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The complexity of temperature and dew-point fluctuations across India are being investigated and
analyzed with the help of recurrence plots (RP) and recurrence quantification analysis (RQA). The
results firmly state that both data sets is non-linear, non-stationary and deterministic. Hilbert—-Huang
transform and an efficient peak detection algorithm (integral method) have been used to detect the
underlying periodicity (above 95% CL) within these two signals. The nature of the complexity and
the derived periods of these two weather variables show that there are significant impact of the local
geographical topology and global atmospheric fluctuations on the overall pattern and fluctuation of the

temperature and dew-point profile across India.
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1. Introduction

Weather parameters such as temperature,
dew-point, rainfall, atmospheric pressure, and wind
speed are complicated in nature (Byakatonda et al.
2018; Reddy et al. 2018). The time series of these
parameters need to be analyzed carefully as the
dynamics of processes generating these time series
are priory unknown. Analysis to reveal the dynam-
ics of the processes and to predict their future
behaviour precisely is a matter of thorough study.
These time series usually contain linear or non-
linear, stationary or non-stationary, deterministic

or stochastic components, yet it is a common
practice to analyze such processes using subopti-
mal, but mathematically tractable methods, which
may lead towards flawed verdict about the pro-
cesses. Appropriate analyzing techniques are essen-
tial and can significantly improve the quality of the
results revealing the important information which
remained buried earlier while using conventional
linear methods. There are numerous data analysis
techniques to obtain insights into the complex pro-
cesses observed in nature (Blasius et al. 1999; Glass
2001; Marvel 2001). The large size of India, its lati-
tudinal extent, the presence of the Himalayas in the
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north, the Indian Ocean, Arabian Sea and Bay of
Bengal in the south and Thar desert in west have
resulted in great variations in the distribution of
weather variables in the subcontinent of India and
hence in this paper an initiative have been taken to
learn the dynamical aspects of the Indian weather.

The key meteorological parameters which
influence the weather of a geographical region are
(a) temperature, (b) pressure, (c) wind speed,
(d) dew-point or humidity, (e) rainfall; (f) haze
and contents in the air, and (g) solar-terrestrial
radiation. Mere measurement of these meteoro-
logical parameters by the instruments (however
sophisticated they might be) is of no importance
to the human civilization unless proper analysis
and investigation of these measured or recorded
parameters are made. Human civilization got its
momentum when the technology of transport and
communication (ground, aerial or marine traffic)
started to flourish and the maintenance of these
cannot be made without proper analysis of the
meteorological parameters. The analysis of these
parameters are also important as far as the aspects
like atmosphere pollution, non-conventional energy
generation, agronomy, forest conservation, urban
and rural planning, and irrigation management are
concerned. The dynamics of the variation of the air
temperature and humidity play the crucial role to
assess the chemical reaction associated with the air
pollutants.

The outcome of the analysis of the temporal
or spatial data series of the combination of a
number of the meteorological parameters is vital
for weather prediction, modelling and climatology.
This research work which involves the analysis
of the two important meteorological parameters,
temperature and dew-point recorded at various
location across India, is an effort to unearth the
complex dynamics and the embedded periodicities
of the two parameters. The outcome of this analy-
sis may further contribute as the necessary inputs
to researchers, meteorologists who are working in
various missions discussed above. Keeping these
in view, two important parameters temperature
and dew-point have been chosen as the subjects
of investigation in this work.

The daily mean temperature and dew-point data
(from 9 October, 1996 to 1 February, 2013) col-
lected in the form of time series from seven weather
stations (Kolkata, Chennai, New Delhi, Mumbai,
Bhopal, Agartala, Ahmedabad) (Ray et al. 2015)
distributed across India (NOAA 2014) have been
taken for investigation as they have an effect on
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Temperature-Humidity Index (THI), which is a
measure of ‘discomfort’ (Steadman 1984). The
length of the time series data sets of the daily mean
temperature and dew-point for every station is the
total number of days counting from 9 October, 1996
to 1 February, 2013 and it is 5960. The summary
statistics of the time series signals used in this work
are presented in table 1.

The dew point is the temperature below which
the water vapour in air at constant barometric
pressure condenses into liquid water at the same
rate at which it evaporates. The dew-point is
associated with relative humidity. A high relative
humidity indicates that the dew point is closer to
the current air temperature, whereas when it is
much lower than the air temperature, the relative
humidity is very low. Temperature of a place also
varies at different times of a day and at different
months and seasons of a year.

The variations of terrestrial temperature may be
due to several factors. The processes of absorp-
tion, scattering and transmission of the incoming
solar radiation directly affect the distribution of the
temperature throughout the atmosphere (Ahmed
et al. 2014). The angle of the sun’s rays and length
of daylight determine the amount of insolation
received in a certain place. Near-infrared radiation,
which represents nearly half the radiation emitted
by the Sun, is absorbed mainly by two gases in the
atmosphere—water vapour and (to a lesser extent)
carbon dioxide. Therefore, temperature and dew-
point may have an inter-dependent relationship. It
is a quest to the climate scientist to ascertain the
character of this relationship for which statistical
methodologies have been used. In this paper the
authors devoted their effort in this search only for
the weather prevailing in India.

The time series generated from natural systems
generally exhibit non-linear, non-stationary and
complex behaviour (Marwan and Kurths 2004).
Climatic behaviour is one such natural aspect
which is also supposed to exhibit complexity.
A system with complexity is one where differ-
ent intermingling components are found to inter-
act with each other. Climate system definitely
suits by this definition. The very identification of
the complex behaviour of the climate can bring
improvement in weather predictions and under-
standing. The temperature and the dew-point time
series (NOAA 2014) of seven weather stations dis-
tributed across India are analyzed here in the
context of its non-linear, non-stationary and com-
plex behaviour (Marwan and Kurths 2004). In this
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Table 1. Summary statistics of the daily mean temperature and dew point of the seven weather stations.

Kolkata Chennai New Delhi Mumbai Bhopal Agartala Ahmedabad

Daily mean temperature (°F)

Mean 79.35 82.92 76.28 81.67 77.52 76.75 80.93
Median 82.51 86.38 80.10 82.16 78.13 80.07 82.59
SD 7.19 4.15 12.51 3.08 8.63 7.04 7.80
Variance 51.75 17.22 156.52 9.51 74.52 49.56 60.86
Maximum 92.11 94.30 99.80 89.13 98.08 88.64 95.84
Minimum 58.37 73.99 47.19 68.13 54.79 53.13 60.68
Range 33.74 20.31 52.61 21 43.29 35.51 35.16
Skewness —0.85 0.03 —0.39 —0.91 0.00 —0.89 —0.40
Kurtosis —0.52 —1.04 —1.16 1.14 —0.63 —0.50 —0.81
Daily mean dew point (°F)

Mean 69.82 72.38 61.05 68.56 57.50 69.66 60.62
Median 73.32 72.92 59.16 70.49 55.45 72.75 59.77
SD 8.75 2.75 11.27 6.79 11.31 8.19 11.78
Variance 76.51 7.55 127.10 46.04 123.83 67.15 138.86
Maximum 80.57 79.69 80.32 79.19 75.72 80.16 81.29
Minimum 45.36 62.75 31.86 44.30 29.97 46.98 25.59
Range 35.21 16.94 48.46 34.89 45.75 33.18 55.70
Skewness —0.64 —0.68 0.13 —0.48 0.05 —0.67 —0.13
Kurtosis —1.02 0.15 —1.29 —0.96 —1.30 —0.95 —1.25

framework recurrence plot (Eckmann et al. 1987)
and recurrence quantification analysis (RQA)
(Marwan et al. 2007) methodologies have been
implemented to study the stationarity/non
-stationarity, nature of cyclicity, determinism/
stochastism, stability, chaosity, complexity and reg-
ularity of the temperature and dew-point of India
(Ray et al. 2017).

In order to find out the temporal regularities
within the time series the underlying periodic-
ity needs to be detected, which reveals how the
periodic patterns evolve within the time series
(Dergachev and Geel 2004). The primary rea-
son which makes the search for periodicity an area
of fundamental research is to get an idea about
the possible cause of their dynamics. Investigation
and comparison of the patterns of these period-
icities and their evolution helped to reveal the
mutual relationship between the different meteo-
rological and climatological parameters. Identifica-
tion of the patterns of these periodicities of these
parameters also provides necessary contribution
in climatological forecasting and in decision mak-
ing of various public welfare activities throughout
the year of a particular location. Hilbert—Huang
transform (Huang et al. 1998) using empirical
mode decomposition method (Sole et al. 2007) has
been employed to find the underlying periodicities
within the signals under investigation, i.e., daily

mean temperature and dew-point of seven weather
station across India. The intrinsic mode functions
yield instantaneous frequencies as functions of time
that give sharp identifications of embedded struc-
tures. Among the obtained instantaneous periods
(1/frequency), the significant periods having more
than 95% confidence level are picked by an efficient
peak detection algorithm (integral method) (Azz-
ini et al. 2004). These periods of the temperature
and dew-point are compared to trace the presence
of statistical association between them.

2. Theory

2.1 Recurrence plot (RP) and recurrence
quantification analysis (RQA)

Recurrence plots can help to find out a first
characterization of the data or to find transitions
and interrelations. These techniques are applica-
ble to any time series as they do not require
a priori assumptions on the statistical proper-
ties or mathematical structure of the time series.
Recurrence is a fundamental property of dynam-
ical systems. After some time, the system will
reach a state that is arbitrarily close to the former
state and pass through a similar evolution. Recur-
rence plots visualize such recurrent behaviour of
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dynamical systems. The degree of recurrence and
other important measures of complexity are then
estimated  using  recurrence  quantification
analysis (RQA).

2.1.1 Recurrence plot

Recurrence plot (RP) is a graphical tool introduced
by Eckmann et al. (1987) in order to extract qual-
itative characteristics of a time series. It exhibits
characteristic patterns for typical dynamical
behaviour of a signal or time series (Khondekar
et al. 2012). For example, a collection of single
recurrence points, homogeneously and irregularly
distributed over the whole plot, reveals stochastic
behaviour of the signal.

It shows all the instances when the phase space
trajectory (Thomasson et al. 2001; Marwan et al.
2002) of the system visits almost the same region
in the phase space. The recurrence of a state i at
a different time j or the d-dimensional phase space
trajectory is depicted within a two-dimensional
squared matrix with black and white dots, where
the black dots represent a recurrence and both axes
represent time. Such an RP can be mathematically
expressed as

RIS =H (e — |lsi —sill), s € R,
,7=1,...,N (1)

where R; ; is the recurrence plot, N is the number
of considered states S;, €; is a threshold distance,
R is set of real numbers, ||s; — s;|| is the norm and
H () is the Heaviside step function.

Using the one-dimensional time series x; of a
single observable variable (temperature or dew-
point in this case), it is possible to reconstruct
a phase space trajectory s; using Taken’s time
delay method (Takens 1981) as, s; = (24, Titx, ...
Ti(d-1) ), where d is the embedding dimension and
7 is the time delay (index based). The embed-
ding dimension d is estimated by using the method
based on false nearest neighbours (Kennell et al.
1992). The basic philosophy behind the false near-
est neighbours method is that on decreasing the
embedding dimension d, increasing number of
neighbouring points will be projected in the phase
space, even they may not be a real neighbour to
the actual point. These points are known as false
nearest neighbours (FNN). To achieve the minimal
amount of embedding, the embedding dimension d
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is to be chosen in such a way that all the FNNs
vanish (Kantz and Schreiber 1997).

The time delay is linearly proportional to
embedding lag 7 and defined as equal to 7 times the
sampling rate of the data series. Since the sampling
rate of the observation in present work is 1 day for
each time series, the time delay equals to embed-
ding lag 7. The optimal value of 7 is determined
using the theory of mutual information (Roulston
1999). The best possible value of 7 is that value for
which the mutual information between any obser-
vation and its 7-delayed reconstruction in the phase
space have lowest local minimum. The estimated
values of d and 7 are shown at the bottom right
corner of table 2 for temperature and dew-point
data series for all the seven weather stations. Using
these values of d and 7, the corresponding recur-
rence plots of temperatures and dew-points of these
stations are obtained as depicted in table 2.

2.1.2 Recurrence quantification analysis (RQA)

A quantitative analysis of the recurrence plots
that measure the dynamical transitions in com-
plex systems based on the recurrence point density,
diagonal and vertical structures in the RP is known
as recurrence quantification analysis (RQA) (Mar-
wan et al. 2002, 2007; Zbilut and Jr. Webber
1992; Jr. Webber and Zbilut 1994; Khondekar
et al. 2013). The parameters which are generally
calculated from RP are recurrence rate (REC),
determinism (DET), the longest diagonal line seg-
ment in the plot (LMAX) and entropy (ENTR).

The recurrence rate is a measure of recurrences,
or density of recurrence points in the RP. This rate
gives the mean probability of recurrences in the
system. The recurrence rate represents the fraction
of recurrent points with respect to the total number
of possible recurrences. It is a density measure of
the RP. The expression for REC is as below

REC(g;) = % Z R; i(&). (2)

Determinism is a measure for predictability
of the system. The determinism could also be
explained as the percentage of recurrent points
forming line segments, which are parallel to the
line of identity (LOI). The measure of determin-
ism (DET) ranges from 0 to 1. Numbers near
zero indicate randomness while those approaching
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Table 2. Recurrence plots of temperature and dew point of the seven weather stations and
the corresponding embedding dimension (d) and embedding lag (7).
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Kolkata 5 55 5 61
Chennai 5 64 5 42
New Delhi 4 63 5 63
Mumbai 5 40 5 63
Bhopal 5 53 5 65
Agartala 5 55 5 61
Ahmedabad 5 56 5 67

one indicate the presence of a strong deterministic
component in the signal. If a variable D;; be defined

as
Dij = {(1): otherwise
Then
DET = —Z%Zl Dt (3)
Zz‘,j:l Ri,j

The LMAX is simply the length of the longest
diagonal line segment in the plot, excluding the
main diagonal line of identity (LOI) where i = j.
For the shorter LMAX, the signal can be judged
as more chaotic and less stable while for longer

LMAX, the signal can be evaluated as a more
regular one with greater stability.

if (i,7) and (i + 1,7+ 1) or (¢ — 1,5 — 1) are recurrent

If N; is the number of diagonal lines and I; be
the length of the i*" diagonal line

LMAX = max(l;), (4)
where i =1,..., N,

The entropy (ENTR) refers to the Shannon
entropy of the frequency distribution of the diago-
nal line lengths. According to several authors, the
basic idea is that information (Shannon) entropy of
the random processes is abundantly supplied with
the qualitative and quantitative data on the object
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Table 3. RQA of temperature and dew point series for seven stations.

Temperature Dew Point
Stations %REC DET LMAX ENTR %REC DET LMAX ENTR
Kolkata 19.75 1.00 38.76 3.54 22.80 0.99 26.76 3.27
Chennai 6.96 0.99 10.28 2.87 1.39 0.93 4.93 1.78
New Delhi 46.15 1.00 76.80 3.67 31.52 1.00 37.10 3.62
Mumbai 3.45 0.96 2.15 5.95 35.02 1.00 47.63 3.59
Bhopal 26.01 1.00 41.88 3.50 18.71 0.99 12.68 2.98
Agartala 21.22 1.00 40.71 3.61 21.19 0.99 27.08 3.37
Ahmedabad 19.79 1.00 37.21 3.58 42.81 1.00 43.37 3.52

under research. The entropy of a system is given
by
N

ENTR=-> p(l) In p(l)
=1

()

where p(l) is the distribution of diagonal line
lengths, ENTR is a measure of signal complexity
and is calibrated in units of bits/bin. Signals hav-
ing periodic behaviour yield high entropy, whereas
chaotic signal will have low entropy.

The values of the four distinct variables of
recurrence quantification analysis for daily mean
temperature and dew-point data of different sta-
tions have been estimated and shown in table 3.

2.2 Search for underlying periods using
Hilbert-Huang transform (HHT)

Most of the geophysical and astrophysical sig-
nals are not stationary nor do they have linearity.
Though Fourier transform (FT) remains one of
the most popular spectral methods to find the
underlying periods in a dataset when analyzing the
geophysical and astrophysical signals F'T is not at
all suitable to detect the underlying periodicities
within the signal (Huang et al. 2001). This results
in a trade-off between time and frequency resolu-
tion for non-stationary signals and create spurious
harmonics for non-linear signals. The Fourier rep-
resentation of a signal x(t)

N-1
z(t) = Re (Z ajei“’j(t)t> , where
n=0

j=0,1,2,...,N—1 (6)

Hilbert-Huang transform (HHT), an alterna-
tive spectral method, avoids the linearity and
stationarity constraints of Fourier analysis and
hence it has been used here to search the relevant

periods of the temperature and dew-point time
series. The HHT (Huang et al. 1998; Khondekar
et al. 2010) defines instantaneous frequency as
the time derivative of phase, illuminating pre-
viously inaccessible spectral details in transient
signals. Non-linear signals become frequency mod-
ulations rather than a series of fitted sinusoids,
eliminating artificial harmonics in the resulting
spectrogram. It has been tested and validated care-
fully by many researchers, but only empirically. In
all the cases studied, the HHT gave results much
sharper than those from any of the traditional
analysis methods in time-frequency-energy repre-
sentations. Additionally, the HHT revealed true
physical meanings in many of the data examined.
Powerful as it is, the method is entirely empirical.
The HHT consists of two parts: empirical mode
decomposition (EMD) and Hilbert spectral analy-
sis (HSA).

2.2.1 Empirical mode decomposition (EMD)

2.2.1.1 Defining the instantaneous frequency

The Hilbert transform H(t) of an arbitrary time
series, z(t) is given by

= (1)

-7

H(t) = %PV / dr (7)

—0o0

in which the PV indicates the principal value of the
singular integral. The analytic signal k(¢) is defined
as

k(t) = x(t) + iH(t) = a(t)e®®) (8)

where a(t) = {22(t)+ Hz(t)}l/2 and ¢(t) =
H(t)
z(t)

In equation (7), the polar coordinate expression
further clarifies the local nature of this represen-
tation: it is the best local fit of an amplitude and

arctan [
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phase-varying trigonometric function to z(t). Here
a(t) is the instantaneous amplitude, and ¢(t) is
the phase function. The instantaneous frequency
of x(t) is defined by

d ¢(t)
= —". 9
w=— (9)
2.2.1.2  Decomposition into intrinsic mode
functions

This definition of instantaneous frequency is only
meaningful for mono-component signals with a zero
mean. Otherwise, the instantaneous frequency does
not reflect the actual frequency content of the
signal. The real advantage of the Hilbert trans-
form became obvious only after Huang et al.
(1998) introduced the empirical mode decomposi-
tion method. Huang et al. (1998) proposed a class
of functions designated as intrinsic mode functions
(IMF) for the instantaneous frequency to make
sense. The decomposition steps are as follows

Step 1: Identify all the extremas of the dataset
x(t),

Step 2: Connect all the local maxima and minima
by the cubic spline method to form the
upper and lower envelopes, respectively,

Step 3: Estimate the mean values m; (t) by aver-
aging the upper and lower envelope,

Step 4: Estimate the differences between the data
and the mean values to get the first com-
ponent

ha(t) = x(t) — ma(t) (10)

Step 5: If the first component does not satisfy
the condition of an IMF, h; (t) is being
assigned as the new data set. The Step 1
to 4 are repeated until the first component
is an IMF,

Step 6: If the first IMF component is called ¢; ()
then estimate the residue () = x(t) —
C1 (t)

Step 7: Continue Step 1 to 4 until the residue
rn (t) is smaller than a predetermined
value or becomes a monotonic function
that no more IMF can be extracted. In
this way 11 IMFs has been obtained
both for temperature and dew-point time
series.

2.2.2 The Hilbert spectral analysis

After the decomposition step, the data are reduced
to several IMF components. By performing the
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Hilbert transform on each IMF components, the
data can be expressed as follows

z(t) = Re Zaj(t)ei(fwf(t)dt) + 7. (11)
j=1

Here the residue rn (t) is omitted because it
is either a mean trend or it might be constant
having value smaller than a predetermined thresh-
old. Comparing to the Fourier expansion as given
by equation (6), then equation (11) is a general-
ized Fourier expansion. In equation (6), a; and
are constants, whereas in equation (11) both a;(?)
and w,(t) of each components are continuous func-
tions of time. This time-varying amplitudes and
instantaneous frequencies have not only greatly
improved the efficiency of the expansion, but also
enabled the expansion to accommodate non-linear
and non-stationary data. Furthermore, equation
(11) enables us to represent the amplitude and
the instantaneous frequency as functions of time.
In other words, the amplitude can be contoured
on the frequency—time plane. This frequency—time
distribution of the amplitude is designated as the
Hilbert amplitude spectrum, H (w,t), or simply
Hilbert spectrum.

The marginal average power spectrum h(w) is
defined as

This marginal spectrum gives the measure of
average power contribution from each frequency
value. The frequencies and hence the corresponding
periods (1/frequency) at which h(w) are signifi-
cantly high for each IMF can now be detected.

2.2.3 Algorithm for the search of prominent peaks

The periods obtained in the last section for each
IMF are sorted out serially. Their correspond-
ing powers are sorted out accordingly. Now the
local peaks among the periods for each IMF are
detected. If N number of peaks are being iden-
tified for an IMF, then let each peaks are being
denoted by p[n] and their corresponding powers
are being denoted by x[n] where n = 1,2,...,N.
Confidence levels (CL) of all the peaks are cal-
culated and the peaks having CL above or equal
to 95% are selected for further processing. The
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integral method of sorting (Sboner et al. 2004) is
then implemented on these selected peaks to detect
the most authenticate peak/peaks for a particular
IMF'. The algorithm of this sorting is as follows

N
Step 1: Integral - > |z(n)] = Ay

tn=1
Step 2: Discrete Derivative — % = A
z(n)
Step 3: Maximum localisation - 7 = argmax
(Az(n))
tn=T4+u
Step 4: Local Integral- > |z(n)| = Ay where
tn=T—u
u=1or?2

Step 5: Score - i—f =50
A vector of Sy is obtained for all peaks of
each IMF.

Step 6: Dataset stratification

The vector of Sy is sorted as per their magnitude.
Now the most relevant or prominent peak is the

one which has highest score among those peaks

having confidence level above or equals to 95%.

3. Results and discussion

The recurrence threshold e is a crucial param-
eter in the RP analysis. In this work
recurrence threshold & is being chosen as
5% of the maximal phase space diameter (Schinkel
et al. 2008).

From the recurrence plots of temperature and
dew-point time series for all stations the followings
has been observed.

a) The occurrences of disruptions or white bands
in all the RPs in table 2 indicate
non-stationarity in the process. This non-
stationarity is due to the time varying nature
of the driving forces behind the temperature
and dew-point fluctuations.

b) Periodic patterns like short or long diagonal
lines indicate cyclicities in the process. The
time distance between the lines corresponds to
the period. The RPs for Chennai and Mum-
bai are with short diagonal lines compared to
that of the RPs of other stations, which claim
a quasi-periodic temperature and dew-point
dynamics in these two locations compared to
purely periodic dynamics of the other stations.
It is to be noted that these two stations with
quasi-periodic dynamics are very close to sea
(2 km) than the other six stations.
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¢) The presence of diagonal lines parallel to the
LOI (line of identity) declares that the evo-
lution of states of the dynamics is similar at
different times. This demands that the pro-
cesses are deterministic in nature and hence
forecasting of temperature as well as dew-point
can be made with sufficient reliability.

d) Presence of single isolated points indicates
some heavy fluctuations in the process which
may be due to sudden changes in dynamics like
natural calamity.

e) In case of New Delhi the vertical, horizontal
lines or clusters says that there may be some
states that either do not change or change
slowly for some time; an indication for lami-
nar states. It is to be noted that the distance
between the sea and New Delhi is maximum
(943 km) compared to the other six stations.

f) The RP’s of Kolkata and Agartala are very
similar, may be for the reason that both are
from eastern India. On the other hand, there
are many similarities in RP’s of Ahmedabad,
New Delhi and Bhopal.

g) There are disruptions in RP’s of both Mumbai
and Chennai, which signifies that the signa-
ture of non-stationarity in temperature and
dew-point is much stronger than that of other
locations. One more interesting observation is
that the level of disruptions are high for dew-
point of Chennai and temperature of Mumbai,
but low for dew-point of Mumbai and tem-
perature of Chennai. Further investigation is
required to reveal the causality between tem-
perature and dew-point at these two stations.

From table 3 it is found that the average values
of % REC for temperature and dew-point across
India are 20.48 and 22.77%, respectively, which
are though not close to 0.00%, but far away
from 100.00% indicating the presence of a fair
amount irregularity in their profiles. The values
of % REC for the temperature of Mumbai and
Chennai, which are in close proximity to the
sea, are very low whereas that for New Delhi,
which is close to the Himalayan range, is very
high when compared to the average value of %
REC of India. In fact, the % REC values for
the temperature data are decreasing as the vicin-
ity of the stations towards the sea increases.
So it can be inferred that the regularity in the
daily temperature behaviour is affected by the
sea. This is not true in case of the % REC
of the daily dew-point series. Ahmedabad, which
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is very close to Thar desert, exhibit maximum
regularity in its dew-point fluctuation whereas
Chennai, which is close to sea, show poor regular-
ity. Again, the dew-point profile of Mumbai, which
is close to sea, is very regular having high value of
% REC. So as far as the values of % REC of the
dew-point profiles are concerned, the relationship
between the vicinity to the sea or desert and the
regularity of the time series is not a simple one but
complex.

The high values of DET for all the stations claim
that both the temperature and dew-point pro-
files across India are deterministic in nature with
periodic or quasi-periodic variation.

The average LINEMAX values for temperature
are found to be more than that of the dew-
point across India signifying that the former is
more regular and stable. Though the overall tem-
perature profile is more regular and stable, the
span of its LINEMAX values (2.1481-76.7977) is
much wider than that of dew-point (4.9281-47.628)
exhibiting more variant fluctuations in regularity
and stability of temperature profile compared to
the dew-point across India. Interestingly Mumbai,
which is on west coast along Arabian Sea, exhibits
minimum LINEMAX for temperature and maxi-
mum LINEMAX for its dew-point profile, which
says that though its temperature profile is consider-
ably chaotic with less stability, its dew-point profile
is regular with more stability. On the contrary,
the dew-point of another coastal station, Chen-
nai, which is on east coast along Bay of Bengal,
has LINEMAX that is minimum of all the other
seven stations claiming highly chaotic and unsta-
ble profile. From this observation, will it be correct
to say that if Arabian Sea makes the temperature
fluctuation chaotic then the same is done for dew-
point by Bay of Bengal. The LINEMAX for both
temperature and dew-point of New Delhi are much
higher suggesting strong periodicity and maximum
stability whereas moderate values of LMAX for rest
four stations, which indicates a probable presence
of both chaos and periodicity (may be a periodic
chaos) in the system.

As shown in table 3, the ENTR of
temperature and dew-point of Chennai, located
on the east coast, are minimum establishing the
claim that the fluctuations of these two weather
variables are not only chaotic in behaviour but
also have less complex structure and hence few
information is required to reveal their complete
dynamics. On the contrary, the entropy of temper-
ature and dew-point of Mumbai, located on the
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west coast, are maximum, which express that the
fluctuations of these two weather variables are
more complex in structure with deterministic peri-
odic behaviour and hence more information is
required to expose their complete dynamics.

Another noticeable observation is that the RQA
parameters magnitudes for Kolkata (22.57°N),
Ahmedabad (23.04°N), Bhopal (23.26°N) and
Agartala (23.83°N), which are in the vicinity of
Tropic of Cancer (23.5°N) are very close whereas
those for Mumbai (19.02°N), Chennai (13.06°N)
and New Delhi (28.34°N), which are away from
Tropic of Cancer (23.5°N) exhibit extremities. As
per Koeppen-Geiger classification, New Delhi is in
Cwa and Chennai is in As and Mumbai is in Aw.
In case of temperature, most of the RQA param-
eters are maximum for New Delhi, whereas for
most of the parameters for dew-point, Chennai
exhibits minimum and Mumbai exhibits maximum.
Noticeably the RQA parameters of Kolkata for
both temperature and dew-point are close to their
average values with respect to entire India.

The frequencies of occurrence of periodic
pattern within signals are detected using HHT and
EMD. The periods in each IMF for both tempera-
ture and dew-point with highest score and having
confidence level (CL) above and equals to 95%
for different stations are given in table 4. From
table 4 on comparison between the periodicities
of temperature and dew-point for each station it
is obvious that significant long-period variations
are more prevalent in the temperature series than
in the precipitation series for all stations except
Agartala.

From table 4 it is found that the distribution of
the periods spans over a long range with small peri-
ods as low as less than a month to long periods as
high as more than 2500 years for temperature and
750 years for dew-point with maximum number of
periods between 1 month and 1 year as depicted in
figure 1. It means that both the temperature and
dew-point variations are influenced by the oscilla-
tions of other atmospherics phenomena and climate
fluctuations having periodicities ranging between
less than a months to more than few thousand
years.

About 21% of the total periods of temperature
across India are below one month with an average
of 10.4 days whereas 18% of the total dew-point
periods are below one month with an average of
12.5 days. These periods of 10.4 days for temper-
ature and 12.5 days for dew-point resembles with
the periodicity of the oscillation of frontal system
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Table 4. Significant periods for different stations.
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Periods with highest scores and CL above or equal to 95% (d: day, m: month, y: year)

Kolkata Chennai New Delhi Mumbai Bhopal Agartala Ahmedabad
Temperature

10d (1) 7d (6) 22d (1) 6d (6) 10d (6) 10d (1) 11d (1)
11.5d (11) 11.4d (1) 1m 10d (6) 11d (1) 10d (1) 12d (11) 12d (11)
3m 19d (7) 12d (11) 1m 23d (11) 11d (11) 11d (11) 1m 21d (5) 1m 13d (6)
6m (6) 3y (4) 9m 7d (4) 7m 10d (7) 2m 12d (5) 4m 13d (6) 5m 8d (5)
Iy (5) 5y (5) Iy 9) 1y 1m (5) 6m (4) 7m (7) Iy (4)

3y (8) 5y (8) ly 4m (8) 6y (4) ly 4m (7) ly 3m (4) 2y Tm (7)
4y (4) y (7) ly 8m (10) 18y (8) 7y (3) 5y (3) 3y 2m (3)
7y 6m (3) 13y (3) 4y (5) 19y 6m (3) 9y (10) 9y (10) 5y 3m (8)
21y (10) 18y (9) 6.5y (3) 31y (9) 14y (9) 14y (9) 10y 8m (9)
34y (9) 144y (2) 13y (7) 44y (2) 14y (8) 18y (8) 15y 6m (10)
7ly (2) 2551y (10) 26y (2) 261y (10) 50y (2) 30y (2) 101y 5m (2)
Dew point

11d (11) 7d (6) 10d (11) NIL (7) 10d (11) 11d (11) 5d (11)

16d (1) 11d (1) 18d (1) 12d (11) 19d (1) 16d (1) 1m 6d (1)
1.5m (6) 12d (11) 2.5m (5) 17d (1) 5m (6) 1m 6d (6) 3m 4d (6)
5m 21d (7) 5m (7) 2m 18d (6) 1m 19d (6) 5m 13d (5) 4m (5) 8m (7)

8m (5) 1y 5m (5) ly 1m (4) 10m (5) 6m (4) 8m (4) 10m 14d (9)
11m 6d (4) 12y 5m (4) 1y 3m (8) ly 1m (4) 4y 6m (7) ly 5m (7) 1y (4)

3y (8) 15y (8) 3y 10m (10) 7y 10m (3) 5y 6m (3) 3y 10m (8) ly 1m (10)
Ty 6m (10) 19y 1m(3) dy 10m (7) 12y 2m (9) 6y 5m (9) Ty 2m(3) 1y 1m(5)
7y 9m (3) 33y 8m (9) 8y 7m (3) 35y 3m (2) 6y 10m (8) 43y 3m(2) ly 5m (8)
16y 7m (9) 49y Tm (2) 10y 7m (2) 45y 9m (8) 11y 5m (2) 53y 9m (10) 4y 3m (3)
3ly 5m (2) 60y 3m (10) 18y 9m (9) 787y 2m (10) 25y 9m (10) 97y 12m (9) 10y 7m (2)

Figures within the bracket indicates the IMF from which the period is obtained.

having periods ranging between 4.5 and 15.5 days
and Hadley oscillation having periods between 10
and 15 days (Goswami and Shukla 1983).

The periods which are above 1 month but less
than 1 year are 21 and 26% of the total periods
for temperature and dew-point, respectively with

(a)

(b)

Figure 1. Distribution of periods for (a) temperature and (b) dew point.

exhibiting the presence of semi-annual oscillations
(SAO) in them. Besides this, Madden—Julian oscil-

lation, which has the periodicity in between 1 month

their corresponding averages of 5 months 25 days In

(~6 months) and 5 months 16 days (~6 months)

and 5 years
temperature has a representation of 17%, whereas

and 1 year (more specifically 30-60 days) may also
have impact on the temperature and dew-point
profile causing.

between 1 periodicity,
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dew-point has 18% of representation with average
of 2.8 years and 2.41 years, respectively. This range
of periodicity is also there for El Nino, La Nina and
ENSO phenomena whose cyclicities varies between
2 and 5 years. The periodicities of Indian Ocean
Dipole (IOD) (also known as India Nina) have also
been found to be within 2-5 years by many authors.

About 11-12% of the total number of
periods is in between 5 and 10 years for both
the temperature and dew-point with averages of
6.75 and 7.2 years, respectively. Similar type
of periodicity is observed in the atmosphe-
ric phenomena like North Atlantic Oscillat-
ion (NAO) with periods of 7.7 years (da Costa and
de Verde 2002).

About 14% of the total periods of temperature
are between 10 and 20 years with an average of
15.2 years, whereas in case of dew-point nearly 12%
of the periods are in this category with an average
period of 14.1 years.

The high value periods (over 20 years) are also
there in the temperature and dew-point profile
with a 15% presence. Of these high periods nearly
48% are concentrated in between 30 and 50 years
with an average of 38.9 years, which mostly bear
a resemblance to Bruckner Cycle (Bruckner 1890;
Raspopov et al. 2000).

It is quite evident from the above discussion that
the temperature and dew-point fluctuations across
India are not only affected by the local geograph-
ical topology but also heavily influenced by the
terrestrial climatic and atmospheric oscillations.

The analysis and interpretation which are being
made in this paper are based on the results of
operation of the two statistical tools (a) RP and
RQA and (b) HHT. Of these two, the RP and
RQA, which are used for the exploring the com-
plexity of the temperature and dew-point time
series are based on mere visual inspection of
the plots. The authors consider this as a limi-
tation of this work where the RP is being used
to assess the intricate and weighty aspect like
complexity of the time series. To explore the
complexity of the meteorological parameters more
statistically sound methodologies can be used
in future.
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