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ABSTRACT

Homologous sequences are widely used to understand the functions of certain genes or pro-
teins. However, there is no consensus to solve the automatic assignment of functions to protein
problem and many algorithms have different ways of identifying homologous clusters in a
given set of sequences. In this article, we present an algorithm to deal with specific sets, the set of
coding sequences obtained from phylogenetically close genomes (of the same species, genus, or
family). When modeled as a graph, these sets have their own characteristics: they form more
homogeneous and denser clusters. To solve this problem, our algorithm makes use of the
clustering coefficient, which maximization can lead to the expected results from the biological
point of view. In addition, we also present an algorithm for the identification of sequence
domains based on graph topology. We also compared our results with those of the TribeMCL
tool, a well-established algorithm of the area.

Keywords: clustering coefficient, domain detection, graph modeling, homology detection, local

alignment, sequence clustering.

1. INTRODUCTION

The discovery of new protein functions is very important to understand the metabolic processes and

even the behavior of organisms. Unfortunately, this is a very complex and costly process, and it becomes

impractical to be performed entirely experimentally for all coding sequences (CDSs) of an organism. Thus,

most researchers use only automatic tools to identify possible homologies with known sequences. This occurs

because sequences that share common ancestors tend to also share their functions (Hardison, 2003; Xia,

2013), thus facilitating the discovery of probable function through a simpler and cheaper process.

The detection of homology is relatively simple for experts, but it is time-consuming compared with

automatic processes. Although the automatic process is not as reliable as the one performed by the experts

and there are many considerations on that approach (Bork and Koonin, 1998), the automatic detection of

homologues is widely used in databases (Apweiler et al., 2004; Zdobnov et al., 2017) and has been funda-

mental for the understanding of genomes (Pieretti et al., 2009).

Many of the approaches to improve gene function automatic identification are based on graph theory

(Enright and Ouzounis, 2000; van Dongen, 2000; Bolten et al., 2001; Abascal and Valencia, 2002; Pipenbacher

et al., 2002). In this model, the sequences are represented as vertices and the edges receive values according to
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some criteria, typically defined from local alignments. Some also use the concept of transitivity to find

homologous groups, a concept derived from mathematics that states that if a and b are related, as well as b and

c, then a and c should also be related. These relationships are easily applied to the ancestry of sequences

(Sasson et al., 2002). Thus, each related component will be considered a group of homologous CDSs, or a

family of CDSs.

Although homology is transitive, similarity is not, and works that are based on similarity can produce

false relationships that merge two groups incorrectly (Sasson et al., 2002). Therefore, it is potentially

problematic to group sequences in a way that is highly dependent on transitivity, which do not have more

direct relationships, producing low-density groups.

Multidomain proteins are well-known cases that can undermine automatic annotation algorithms because

they have well-conserved domains that are very representative of two or more unrelated sequences. These

cases make it necessary for algorithms to define strategies, either by preventing the joining of unrelated

groups (Pipenbacher et al., 2002) or as a postprocessing step (Enright and Ouzounis, 2000).

In this work, the focus is to group the set of all the CDSs obtained from completely sequenced genomes of

phylogenetically close organisms. Thus, some characteristics are expected, among them, it is expected that the

graph formed by the homology relationships is more homogeneous and denser. A significant part of the

clusters, therefore, should contain at least one gene from each genome (the core genome of the genome set).

This work presents a sequence clustering algorithm that aims to maximize the density of the sequence

clusters through a graph’s metric called clustering coefficient, thus reducing the number of related groups

strongly based only on transitivity. In addition, a case study involving 55 complete genomes of Strepto-

coccus pyogenes strains and 69 complete genomes of the Xanthomonadaceae family was performed.

2. RELATED WORK

Most of the sequence clustering algorithms use graph-based modeling. This model allows making decisions

considering the neighborhood, but the use of this model can imply a higher computational cost. Because of

this, there are some works that use alternative representations. An example is the CD-Hit (Li et al., 2001),

which is based on greedy decisions and thus it is very fast and was designed to work with a huge volume of data.

However, it was not designed to identify homology, but rather to index CDS databases.

Another method of clustering common to many works is the use of single linkage, which consists of

starting from single elements and then joining them in an iterative way. These algorithms determine a

metric not only for comparing sequences but also for the comparison of groups. The linkage of sequences

or groups aims to maximize or minimize this metric. Sasson et al. (2002) use the maximization of several

metrics applied to the alignments’ e-value of all the sequences of the groups. The Abascal and Valencia

(2002) approach is based on the entropy of graphs, starting not from unitary sets, but from groups formed

by the Ncut algorithm (normalized cut). This model is based on local decisions and, thus, it is important to

consider the whole groups to avoid false relationships. However, the treatment of multidomain proteins is

implicit, potentially not grouping the multidomain proteins correctly.

Bolten et al. (2001) developed a graph-based approach using the Smith and Waterman (1981) metric. The

clusters found are the strongly connected components of the graph. This method evidences the creation of

clusters that contain multidomains, not including them in the clusters of other sequences that have some of

their domains. The algorithm needs a minimum initial alignment for the edges. This algorithm was extended

(Pipenbacher et al., 2002) to work with edge significance filters and an additional step was also proposed for

the separation of some groups.

TribeMCL (Enright et al., 2002) is widely used for clustering sequences and it is an application of the

MCL (van Dongen, 2000) that was proposed for the clustering in graphs with strong biological motivation.

The algorithm is based on hidden Markov models to simulate graph flow walks. This algorithm is quite

robust, fast, and is little affected by small changes in the graph topology (Brohée and van Helden, 2006).

GeneRage (Enright and Ouzounis, 2000) uses a different approach for graphs, representing them as an

array of similarity. And unlike other approaches, local alignments are only used for a kind of initial edge

filter (considering only alignments that have e-value smaller than 10 - 10). A symmetrization process is then

applied. Since this is a transitivity-based algorithm, there is a postprocessing step specific to deal with

multidomain sequences. One interesting thing about this approach is that it relies primarily on the topology

of the graph and then performs an alignment check.
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All these algorithms are based on local decisions, between neighboring sequences or near groups.

However, none of these approaches makes use of a global metric that considers all sequences in decision-

making. Therefore, we present in this article an algorithm that uses the clustering coefficient.

3. CLUSTERING COEFFICIENT

The clustering coefficient is a topological metric for graphs in which, for each subset of three connected

vertices, it calculates the probability of these three vertices being a clique of size three, that is, these three

vertices are all connected to each other (Algorithm 1). The denser the components of the graph, the closer

to 1 will be its clustering coefficient; otherwise, the components with few edges tend to have their

coefficient closer to 0. An important characteristic of this coefficient is that it is not impacted by isolated

components, and if in each component all the vertices are totally connected to each other, then the graph

clustering coefficient will be 1.

Algorithum 1: Graph clustering coeffecient calculation

Data: Graph g

1 possible = 0;

2 cliques = 0;

3 for v in vertices(g) do

4 for a in neighbors(v) do

5 for b 9 neighbors(v) j a 6¼ b do

6 possible++;

7 if a 6¼ b and neighbors(a) � b then

8 cliques++;

9 end

10 End

11 End

12 End

13 return cliques / possible;

For each vertex of the graph, it is necessary to check all the combinations of pairs of its neighbors, and

whether or not there is an edge that connects them (Algorithm 1). Therefore, the total complexity of this

algorithm is O(jneighbors(v)j2 - jneighbors(v)j) for every vertex v of the graph, considering line 7 can be

performed in constant time (O(1)) with the aid of a specific data structure.

Therefore, in the worst case, the complexity is of the order of O(jV j3), where jV j is the number of

vertices in the graph. The worst case is one that considers a complete graph (in which all nodes are

connected to all others). In real-world applications of comparative genomics, typically, each gene is bound

to at the most a limited number of genes. Thus, we can assume that the number of neighbors for a given

gene is limited to
ffiffiffiffiffiffi
jVj

p
. Therefore, the complexity of this algorithm is O(jV j�

ffiffiffiffiffiffi
jVj

p � ffiffiffiffiffiffi
jV j

p
), which is equal

to O(jVj2). Moreover, the problem can easily be divided into smaller, independent activities, allowing the

parallelization of the algorithm in a very scalable way.

4. METHODS

To take advantage of the characteristics of phylogenetically closely related genomes (such as the or-

ganization of coding sequences (CDs) in more homogeneous groups and the fact that a significant part of

the groups is expected to be formed by orthologous genes), an algorithm was developed using the average

clustering coefficient, where the sum of the coefficients of each vertex is divided by the number of vertices.

The higher the value of this coefficient, denser are the components of the graph, and therefore, its maxi-

mization produces graphs according to the expected characteristics for a graph of homologies.

The first step of the algorithm is to perform a local alignment, for example, using the BLAST tool, of all

sequences against all. A minimum threshold was established and alignments above it are discarded. The

threshold used was a maximum e-value of 10- 10. In the tested cases, the results improved considerably when

a minimum percentage of the length of the alignment (in relation to the size of the sequence) was also defined.
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In addition, you can also set limits for other attributes, such as the identity percentage or the maximum

number of gaps. The results that satisfy the defined thresholds are transformed into edges for the graph.

The next step is to progressively remove edges that prevent the graph from obtaining the expected

topology, as discussed earlier. For this, an e-value between 10 - 10 and 10 - 180 that excludes the edges

corresponding to alignments above this value and maximizes the clustering coefficient is chosen. Due to the

computational unfeasibility of an algorithm that maximizes this function in a continuous space, it was

necessary to define an interval with n integer values between 10 and 180, which in turn generate n e-values

(10 - i). The computational cost without large modifications in the algorithm would be O(n � (jV j2) - n � jV j),
but with the use of dynamic programming the cost is only O(jVj2 - jVj + n).

For each one of the tested e-value, the alignments with values greater than this value are removed. Then

the groups that are fully connected are separated, and the process is repeated for the remaining groups until

a new e-value does not improve the clustering coefficient of the graph. The result at the end of the process

is a list of e-values, forming increasingly restrictive layers.

From the biological point of view, the sequences evolve differently. In the first layer the most well-

defined sequences are grouped, separating the sequences that are more distant from each other, and in the

next ones the separations occur among sequences that have closer relationships.

To take advantage of the characteristics of phylogenetically closely related genomes (such as the

organization of CDs in more homogeneous groups and the fact that a significant part of the groups is

expected to be formed by orthologous genes), an algorithm was developed using the average clustering

coefficient, where the sum of the coefficients of each vertex is divided by the number of vertices

(Algorithm 2). The higher the value of this coefficient, the denser are the components of the graph and,

therefore, its maximization produces graphs according to the expected characteristics for a graph of

homologies.

Algorithm 2: Average graph clustering coefficient calculation

Input: g

Input: start

Input: end

1 list = ?;

2 while true do

3 new= max
end

i = start
(AvgClusteringCoefficient(g, i));

4 if new = start then

5 return list;

6 End

7 start = new;

8 list) sub;

9 Graph next;

10 for sub in components (graph, start) do

11 if jnodes(sub)j > 2 & AvgClusteringCoefficient(sub, i) < 1 then

12 next ) sub;

13 End

14 End

15 graph = next;

16 End

Two sets of genomes from bacteria were chosen to evaluate the proposed solution. One composed of 55 S.

pyogenes genomes and the other of 69 Xanthomonadaceae genomes, both formed by fully sequenced ge-

nomes and selected based on their importance in the fields of medicine (Lamagni et al., 2008; Ferretti et al.,

2016) and agronomy (Jalan et al., 2013), respectively. All genomes are available at the National Center for

Biotechnology Information and were automatically annotated using the PATRIC tool (Wattam et al., 2017).

Based on the amino acid sequences and their respective annotated functions, the correspondences of the

functions in the homologous groups were analyzed. These data were considered classes in a homology

classification problem, that is, if two genes were grouped in the same connected component they were

classified as positive (P), otherwise as negative (N), and if there was a correspondence between their

function then they are classified as true (T), otherwise they are classified as false (F).

This approach allows us to use evaluation metrics widely used in the classification area, such as the following:
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� Accuracy: TP + TN
TP + TN + FP + FN

� Sensitivity: TP
TP + FP

� Specificity: TN
TN + FN

� Efficiency: Sensitivity
Specificity

Unlike what is common for classification problems, a considerable part of the classes are unknown

(between 13% and 27%) and marked as hypothetical proteins. In addition, the annotated functions were not

cured by a specialist because of the large volume of data from these sets. Although these limitations do not

allow us to accurately assess all cases of homology, it makes possible to automatically evaluate the

performance of the classification for the subset of proteins with known functions. Therefore, it was

necessary to separate the evaluation of the results into two groups, the first with only sequences with known

functions and a second formed by all of them.

The results were compared with the results of a state-of-the-art tool, the TribeMCL, that had excellent

performance and had its quality already verified (Brohée and van Helden, 2006).

5. RESULTS

Different alignment percentage lengths were tested to maximize the total number of families present in

the core genome. Since the sets of analyzed genomes are quite close, it is expected that there is a broad set

of homologous CDSs shared by all genomes.

The distribution of the number of families in the core genome as a function of the percentage size of

alignment tested (Fig. 1) indicated a maximum of 38% for the Streptococcus group. For the Xanthomo-

nadaceae group, the core genome showed to be decreasing as a function of the alignment percentage. The

value used in the experiments for this parameter was 30%. Our algorithm organized the genes at an initial

layer plus six layers for the set of Streptococcus (the e-value threshold for each level was

10 - 14‚ 10 - 27‚ 10 - 43‚ 10 - 46‚ 10 - 47‚ 10 - 51, and 10 - 59) and an initial layer plus four layers for the Xan-

thomonadaceae (the e-value threshold for each level was 10 - 15, 10 - 23, 10 - 31, 10 - 35, and 10 - 46); in the

last layer were 1275 and 1063 families in the core genome of the respective sets.

The same strategy was used to choose the inflation parameter of the TribeMCL, in an exploratory way.

Therefore, the following results are based on the inflation of 15.0 for the group of Streptococcus (with a

core genome of 1237 families) and 10.0 for the group of Xanthomonadaceae (with a core genome of 988

families).

The results found for the analyzed algorithms prove to be quite positive, given the complex nature of the

problem (Tables 1 and 2). Although the TribeMCL obtains better true positive (TP) values in some cases,

this does not necessarily correspond to a better classification as discussed based on the other metrics.

The accuracy results are better for our approach (Figs. 2 and 3), mainly because of the values of true

negative (TN) that are the vast majority of instances in this type of problem. This is justified by the density

FIG. 1. Number of gene families in the core genome using the proposed algorithm.
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of the graph. However, individually the groups are dense, globally the graph is sparse. The classification,

including sequences with unknown functions, was better than TribeMCL and this classification only

showed less accuracy by mixing sequences of unknown function with the already known ones, giving

indications that they could share the same function.

Figures 4 and 5 present the sensitivity results. Although our solution for the set of phylogenetically

closest genomes (Streptococcus) obtained considerably better results than with TribeMCL, the same did not

happen with the more distant genomes (Xanthomonadaceae). Due to the fact that at this stage we still do

not treat cases with multidomain sequences, many misleading junctions can still be avoided in both sets.

Table 1. Classification Results Using the Proposed Algorithm

Without hypothetical With hypothetical

Streptococcus Xanthomonadaceae Streptococcus Xanthomonadaceae

1a

TP 2,610,724 17,215,957 2,874,088 18,163,658

FP 3,281,104 31,994,843 3,307,026 34,657,608

TN 3,874,748,818 25,176,769,293 5,105,439,320 46,961,418,375

FN 7,083,285 63,462,660 11,073,156 768,757,312

2a

TP 2,472,000 13,356,460 2,725,443 14,281,810

FP 840,629 18,884,252 864,292 20,530,341

TN 3,877,189,293 25,189,879,884 5,107,882,054 46,975,545,642

FN 7,222,009 67,322,157 11,221,801 772,639,160

3a

TP 2,462,605 12,340,091 2,715,989 13,258,950

FP 793,497 9,861,963 817,075 10,606,057

TN 3,877,236,425 25,198,902,173 5,107,929,271 46,985,469,926

FN 7,231,404 68,338,526 11,231,255 773,662,020

4a

TP 2,447,485 10,747,632 2,700,869 11,650,042

FP 788,443 6,101,948 812,021 6,636,351

TN 3,877,241,479 25,202,662,188 5,107,934,325 46,989,439,632

FN 7,246,524 69,930,985 11,246,375 775,270,928

5a

TP 2,439,807 N/A 2,693,069 N/A

FP 410,250 N/A 433,731 N/A

TN 3,877,619,672 N/A 5,108,312,615 N/A

FN 7,254,202 N/A 5,108,312,615 N/A

6a

TP 2,403,435 N/A 2,655,104 N/A

FP 329,082 N/A 351,925 N/A

TN 3,877,700,840 N/A 5,108,394,421 N/A

FN 7,290,574 N/A 11,292,140 N/A

FN, false negative; FP, false positive; N/A, not available; TN, true negative; TP, true positive.

Table 2. Classification Results Using TribeMCL

Without hypothetical With hypothetical

Streptococcus Xanthomonas Streptococcus Xanthomonas

TP 2,510,553 8,804,005 2,787,488 9,773,633

FP 599,795 2,458,627 655,159 2,948,122

TN 3,877,430,127 25,206,305,509 5,108,091,187 46,993,127,861

FN 7,183,456 71,874,612 11,159,756 777,147,337
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FIG. 2. Overall accuracy for the Streptococcus pyogenes genomes.

FIG. 3. Overall accuracy for the Xanthomonadaceae genomes.

FIG. 4. Sensitivity for the Streptococcus pyogenes genomes.

FIG. 5. Sensitivity for the Xanthomonadaceae genomes.

1334

D
ow

nl
oa

de
d 

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y 
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



The differences found in the specificity (Figs. 6 and 7) were small in comparison between the two

algorithms (<0.01%), this is due to the large amount of TNs, as well as already seen with accuracy.

Our solution produced better sensitivity results for the set of Streptococcus than TribeMCL, something

that did not happen with the set of Xanthomonadaceae (Figs. 8 and 9). These results do not represent a

reliable performance of both algorithms, for reasons previously discussed such as the lack of knowledge of

the function of part of the sequences and the lack of curatorship by specialists. However, this experiment

helps the understanding of the behavior of a subspace of the problem. In addition, our approach preserves

the structure of the graph allowing other topological analyses, such as domain identification. The identi-

fication of domains has the potential to further improve peer identification, and shows that even without a

defined strategy in this regard, TribeMCL also achieved very good results.

6. IDENTIFICATION OF MOTIFS AND/OR SEQUENCE DOMAINS

Since our approach preserves the relationships between the vertices in the graph, it allows us to make

additional analyses regarding the topology. One is the identification of possible domains and motifs, which

is highly relevant for genetic studies (Vogel et al., 2004).

Multidomain sequences are a known problem for clustering algorithms because they can be grouped

based on local alignments with sequences that do not have homology relationships to each other. This

situation is very problematic because multidomain sequences can lead the clustering algorithms to produce

groups of nonhomologous sequences. From the point of view of graph theory and topological analysis,

these are vertices with smaller clustering coefficients than their neighbors. Therefore, this is the first step in

the domain identification process: to identify vertices that have a clustering coefficient smaller than the

average of their neighbors. These vertices are marked as possibly multidomains.

Following, the graph goes through a simplification step. The related groups formed of vertices con-

sidered here as single domain ones are converted to a single vertex each (a symbolic representation of the

group), preserving their edges and the values of their local alignments to other vertices outside the

FIG. 6. Specificity for the Streptococcus pyogenes genomes.

1 2 3 4
0,9820

0,9840

0,9860

0,9880

0,9900

0,9920

0,9940

0,9960

0,9980

Multilayer TribeMCL Multilayer (w/ hypo)
TribeMCL (w/ hypo)

FIG. 7. Specificity for the Xanthomonadaceae genomes.
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group. The same happens with possibly multidomain vertices, and those with the same neighbors in

common are converted to a single vertex to represent these vertices.

In the next step, the edges are converted to directed ones. For this, all the edges connected to the vertices

that have been converted to the respective vertex are verified, if all the local alignments from a group to

another are greater than two defined parameters, then the edge will become directed of the vertex with

the smaller sequence to the greater. The two parameters used are based on the difference in length between

the two aligned sequences, the first is the absolute value of the difference and the second is the difference

divided by the length of the alignment. In the empirical analyses performed, values 100 and 0.3 were found

to be adequate to solve the problem and were used to obtain the following results.

The use of a directed graph implies that not all vertices will be accessible from a given beginning (in a

connected component). The domains considered are all sets of vertices accessible from all vertices.

The classification of the domains is different from the previous analyses because the groups are not

disjoint. For each group, positive, negative, true, and false values are calculated, in which, given a domain,

the vertices belonging to the domain are considered true and those that do not belong are considered false.

Tables 3 and 4 present the results.

Accuracy and specificity varied <0.5%. And the main advance was in the sensitivity metric and its

reflection on the efficiency of the algorithm. The Streptococcus group increased from 87.9% to 90.4%, but

the increase in Xanthomonadaceae was considerable, from 63.7% to 90.2%, directly impacting the effi-

ciency of the classification that increased from 88.1% to 90.6% and from 63.9% to 90.9%, respectively.

7. CONCLUSIONS

This article presents a sequence clustering algorithm based on graph theory. The focus of the algorithm is

the CDS of complete genomes of phylogenetically close organisms, which for this particularity have some

characteristics of their own: they tend to have a broader core genome and homology relationships tend to be

more homogeneous, forming denser components.

FIG. 8. Efficiency for the Streptococcus pyogenes genomes.

FIG. 9. Efficiency for the Xanthomonadaceae genomes.
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From these principles it was proposed an algorithm that maximizes the clustering coefficient, thus max-

imizing the density of the connected components of the graph. The result of the algorithm is hierarchical

groups in which each layer is more restrictive than the previous one, and thus, by removing edges, the graph

reaches the topology with the expected characteristics.

The problem of homologous gene family identification was treated as a problem of homology classifi-

cation and the results of our solution were compared with the results of the TribeMCL. For both algorithms,

two sets of input obtained from phylogenetically close genomes were presented. The algorithms obtained

good classification results, considering the complexity of the problem, differing more strongly by the

sensitivity metric, in which our algorithm showed better results in the set of the nearest genomes. This

metric was negatively influenced by the number of false positives resulting from the set with the more

distant genomes.

In addition, we also presented a domain identification algorithm that improved classification. Through

the identification of domains, there was an improvement in the sensitivity metric, making the efficiency of

the presented algorithm superior to TribeMCL.

As future work we intend to develop algorithms for performing the intracluster analysis to identify the phy-

logeny of each of the clusters, which may aid in the phylogenetic analysis of groups of closely related genomes.
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