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Abstract. A specific class of singularity-free cosmological model has recently been considered in light of
different observational data such as observed Hubble data, BAO data from luminous red galaxy survey by Slowan
digital sky survey (SDSS) and CMB data from WMAP. However, it is observed that only 12–14 data points are used
to study the viability of the model in late time. In this paper, we discuss the viability of all the models belonging to
the same class of EU in light of union compilation data (SNIa) which consists of over a hundred data points, thus
getting a more robust test for viability. More importantly, it is crucial that we can distinguish between the various
models proposed in the class of solution obtained. We discuss here why with the present observational data it is
difficult to distinguish between all of them. We show that the late-time behaviour of the model is typical to any
asymptotically de Sitter model.
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1. Introduction

The present phase of accelerated expansion of the
Universe [1–4] seems to be an undeniable fact today. The
origin of such acceleration is more interesting and more
challenging. It is non-trivial to address the cause of the
late-time acceleration from fundamental physics. More-
over, it is essential to incorporate a phase of inflation
in early Universe in the standard Big-Bang cosmol-
ogy as the present observations favour such an initial
phase. The Big-Bang cosmology, despite its success, has
always been a concern for many who remained scepti-
cal about its initial singularity. Emergent Universe (EU)
models were studied as early as in 1965 by Harrison [5].
Later, Ellis and Maartens [6] studied a similar model of
Universe without any initial singularity. An interesting
solution was obtained by Mukherjee et al [7] where they
obtained an eternally inflating solution in flat Universe,
which is called ‘emergent Universe’, using general rela-
tivity only and considering a non-linear equation of state
as below.

p = Aρ − Bρ1/2. (1)

It was suggested that the non-linear equation of state
could mimic the evolution of a Universe with a mixture

of three different matter energy content. The composi-
tion of the Universe, they argued, would depend on the
choice of the parameter A. Such a non-linear equation
of state is a special case of a more general equation
p = Aρ − Bρα . Phenomenological representations of
such equation of states can be found in string theory.
Models based on such equation of state often interpo-
late between two phases of the Universe [8]. The model
was later studied in different frameworks such as brane
world [9,10], Gauss–Bonnet gravity [11], Brans–Dicke
theory [12] etc. Apart from the two parameters com-
ing from the equation of state, the model involves a
third parameter (K ) as an integration constant which
should be fixed by the suitable choice of initial con-
dition. Recently, attempts were made to constrain the
parameters of the original model [13–16]. It is sug-
gested in [15,16] that some of the choices in ref. [7]
are permitted by the present observational data. It is
critical that we have a clear idea if the present obser-
vational data permit us to distinguish between different
models belonging to this class. It is straightforward to
explain the present scheme. SNIa data tabulate distance
modulus (μ(z)) values obtained at different redshifts
(z). μ(z) values are theoretically calculated for dif-
ferent EU models. The relative difference in distance
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modulus values can also be obtained as �μ/μ for these
models. The models are distinguishable only if the value
of this relative difference function (�μ/μ) exceeds the
uncertainties of SNIa observation. Also, it is interesting
to investigate the constraints on the model parameters
put by union compilation data which comprises over
five hundred data points. Earlier analyses were based
mostly on the observed Hubble data (OHD) with twelve
data points. OHD is a collection of measured values of
Hubble parameters at different red-shift values from dif-
ferent experiments (for details, see refs [16,17]). There
is a particular model where the cosmic fluid behaves
like a mixture of matter, exotic matter and dark energy
(for detailed discussion, see [7]). If the models can be
distinguished, this particular one could be an appealing
candidate.

In this particular work, the above issues are addressed
along with a study of the late-time behaviour of EU
models. The plan of the paper is as follows: in §2 relevant
field equations for the EU model are introduced. Data
analysis based on union2 compilation of SNIa data [18]
is presented in §3. The possibilities of distinguishing
different EU models from union2 data and study of the
late-time behaviour of these models have been discussed
in §4. Finally, a brief discussion of the findings is given
in §5.

2. Relevant field equations for the EU model

Friedmann equation for a flat Universe is

H2 =
(

ȧ

a

)2

= 8πGρ

3
, (2)

where H is the Hubble parameter and a is the scale factor
of the Universe. The conservation equation is given by

dρ

dt
+ 3H (p + ρ) = 0. (3)

Using the EOS given by eq. (1) in eq. (2), and eq. (3)

ρ (z) =
(

B

A + 1

)2

+ 2BK

(A + 1)2 (1 + z)3(A+1)/2

+
(

K

A + 1

)2

(1 + z)3(A+1), (4)

were z is the cosmological red-shift. Scale factor a(t) is
related to cosmological red-shift (z): a(t) = 1/(1 + z).
The first term in the right-hand side of eq. (4) is a
constant which can be interpreted as the cosmological
constant (describes dark energy). Equation (4) can be
written as

Table 1. Best-fit values of B and K from union2 data.

Model B K χ2
min (/d.o.f.)

A = 0 0.867 1.133 0.974
A = 1 1.491 0.528 0.985
A = 1/3 1.121 0.879 0.974

ρ(z) = ρ1 + ρ2(1 + z)3(A+1)/2

+ρ3(1 + z)3(A+1), (5)

were ρ1 = (B/(A + 1))2, ρ2 = 2BK/(A + 1)2 and
ρ3 = (K/(A + 1))2 are densities at the present epoch.
The Friedmann equation (eq. (2)) can be written in terms
of red-shift and density parameter:

H2(z) = H2
0 (�1 + �2(1 + z)3(A+1)/2

+�3(1 + z)3(A+1)), (6)

where the density parameter is defined as � = (8πGρ/

3H2
0 ) = �(A, B, K ). Different compositions of cos-

mic fluids are obtained for different values of A. For
example, the case A = 0 was considered in [14] and the
model included dark energy, dark matter and dust in the
Universe (for details, see [13]). With A = A0, eq. (6)
can be written as

H2(H0, B, K , z) = H2
0 E2(B, K , z), (7)

E2(B, K , z) = �� + �2 (1 + z)3(A+1)/2

+ �3 (1 + z)3(A+1) , (8)

where the constant part of the DP (�1) has been replaced
by a new notation ��.

3. Analysis of the EU model with SNIa data

In a flat Universe, the Hubble-free luminosity distance
(DL ≡ H0dL ) is defined as

DL(z) = (1 + z)
∫ z

0

H0

H(z′; a1, a2, ..., an)
dz′, (9)

where a1, a2, ..., an are theoretical model parameters.
The distance modulus is defined as in ref. [19]:

μth = 5 log10(DL(z)) + μ0, (10)

where μ0 = 42.38 − 5 log10 h. h is the dimensionless
Hubble parameter at the present epoch. Consequently, a
χ2 function can be defined as

χ2
SNIa(B, K ) =

N∑
1

(μobs(zi ) − μth(zi ))
2

σ 2
i

, (11)

where μobs(zi ) is the observed distance modulus value
at a red-shift zi and σi is the associated uncertainty in
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Figure 1. Evolution of difference between distance moduli for various EU models.

measurement. The union2 data set compiled in ref. [18]
has been considered here. The above χ2 function, and
the method discussed in ref. [19] can be used to find a
χ2-fit. Findings are given in table 1.

4. Possibilities of distinguishing different EU
models with SNIa data

As noted in eq. (10), theoretically it is possible to obtain
the distance modulus for various EU models. Theo-
retical difference between the distance modulus values
for two different EU models (�μ(z)) are calculated at
different red-shift points. Different EU models cannot
be distinguished from SNIa observations if (�/μ)(z)
remains within the associated uncertainties in the mea-
surement of μ(z). The graphs obtained are shown in
figure 1. It is seen that the (�μ/μ)(z) values for the
models with A = 0, 1, 0 and 1/3 reach around 2% or
more only for z ≥ 1. The associated uncertainties in the
measurement of μ(z) is around 2–4% and for red-shifts
z ∼ 1.5 and higher, the uncertainty is even greater. Thus,
it is not possible to distinguish between different EU
models from SNIa observation. Distinguishing between
EU with A = 1 and 1/3 is even more unlikely.

4.1 Late-time behaviour of EU models

It is seen from figure 2 that the difference between
different EU models fades when the present epoch is
approached. This is not unexpected as these models are
asymptotically de Sitter models. Thus, at late time their
behaviour should be indistinguishable from one another

as well as from a de Sitter Universe. This can also be
inferred from figure 1. The �μ values for any two EU
models fall within the uncertainty in the measured μ

value (which is around 2–4%) for lower red-shifts. There
is a strong possibility that at the present epoch, only
late-time behaviour of EU models is observed. All the
EU models, belonging to the class under discussion, are
asymptotically de Sitter. As given in eq. (14) in ref. [7],
the Hubble parameter for EU is

H = ωαeαt

β + eαt
, (12)

where β is a constant, α = (
√

3/2)B and ω =
2/3(A + 1). In late-time approximation H ≈ ωα. The
μ vs. z curve for different EU models along with the
original union2 data are presented in figure 3. Late-time
behaviour of these EU models are almost the same and
typical to a de Sitter model. These late-time approxima-
tions fit union2 data reasonably well. However, as noted
previously, the behaviour is typical for any de Sitter Uni-
verse. At late time the models no longer depend on the
parameter K . Once A is specified, there is only one free
parameter, i.e., B.

5. Conclusion

A class of EU models, presented in ref. [7], is studied
and best-fit values of the model parameters are deter-
mined from union2 compilation of SNIa data [18]. More
importantly, the possibilities of distinguishing differ-
ent EU models from SNIa observations have also been
considered. It is seen that the model with A = 1 and
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Figure 2. μ vs. z curve for different EU models.

A 1 3

A 1

A 0

UUnUNiUnion2 Data

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

34

36

38

40

42

44

46

z

μ

Figure 3. μ vs. z curve for different EU models in late-time approximation.

A = 1/3 can be distinguished from A = 0 model
with the data. The difference shows prominence over
the uncertainty in measurement from around z = 0.5.
It has been shown that any distinction between A = 1
and A = 1/3 models cannot be made from SNIa data as
the difference remains within observational uncertainty.
However, it should be noted that SNIa data become
more uncertain at red-shifts above z = 1 and any dis-
tinction is not viable. At the present epoch, the EU
models cannot be distinguished from SNIa data as the

difference becomes too small compared to uncertain-
ties in the observed data. The behaviour of all EU
models in the present era are typical for any asymptot-
ically de Sitter model. It is noted that the EU models
are independent of the parameter K under late-time
approximation. However, as claimed in [7], the param-
eter K is fixed from the initial conditions. So, late-time
behaviour of all the EU models are, as they should
be, independent of the initial conditions. The best-
fit values, obtained in the present work, differ from



Pramana – J. Phys. (2018) 90:43 Page 5 of 5 43

those in [13–15]. These results are more accurate in
the sense that significantly more data points have been
considered here. It has been shown, in a recent work
on EU models [16], that these models are acceptable
from the present observations. Present findings are in
agreement with the conclusions of ref. [16]. It would
be interesting to further check these constraints from
growth parameter measurement which will be taken up
elsewhere.
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