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ABSTRACT: The coral reef crisis is defined by de-
clining cover of scleractinians, but on Caribbean
reefs it also is associated with increasing abundances
of octocorals. The demographic causes of these in-
creases are not understood, but parallels between
marine 'forests’ of octocorals, and terrestrial forests of
trees (e.g. formation of a 3-dimensional framework
providing habitat), suggests that insights into causa-
tion might be found by comparing the 2 types of
forest. This study describes communities of octo-
corals in St. John, US Virgin Islands, and evaluates
their dynamics for goodness of fit to a construct
reflecting 2 processes structuring terrestrial forests:
self-thinning and density-dependent recruitment.
Octocorals (>5 cm tall) were censused on 6 reefs
(79 m depth) from 2014-2017, thus revealing differ-
ences among years in their density and height. At
5 sites, this variation was inconsistent with self-
thinning, but at the 6th, there was a trend for den-
sities to decline and height to increase, with these
effects largely attributed to Eunicea spp.; this pattern
is consistent with several processes, one of which
is self-thinning. For recruits (<5 cm tall), densities
differed among sites and times, but neither density
nor per capita recruitment were density-dependent.
For Eunicea spp., the recruit density was positively
associated with adult density in 2014, and per capita
recruitment was inversely related to adult density in
3 of 4 years. These results highlight the challenges of
inferring that common mechanisms structure animal
and plant forests, and they underscore the complex-
ity of processes contributing to the recent population
growths of Caribbean octocorals.
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Octocoral forest at ~6 m depth in St. John, where dense
aggregates of colonies have the potential to affect octocoral
recruitment and colony success.
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1. INTRODUCTION

The factors regulating population size are founda-
tional to ecology (Haldane 1953, Murdoch 1994),
but in most cases more is known about net changes
in population size than the demographic processes
causing them to occur. This is an important gap in
knowledge for many ecosystems that affects the abil-
ity to accurately project changes in population size
into the future (Urban et al. 2016). While records of
historic abundance can support extrapolations of
future population sizes (Thomas et al. 2004), without
knowledge of the vital rates controlling population
growth, projections are prone to inaccuracies, and
cannot be adjusted to accommodate varying condi-
tions, or to detect signs of impending demographic
collapse (Hughes & Tanner 2000, Caswell 2001).
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The limitations in understanding the demographics
of changing population sizes are striking when the
objective is population projection (sensu Caswell
2001), as is commonplace when the biological effects
of global climate change are being considered (Urban
et al. 2016). Coral reefs exemplify these limitations,
because many have experienced extensive mortali-
ties of their framework-building scleractinians (Bruno
& Selig 2007, Jackson et al. 2014), and they are likely
to undergo additional changes in community struc-
ture in the future (van Hooidonk et al. 2014, Hughes
et al. 2018a,b). Future changes probably will involve
declines in coral cover, changes in assemblage struc-
ture (Hughes et al. 2018a,b), and enhanced macro-
algal blooms, particularly in the Caribbean (Roff &
Mumby 2012). However, a few reefs contradict these
trends (Graham et al. 2011, Guest et al. 2018, Hol-
brook et al. 2018), and in some cases the recent
changes have affected taxa other than scleractinians
and macroalgae (Norstrom et al. 2009), favoring, for
example, octocorals (Stobart et al. 2005, Ruzicka et
al. 2013, Lenz et al. 2015).

Among the numerous coral reefs where shifts in
benthic communities have occurred, the demo-
graphic processes driving the declines in scleractin-
ian abundance have been described in a surprisingly
small number of cases (e.g. Hughes 1984, Hughes &
Jackson 1985, Babcock 1991, Edmunds & Elahi 2007,
Riegl et al. 2017, and references therein). Limited
understanding of the demographic controls of popu-
lation size extends to most benthic taxa on coral
reefs, with notable exceptions involving select octo-
corals (e.g. Lasker 1990, Yoshioka 1996, Bruno et al.
2011, Gomez et al. 2018), sponges (McMurray et
al. 2017), echinoids (Lessios et al. 2001, Levitan et
al. 2014), and asteroids (McCallum 1990, Pratchett
2005). Faced with changing abundances of multiple
benthic taxa on coral reefs, ecologists find them-
selves with a shortfall of demographic tools with
which they can explain the causes of the changes.
The consequences of this shortfall are evident in
efforts to understand the causes of recent increases
in abundances of octocorals on Caribbean reefs (Ruz-
icka et al. 2013, Lenz et al. 2015, Edmunds & Lasker
2016, Tsounis et al. 2018), and signs that they have
greater ecological resilience versus scleractinians
(Tsounis & Edmunds 2017). Ecological theory sug-
gests that the causes of these trends are likely to
operate in density-dependent (DD) ways (Sale &
Tolimieri 2000, Hixon et al. 2002), such that the bal-
ance between inverse DD and direct DD regulates
population size, and shifts in this balance lead to
populations differing in size over time and space.

With little demographic information for most Ca-
ribbean octocorals, it is difficult to select potential
mechanisms regulating their population size in an a
priori fashion. One relatively new domain of reason-
ing that might facilitate this selection is the parallel
that has been drawn between marine animal forests
and terrestrial forests (Rossi et al. 2017), and the
inference that assemblages of arborescent octocorals
are animal forests (Rossi et al. 2017, Sanchez 2017).
Multiple features support this inference, but the most
striking involve the common creation of 3-dimensional
frameworks with high structural complexity and the
capacity to provide shelter to multiple species (Rossi
et al. 2017). The absence of nutritive roots and a
basal-distil transport system underscore the imper-
fections in the analogy between animal and terres-
trial forests. In terrestrial forests, DD is important in
determining population size (Weller 1987, Condit et
al. 1994, Harms et al. 2000), with 2 common forms
involving recruitment (Wills et al. 1997), and self-
thinning (ST) (Westoby 1984, Weller 1987). Recruit-
ment in terrestrial forests can range from direct DD to
inverse DD (Condit et al. 1994, Harms et al. 2000),
and ST posits that crowding (i.e. high densities) in
even-aged plant stands causes resource competition
leading to mortality and increases in size of the sur-
viving plants (Westoby 1984). Classically, ST is visu-
alized using a double logarithmic plot of size (bio-
mass) against density (organisms area™'), on which
the slope commonly is considered to be —-1.5 (White
1981, Westoby 1984), although empirical slopes are
lower (Weller 1987, Lonsdale 1990). In the marine
environment, DD recruitment is well known (Caley
et al. 1996, Hixon et al. 2002), and several cases of
ST have been described (Frechette & Lefaivre 1995,
Guinez 2005), with octocorals providing examples of
both DD recruitment and ST (Linares et al. 2008,
Privitera-Johnson et al. 2015, Cau et al. 2016).

Here we explore the role of DD in determining
octocoral abundances at 6 sites along the south coast
of St. John, US Virgin Islands. At these sites, the
benthic communities defined by scleractinians, the
hydrozoan Millepora, macroalgae, and ‘crustose
coralline algae, algal turf, and bare space’ (CTB)
have been studied for 27 yr (Edmunds 2013, 2018).
Octocoral abundances have been reconstructed
from photoquadrats over the same period (Edmunds
& Lasker 2016), and in the present analyses, we
describe in situ surveys of octocorals (for density and
size) that were completed from 2014 to 2017. Based
on data averaged by site and year, we evaluated vari-
ation in these state variables for evidence of DD
recruitment and ST. First, we tested the hypothesis
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that octocoral density and height varied among sites
and times, and used this analysis as a precursor to
evaluating whether such variation conformed to DD
recruitment or ST. Second, we tested the density of
recruits (colonies <5 cm tall), and per capita recruit-
ment, for a linear association with adult density
(colonies >5 cm tall) to detect DD. Finally, to explore
the role of ST, we examined the relationships be-
tween colony height (a proxy for biomass) and den-
sity for adults, both within a year (i.e. a static meas-
ure of ST; Westoby 1984), and among years within
sites (i.e. a dynamic measure of the impacts of ST in
favoring growth of surviving organisms; Westoby
1984). Our analyses provide correlative tests for DD
recruitment and ST, but they cannot establish cause
and effect. Moreover, the test for DD recruitment is
made equivocal by the likelihood that these popula-
tions are demographically open (and, therefore, not
subject to DD supply of recruits), and the possibility
that larval settlement and post-settlement success
may be subject to independent DD processes.

2. MATERIALS AND METHODS
2.1. Field surveys

Surveys were completed at 6 sites on shallow
(79 m depth) fringing reefs on the south shore of St.
John, U.S. Virgin Islands, between Cabritte Horn and
White Point (Fig. 1). In 1992, these sites were ran-
domly selected on hard substrata along 4.5 km of
shore between these headlands (Edmunds 2013), and
they have been censused annually up to the present.
Each site consists of a permanently marked transect
that has been 40 m long since 2000. The present pro-
ject began in 2014 with the objective of augmenting
a long-standing analysis of benthic community struc-
ture (which emphasized scleractinians; Edmunds
2013) with new analyses focused on octocorals (Tsou-
nis et al. 2018). As part of this effort, arborescent
octocorals were surveyed in situ with genus resolu-
tion, using 40 quadrats (0.5 x 0.5 m) placed at ran-
dom, non-overlapping positions along the same tran-
sect (and re-randomized annually) located at each of
the 6 sites. Surveys were completed over 4 wk be-
ginning on ~20 July in each year from 2014 to 2017,
and were conducted by counting and measuring
the height of octocorals attached by holdfasts within
each quadrat. Height was determined (+1 cm) using
a flexible tape measure stretched from the holdfast to
the colony apex. Abundances were analyzed sepa-
rately for adults (>5 cm tall), and recruits (<5 cm tall),

with this size cut-off based on the maximal height to
which the recruits of most octocoral species are likely
to grow in 1 yr (Lasker 1990, 2013). While the ben-
thos was inspected for all small octocorals, sampling
efficiency probably was low for recruits consisting of
only a few polyps (i.e. <1 cm tall). Analyses testing
for the effects of DD and ST were first completed for
octocorals pooled among taxa, and second for the
3 most common genera of octocorals. Evidence of DD
recruitment was also sought from analyses of per
capita recruitment by site, with these values obtained
by dividing the density of recruits by the mean den-
sity of adults.

2.2. Statistical analyses

Octocoral densities (adults and recruits) and heights
were compared among sites in 2014 to test for spatial
variation. Quadrats were treated as replicates in
contrasts of density, and colonies were treated as
replicates in contrasts of height. Sites were con-
trasted with 1-way ANOVA, densities were square-
root(x + 3/8) transformed (Zar 2010), and the assump-
tions of ANOVA were tested through graphical
analyses of residuals. Multiple comparisons were
completed using Tukey HSD procedures. To graphi-
cally display changes in octocoral communities over
time, bar graphs were used for densities of recruits,
and scatter plots showing density (abscissa) and
mean colony size (ordinate) for adults. Scatterplots
for adults display the ways in which colonies occu-
pied space on the benthos (i.e. density), and volume
in the seawater (i.e. height). Sites were categorically
clustered into low, medium, and high density by
octocoral abundance averaged among years, thus
allowing a test for octocoral assemblage dynamics
associated with colony density.

The putative mechanisms of DD that we wished to
test ultimately relied on interactions among octocoral
colonies to affect recruitment, colony density, or
colony height, and therefore we tested for these
effects at the spatial scale over which such interac-
tions are likely to occur. Sites were used as replicates
in most analyses because they are random samples
of these shallow communities (Edmunds 2013), and
octocoral assemblages were relatively homogeneous
within each site. The associations testing for evi-
dence of ST were also evaluated by quadrat at some
sites to further resolve the conclusions arising from
the site-scale analysis. The quadrat-scale analysis
provided a more meaningful test of the slope of the
abundance-density relationship at the core of ST
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Fig. 1. Study sites and descriptions of octocoral assemblages in 2014. (A) St. John, USVI, showing the location of the Virgin Is-
lands Environmental Resource Station (*) and the study sites between White Point and Cabritte Horn (dashed box). (B) Repre-
sentative octocoral forest on the eastern side of Cabritte Horn (~8 m depth) in 2014. (C-F) Octocoral density (De), colony
height (He), and recruit density (inset bar graph, colonies <5 cm tall) for all taxa, Eunicea, Antillogorgia, and Gorgonia, respec-
tively. Mean + SE shown based on n = 40 quadrats for density and a variable number of colonies for height (C, n =26-96; D, n =
5-59; E, n = 8-25; F, n = 3-24). Significance (see Table 1) of among-site contrasts shown in each frame (NS: not significant),

(Westoby 1984), notably at the scale (i.e. quadrats) at
which colony-colony competition occurs.

Evidence of ST (Westoby 1984, Weller 1987) was
sought in the results for adult octocorals through: (1)

with color codes for sites (panel A) that carry through Figs. 2-4 and Figs. S1 & S2

plots of colony size against density by sites within
years, in which ST is consistent with an inverse rela-
tionship between the 2 variables athigh density (i.e. in-
ferred to be approaching saturating biomass) (Weller
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1987); (2) double-logarithmic plots of colony size
against density by quadrats and years for sites with
high octocoral densities, in which ST is consistent with
inverse relationships (Weller 1987, Lonsdale 1990); and
(3) changes in size—density relationships averaged by
site across 4 years that show declines in density and
increasesin size (Westoby 1984, Weller 1987).

Evidence for DD recruitment was sought in: (1)
scatter plots relating density of recruits to density of
adults using values averaged by site within years (n =
6 sites), and (2) scatter plots relating per capita
recruitment to density of adults averaged by site
within years (n = 6 sites). In these relationships,
recruits were operationally defined as colonies <5 cm
tall, which reflects new individuals detected between
surveys (after Caley et al. 1996), and describes the
distribution of individuals created by the unresolv-
able effects of larval delivery, settlement, and post-
settlement success. Best-fit relationships describing
the trends inherent in the aforementioned plots were
obtained by least-squares regressions. Statistical ana-
lyses were completed using Systat 13 software.

3. RESULTS
3.1. Overview

Surveys of octocorals revealed 10 genera, with
some quadrats containing no colonies, and others
containing up to 8 colonies 0.25 m™%; colonies ranged
in height from <1 c¢m (multiple genera at all sites) to
122 cm (Antillogorgia at Cabritte Horn). The 3 most
common genera were Eunicea, Antillogorgia, and
Gorgonia. Analyses of the running means of adult
density and adult height against sampling effort
(number of quadrats or number of colonies), for all 4
years and pooled among taxa, revealed stable values
at the maximum sample sizes for the 2 sites at the
extremes of the density range (West Little Lameshur
and Cabritte Horn). The same was largely true for
the densities of Eunicea, Antillogorgia, and Gorgo-
nia, and the sizes of the most common genus, Euni-
cea (Figs. S1 & S2 in the Supplement at www.int-
res.com/articles/suppl/m615p001_supp.pdf). Abun-
dances of Antillogorgia and Gorgonia were low at all
sites and in all years, and the running means indi-
cated that heights did not stabilize as a function of
sample sizes obtained (Fig. S2). Fewer octocoral
recruits were encountered compared to adults, but
nevertheless, the running mean density stabilized
at the maximum sample size (i.e. n = 40 quadrats)
for octocorals pooled among taxa, and for Eunicea

(Fig. S3 in the Supplement) for the 2 sites at the
extremes of the density range recorded (West Tektite
and East Tektite). The running mean density of re-
cruits of Antillogorgia and Gorgonia did not stabilize
with 40 quadrats (Fig. S3).

Most (75 %, n = 24) of the frequency distributions of
colony sizes (i.e. recruits + adults), pooled among
taxa and separated among years and sites (Fig. S4 in
the Supplement), were significantly and positively
skewed (based on Fisher's G;/SEs; > 2; Cramer 1997)
(Fig. S4). Positive skewing reflected a long tail on the
positive side of the mode, with more large, >40 cm
tall colonies than expected in a normal distribution.

3.2. Spatial variation

Overall (i.e. pooled among taxa for 2014), mean
adult densities (+ SE, n = ~40) ranged from 0.65 +
0.15 colonies 0.25 m™2 (West Little Lameshur) to
3.05 + 0.24 colonies 0.25 m~2 (Cabritte Horn), with
mean heights varying from 18 + 1 cm (East Tektite) to
30 £ 2 cm (Cabritte Horn), and mean densities of
recruits varying from 0.23 + 0.07 colonies 0.25 m™
(West Tektite) to 0.54 + 0.12 colonies 0.25 m~2 (East
Tektite) (Fig. 1C). Density of adults differed among
sites, with higher densities at Cabritte Horn than
other sites, higher densities at East Tektite than
White Point, and higher densities West Tektite than
West Little Lameshur Bay; density of recruits did not
differ among sites (Table 1). Heights of adult colonies
differed among sites, and were taller at Cabritte
Horn than at East Tektite and Europa Bay (Table 1).
Similar results were obtained for the 3 most common
genera, except that the rank order of sites by adult
density and height differed by genus relative to the
ranking for pooled taxa. The density of Gorgonia
recruits differed among sites, and were lower at West
Little Lameshur Bay than Europa Bay and Cabritte
Horn (Table 1). The height of adult Eunicea and Gor-
gonia varied among sites (Antillogorgia did not), with
Eunicea taller at Cabritte Horn versus Europa Bay
and East Tektite, and Gorgonia taller at Cabritte
Horn versus East Tektite (Fig. 1D-F, Table 1).

3.3. Temporal variation
3.3.1. All taxa
Among-year variation in density and height of adult

colonies (pooled among taxa) differed among sites
(Fig. 2), with mean density varying from 1.2-fold
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Fig. 2. Variation in octocoral communities among 4 years at 6 sites in St. John (Fig. 1), for (I) all taxa combined, and (II) Eunicea.

Results shown for (A,C,E,G,],K) densities (colonies 0.25 m™2) of recruits (<5 cm tall), and (B,D,F,H,J,L) the height (cm) and den-

sity (colonies 0.25 m2) of adults (>5 cm tall) (scales differ among plots). Sites are grouped by octocoral densities into low,

medium, and high density based on overall octocoral abundance (I) and abundance of Eunicea (II). Statistical contrasts among

sites in Table 1. Frames B,D,F,H,J,L show results for contrasts among years for height (He) and density (De), with years linked
with arrows where densities differ among them

(Cabritte Horn, 2014 vs. 2016) to 1.9-fold (White Point, varied among years from 2.2-fold (West Tektite, 2014
2014 vs. 2017), and mean height from vs. 2017), to 2.9-fold (White Point, 2015 vs. 2016).
1.1-fold (Cabritte Horn, 2017 vs. 2016) to 1.6-fold However, densities of adults only significantly differed
(White Point, 2014 vs. 2016). Mean density of recruits among years at White Point (densities were lower in
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2014 vs. 2016 or 2017), and East Tektite (densities
were higherin 2014 vs. 2016). Colony height and
density of recruits differed among years at White
Point (Table 1). Overall, at White Point, the mean
density of adult colonies increased over time (r =
0.96, df = 2, p = 0.039), but no other associations
between mean density and year, or mean height
and year, were significantly associated with time
(p>0.05).

3.3.2. By genus

Differences among times were less striking
when the results were considered by genus
(Fig. 2II and see Fig. S5 in the Supplement). For
Eunicea, densities of adults differed among years
at White Point, although differences among years
could not be resolved in post hoc contrasts; there
was a trend for the density of adult Eunicea to be
greater in 2015 and 2017 than in 2014 and 2016.
The height of Eunicea differed among years at
Europa Bay (p = 0.033), and was taller in 2015
versus 2017, and the density of recruits differed
among years at Cabritte Horn. For Antillogorgia,
densities of adults differed among years at White
Point, and at West Tektite, densities of recruits
differed among years at White Point, and heights
did not differ among years at any site (Table S1in
the Supplement). For Gorgonia, neither densities
of adults nor their heights differed among years
at any site, although densities of recruits differed
among years at West Little Lameshur.

3.4. Density dependence

The relationships between recruitment and
adult density, and between mean colony height
and adult density, were examined for evidence
of DD recruitment and ST, respectively. Recruit—
adult relationships were examined for all octo-
corals (pooled among taxa) and for Eunicea. The
densities of Antillogorgia and Gorgonia recruits
were too low for a meaningful test for DD
recruitment. Neither the density of recruits nor
per capita recruitment was associated with adult
density (p > 0.050) when abundances were pooled
among genera (Fig. 3). For Eunicea, the density of
recruits was positively associated with adult density
in 2014, but per capita recruitment was inversely
associated with density in 2014, 2015, and 2017 (p <
0.050; Fig. 3).
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Fig. 3. Relationships between mean density of octocoral recruits
(colonies <5 cm tall) and mean density of adult octocorals
(colonies >5 cm tall) for 6 sites (Fig. 1) over 4 years (2014-2017%).
Recruitment is shown as density (left ordinate, filled symbols) or
per capita (right ordinate, open symbols), with + SE shown for
densities of recruits and adults. Significant associations (as deter-
mined from Pearson correlations) are presented with Model I

regression lines and r? values

The effects of ST might be expected to appear
through one or more of 3 types of evidence: (1) an
inverse relationship between size and density at sites
where there is high density of organisms (i.e. approx-
imating a saturating biomass), (2) a trend over time at
high-density sites for density of adults to decline, and
their mean height to increase, and (3) at the scale of

Per capita recruits
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quadrats, and at high densities, an inverse relation-
ship on a double logarithmic plot. For the sampling at
a single point in time (e.g. 2014; Fig. 1), adult density
and height differed among sites for pooled taxa, and
for the 3 most common genera, except for Antillogor-
gia height (Table 1), but there was no association be-
tween size and density (r < 0.69, df = 4, p = 0.13).
Therefore, when data were averaged at the level of
sites there was no support of ST.

In the time-series analyses (Fig. 2), for pooled taxa,
densities differed over time in 2 cases (Table 1). At
East Tektite, where densities were categorized as
‘high’ (i.e. 1.3-2.5 colonies 0.25 m2), there was a
decline in density and a weak trend for increasing
size, which conforms to expectations from self-
thinning (Fig. 2F). There was no similar trend at the
other high-density site, Cabritte Horn. At White Point,
densities were categorized as ‘'medium’ (i.e. 1.1-2.1
colonies 0.25 m‘z), and here densities increased, and
mean size declined (Fig. 2D). Densities and sizes of
all octocorals (pooled among taxa) did not differ over
time at the other 4 sites (Table 1). For Eunicea
(Fig. 2II), at East Tektite (‘high density’, 0.5-1.1
colonies 0.25 m™2) densities declined and mean
colony height increased, whereas at White Point
(‘medium density’, 0.3-0.8 colonies 0.25 m™2), densi-
ties changed over time without any change in height
(Fig. 2II, Table 1). Densities of Eunicea did not differ

2 T T T T T
[ ]
o) i
g o ° o
1.6 -
o S g o
.qﬁ S ) g 8 ' °®
o © o8 o ]
g @ °
—42 o e ]
8
i L O Eunicea
® Pooled taxa
08 Q 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Log density

Fig. 4. Double logarithmic plot (as used in classic displays of
self thinning, ST) showing log size (height, cm) versus log
density (colonies 0.25 m™2) for octocorals pooled among taxa
(filled symbols) or for Eunicea (open symbols) for 2017 at
Cabritte Horn. Neither association is significant (p > 0.168),
and <6 % of the variance is explained by the linear regres-
sion. This provides a representative plot for the site and year
with the highest octocoral density (Fig. 1), which serves as a
proxy for a saturating biomass under which ST is most likely
to be expressed

over time at the other 4 sites (Table 1). Antillogorgia
densities changed over time at White Point and West
Tektite, with the trend conforming to the predictions
of ST at West Tektite, but not White Point (Table S1,
Fig. S5). Densities of Gorgonia did not change over
time at any site (Table S1). Therefore, there was
limited evidence in support of ST in the temporal
trends, largely as a result of Eunicea. Finally, ST
should be evident at the quadrat scale when popula-
tion densities are high, and most likely to approach
saturating biomass. Densities were greatest at Ca-
britte Horn in 2017, and provided the conditions
under which ST classically is most likely to be ob-
served; there was no evidence of an inverse relation-
ship between density and size at the scale of quadrats
for this site and year (Fig. 4).

4. DISCUSSION
4.1. Overview

The present reefs have been studied for decades
(Rogers et al. 2008, Edmunds & Lasker 2016, Ed-
munds 2018), over which chronic and acute distur-
bances have been associated with the formation of a
depleted scleractinian assemblage that is resistant
to disturbances (Gross & Edmunds 2015, Edmunds
2018). In contrast to the low abundances that char-
acterize present-day scleractinian populations on
these reefs, and the poor prognosis for their recovery
(Edmunds 2018), octocorals on the same (and adja-
cent) reefs occur at high densities (Lenz et al. 2015,
Edmunds & Lasker 2016), and show signs of greater
ecological resilience than scleractinians (Tsounis &
Edmunds 2017). Comparable data remain sparse
across the Caribbean, but there is evidence from the
Florida Keys (Ruzicka et al. 2013, Bartlett et al. 2018)
of generality in the rising abundances of octocorals
in St. John.

The ultimate causes of increased abundances of
octocorals in St. John are likely to involve numerous
environmental conditions, and the capabilities of
octocorals, scleractinians, and other benthic taxa to
respond to these conditions and to interact with one
another. These capabilities are expressed through
multiple demographic processes regulating popula-
tion growth, any one of which is unlikely to fully
‘explain’ variation in population size. On the shallow
reefs of St. John, arborescent octocorals currently
occur at densities higher than in the recent past (Lenz
et al. 2015, Edmunds & Lasker 2016), but as we show
here (and elsewhere; Edmunds et al. 2016), densities
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(of adults and recruits) and the mean heights of octo-
coral colonies vary over scales of kilometers and
years. Analyses of the aforementioned trends for
evidence of the effects of DD recruitment and ST
revealed only limited support for these processes.

4.2. Spatio-temporal variation

Spatio-temporal variation in density and size of
octocorals in St. John occurred among 4 years that
were unremarkable in physical environmental condi-
tions. From January 2014 to July 2017, St. John was
not impacted by major hurricanes, mean daily sea-
water temperatures remained <30.3°C, and relative
to the last 46 yr, annual rainfall was slightly higher in
2014 and 2017 (2 and 17 % above the upper 95 % CI,
respectively), slightly lower in 2015 (13 % below the
lower 95 % CI), and within the 95 % confidence inter-
vals in 2016. Therefore, the variation in octocoral
assemblages among the present study years at some
sites is likely to reflect routine demographic pro-
cesses such as the growth of recruits into adults,
growth of adult colonies, and mortality attributed to
detachment, diseases, and predation. As adults were
defined by size (i.e. >5 cm tall), their densities and
sizes were not directly affected by recruitment
(colonies <5 cm tall) in any one year, at least until
recruits grew into the adult size class. During this
study, the number of recruits growing into the adult
size class probably did not vary greatly among years,
as revealed by the relatively stable size-frequency
distributions, and the absence of cohorts of recruits
that transitioned through larger size classes (Fig. S4).

It is reasonable to infer that the differences in octo-
coral assemblages among sites in St. John reflected
disparities in environmental conditions including
factors such as flow speed, seawater temperature,
underwater light regimes, and sedimentation. These
conditions vary among sites, with generally higher
wave energy and greater water clarity at the eastern
versus western sites, and higher temperature and
sedimentation at western versus eastern sites (Horst
& Edmunds 2010, Edmunds & Gray 2014). These gra-
dients are associated with variation in octocoral com-
munities at 4 sites close to the present sites (Tsounis
& Edmunds 2017, Tsounis et al. 2018). Presumably,
the environmental conditions that characterized the
study reefs from 2014 to 2017 allowed site-based
variation in octocoral performance to sum to octoco-
ral assemblages that differed among some years and
sites. To what extent can these effects be attributed
to DD recruitment and ST?

4.3. Evidence for DD recruitment

Demographic DD occurs when per capita popula-
tion growth is affected by population size (Hixon et
al. 2002). The effects can modulate mortality or
recruitment, with direct DD providing feedback
that can regulate population size (Hixon et al. 2002).
Associations between the density of recruits and
density of adults will occur under DD, but they are
only diagnostic of DD if per capita recruitment co-
varies with adult density. Based on previous surveys
conducted in 2013 and 2014 at the same sites as
studied herein, augmented with 4 (2013) or 2 (2014)
additional sites, and employing a more conserva-
tive definition of recruits (i.e. <4 cm tall), density-
associated recruitment was detected for octocorals
(pooled among taxa), Gorgonia, and plexuarids
(which includes Eunicea) (Privitera-Johnson et al.
2015). The curvilinear relationships describing re-
cruit density as a function of adult density in this ear-
lier analysis suggest DD recruitment, since per capita
recruitment declined at higher adult densities (Fig. 2
in Privitera-Johnson et al. 2015). The present analysis
is temporally more extensive than that of Privitera-
Johnson et al. (2015), but spatially more restrictive
(only 6 sites), and it uses a more liberal definition of
recruit (i.e. <5 cm tall). Evidence of DD recruitment
for Eunicea was found in 3 of 4 years, but not for all
octocorals combined.

Recruitment (sensu Caley et al. 1996) concatenates
the somewhat independent processes of larval sup-
ply, settlement to the benthos, and post-settlement
survival, each of which has the potential for DD (e.g.
Doropoulos et al. 2017). In demographically open
populations, the supply of larvae cannot be DD (Hixon
et al. 2002), since they are delivered from a variety of
distant locations, but once at a specific site, both the
settlement of pelagic larvae and their post-settlement
success can be modulated by adult density (Doro-
poulos et al. 2017). Thus a DD signal of recruitment
can be detected (i.e. for the first visible individuals in
the population; Caley et al. 1996) for an open popula-
tion, but the means by which this signal is generated
will be unclear. With the exception of a few species,
most Caribbean octocorals broadcast-spawn gametes
(Kahng et al. 2011) and, therefore, the production
of larvae from a site, which could be DD, will not
affect supply of larvae to that site. However, a dense
canopy such as could be created by stands of
arborescent octocorals, could positively affect larval
delivery to the benthos by modulating near-bottom
flow speeds (Guizien & Ghisalberti 2017), or might
affect larval settlement and post-settlement survival.
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DD recruitment was observed for Eunicea in both
the present study and in the study by Privitera-
Johnson et al. (2015), with per capita rates declining
with adult density in 3 of 4 years (Fig. 3). As most
Eunicea populations (and most other Caribbean octo-
corals) are demographically open, evidence of DD
recruitment is likely to reflect effects on settlement
and post-settlement success. Such effects could arise
from interference between adults and larvae through
predation (i.e. with adult colonies providing a ‘wall
of mouths;' Fabricius & Metzner 2004), allelopathy
(Maida et al. 19995), or perhaps Janzen-Connell effects
as occurs with the common scleractinian Orbicella
faveolata (Marhaver et al. 2013). More complex
mechanisms generating DD recruitment could arise
from indirect effects of other members of the benthic
community, particularly if they are positively affected
by the density of adult octocorals. The gastropod
Cyphoma gibbosum and the polychaete Hermodice
carunculata potentially could drive these effects, as
both are well known predators of octocorals (Birke-
land & Gregory 1975, Harvell & Suchanek 1987,
Vreeland & Lasker 1989), and were observed con-
suming adult octocorals and their recruits on the
shallow reefs of St. John.

4.4. Evidence for ST

ST is a well-known scaling relationship developed
for higher plants (Westoby 1981, 1984), which largely
has been developed for monospecific even-aged
stands (Weller 1987, Norberg 1988). High densities of
trees approaching saturating biomass create resource
competition among adjacent individuals, thus caus-
ing a reduction in tree density and concomitant
increases in sizes of the trees remaining (Westoby
1984, Weller 1987). The attractiveness of this ap-
proach is striking for tropical octocorals on Caribbean
reefs, where the above-benthos biomass of arbores-
cent colonies evokes contrasts with terrestrial forests
(Fig. 1B; Rossi et al. 2017). The detection of ST in
Mediterranean octocorals (Linares et al. 2008) sug-
gests that ST might be found among Caribbean octo-
corals (Nelson 2016). In such cases, ST might func-
tion at high octocoral densities (i.e. effectively at
saturating biomass), through interference among
swaying branches (Wahle 1985, Gambrel & Lasker
2016) leading to polyp damage, lesions, and perhaps
death, or potentially through resource acquisition
with light availability and small particulate food being
limited in dense stands of octocorals (Kim & Lasker
1997, Coma et al. 2015).

The only evidence of ST that we observed was
for Eunicea at East Tektite, where dense popula-
tions of adult colonies declined in density over 4 yr,
and there was a trend for the mean height of
colonies remaining to increase. Mean density at the
site at the start in 2014 was among the highest
recorded (Fig. 2), which increases the likelihood
that biomass was saturating and conditions were
favorable for the development of ST (Westoby
1984, Weller 1987). Although this pattern is consis-
tent with ST, it could also arise from alternative
mechanisms, including for example, steady growth
and constant mortality that were independent of
adult density. Further, it is challenging to reconcile
the trends at East Tektite as an example of ST,
when octocoral densities were even higher at Ca-
britte Horn (Fig. 2), but neither density nor height
changed over time in this location. It is important to
note, however, that the theory of ST among plants
is clearest for monospecific, even-aged stands
(Weller 1987, Norberg 1988), and it has proven
more difficult to detect in multi-species communi-
ties subject to continuous recruitment (Westoby
1984, Enquist & Niklas 2001).

4.5. Summary

The present study used in situ surveys to
evaluate the dynamics of octocoral assemblages
over 4 yr in St. John. By simultaneously evaluating
how these assemblages exploited 2-dimensional
space on the benthos through colony density, and
3-dimensional volume of the seawater above the
benthos through density and height, the results
were used to explore the possibility that assem-
blage dynamics were mediated, in part, by DD
recruitment and ST, as in their functional analogues
of terrestrial forests (cited above). While the out-
comes of the present analyses provide some limited
support for DD recruitment and ST, neither pro-
vides a compelling explanation for the empirical
dynamics of octocoral assemblages in St. John.
There are strong parallels between marine animal
forests and terrestrial forests, but the similarity may
not extend to the relative importance of the pro-
cesses controlling populations in the 2 systems.
Given the likely complexity of factors regulating
octocoral populations on present-day reefs, the cur-
rent study serves as a valuable reminder of the lim-
its to mensurative experimental analyses, and
underscores the need for manipulative experiments
that can test mechanistic explanations.
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