 80.4 61.2 58.2 70.5 87.4 69.9 43.6 72.8
Subject 2 69.1 77.7 51.7 67.0 75.1 73.1 76.0 74.8
Subject 3 72.2 63.0 56.2 66.2 70.1 72.9 68.5 70.4
Subject 4 66.6 73.2 55.8 65.6 66.4 80.3 52.1 66.3
Subject 5 67.0 77.4 44.7 64.2 70.7 63.4 80.2 71.2
Subject 6 65.4 81.6 33.0 61.5 65.2 75.9 36.3 60.8
Average 70.1 72.4 49.9 65.8 72.5 72.6 59.5 69.4

Bandara et al. 7



The highest overall individual accuracy of 76.7% was

recorded for subject 2. The average overall accuracy for all

six subjects was 71.4%. The average latency for all six sub-

jects between the real and predicted motions was 700 ms.

Discussion

This study proposed the use of a motion-based task inten-

tion prediction method to control a wearable assistive

device. The proposed method was used to predict three

task states: moving, drinking, and resting of the upper

extremity, using both neural network– and SVM-based

classifiers. Initially F7, F8, T3, and T4 electrode locations

were identified to have a better activation of the brain for

the selected tasks, compared to the other electrode loca-

tions, in an offline study. Then the power band data were

derived as feature inputs to the training of the classifiers.

Each classifier was trained using two different types of

data, including data from individual subjects and data

from all six subjects. Therefore, four predictions were

made for each individual subject. A summary of the

results of the four predictions for all six subjects is shown

in Figure 9. All four prediction methods demonstrated

higher rates of accuracy for the object movement and

resting states. However, the accuracy rates for the drinking

state were low when compared with those for the other two

states. This was expected because the input signal for the

moving state clearly involves a certain degree of activation,

while there were no clear activation signs for the drinking

state. However, in neural network–based prediction, when

the network was trained using the data from all six subjects,

a significantly higher accuracy rate was achieved for the

drinking state when compared with the other three prediction

methods. Similarly, when it was trained using the data of all

six subjects, the neural network–based classifier performs

better than the corresponding classifiers that were trained

using an individual subject’s data for all three classes. Con-

versely, when compared with the overall results, the accu-

racy of the SVM-based classification results exceeded that of

the neural network–based classification results. Unlike the

neural network–based classifier case, the individually

trained SVM models performed better than the SVM model

that was trained using the data from all subjects. For the

resting state, the SVM achieved a maximum accuracy of

94.5%, while the maximum accuracy for the neural networks

was 87.4%. For the object moving state, the accuracies of the

SVM and neural network–based classifications were 84.3%
and 81.6%, respectively. For the drinking state, the highest

accuracies of the SVM and of the neural network–based

classifications were 59.8% and 80.2%, respectively. How-

ever, for the drinking state, the lowest success rate for the

prediction was an accuracy of less than 7% when using the

SVM-based classifiers with two subjects, when trained with

the data from all subjects. Therefore, the average accuracy

for the drinking state for the SVM (39.1%) was lower than

that of the neural networks (59.5%). However, the neural

networks provide faster predictions than the SVM in terms

of the latency between the actual motion and the motion

predicted by the classifiers. While some prediction latency

is inevitable, the latency of the neural network–based

Table 2. Percentages of estimation accuracies for six subjects produced by the SVM-based prediction.

Individual training Collective training

Resting Moving Drinking Overall Resting Moving Drinking Overall

Subject 1 77.6 77.8 57.2 72.8 87.1 73.6 44.4 73.7
Subject 2 78.8 80.3 59.8 74.6 92.7 71.0 47.4 76.7
Subject 3 86.5 67.7 54.2 74.3 97.0 66.5 4.3 67.6
Subject 4 92.5 83.8 17.5 72.5 94.7 77.2 6.7 69.5
Subject 5 94.5 81.5 22 74.1 80.8 84.3 35.4 70.8
Subject 6 89.5 74.2 24 70.2 90.1 68.1 27.8 70.0
Average 86.6 77.6 39.1 73.1 90.4 73.4 27.7 71.4

SVM: support vector machine.

Figure 8. Comparison of actual tasks with predicted tasks for the SVM for two subjects (1, moving; �1, drinking).
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classifier is almost half of that of the SVM-based classifier.

Summary of the prediction latency for all subjects is shown

in Figure 10.

Additionally, when compared with the available nonin-

vasive BCIs for control of wearable robotics, the proposed

approach allows the wearer to perform two ADL tasks

based on the intention of the exact motion through gener-

ation of multi-DoF motion for the wearable robot using an

inverse kinematics model for the tasks. Furthermore, the

prediction capability of the proposed method for expected

motion tasks exceeds or equals that of the currently avail-

able noninvasive BCIs for wearable robots.

Future studies will involve the use of hybrid signal mod-

ality to provide additional information about the tasks that are

performed to obtain the inputs for the classifiers. From this

perspective, it will be possible to use the inputs from real-time

video signals, head position information measured using iner-

tia measurement units, and functional near-infrared spectro-

scopy signals in conjunction with the EEG signals.

Conclusions

In this study, a noninvasive BCI approach was proposed to

examine the dynamic features of EEG signals that

occurred during two ADL tasks. The proposed method

was used to predict the task-based motion intentions of

users of a wearable robot. Initially, the current statuses of

the BCI techniques that were available to perform such

tasks were identified. The proposed methodology accom-

modates the dynamic nature of the EEG signals in its

approach through use of time series feature inputs in the

classifiers. An offline analysis was performed to identify

the activated brain regions and the frequency ranges for

each of the intended user motions. The identified signals

were then used in real time as inputs to neural network–

and SVM-based classifiers to predict the intended

motions. The experimental results indicated the effective-

ness of the proposed method. This study has thus estab-

lished the feasibility of using a task-based approach to

control wearable robots with BCIs.
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