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Monte Carlo simulation of charge transport in disordered organic
systems using buffer lattice at the boundary
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Abstract. In this paper, we present an alternative method for simulating the charge transport in disordered organic
materials by using a buffer lattice at the boundary. This method does not require careful tracking of the carrier’s
hopping pattern across boundaries. The suitability of this method is established by reproducing the field dependence
of mobility, carrier relaxation and carrier diffusion in disordered organic systems obtained by simulating the
charge transport in a lattice without implementing any boundary conditions along the electric field direction. The
significance of the buffer lattice is emphasised by simulating the field dependence of mobility without using a buffer
lattice, which results in negative field dependence of mobility (NFDM) at low field regime due to the extra bias the
carrier gains from the neglected hops at the boundaries along the direction of the electric field.
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1. Introduction

Gaussian disorder model (GDM) [1–4] is a widely used
model for explaining the charge transport behaviour
observed in disordered organic systems. According to
GDM, the charge transport in disordered organic mate-
rials occurs by hopping among transport sites that are
subjected to energetic and positional disorders [1–4].
As the model assumes Gaussian density of states [1–4],
a complete analytical solution of the hopping transport
is difficult, especially in 3D. Hence, the predictions of
the GDM were made on the basis of Monte Carlo sim-
ulation of hopping charge transport [1–4]. The Monte
Carlo simulation is considered as an idealised experi-
ment with which one can study the charge transport in
disordered systems as a function of several parameters
[1–5]. The Monte Carlo simulation along with quantum
chemical calculation and molecular dynamic simulation
is extensively used for investigating material-specific
charge transport properties [6].

Generally, charge transport is simulated for thin films
with thickness of a few microns. This is to make sure that
the carrier has attained a dynamic equilibrium during

the transit and also to have a better comparison with the
experiments, such as time-of-flight (TOF), that are gen-
erally performed on micron-sized thick samples [1–4].
Periodic boundary condition (PBC) is well established
and frequently used [7–12] to simulate the charge trans-
port in micron-thick thin films. PBC is a set of boundary
conditions that are used to simulate the properties of
bulk system by simulating a part of it [13]. In princi-
ple, the PBC generates an infinitely large system with
the help of a smaller array that represents only a part
of the bulk system, with the assumption that the small
array will replicate periodically in all the three direc-
tions to form the bulk system. In PBC, when a carrier
moves out through one of the boundaries, a similar car-
rier is injected in through the opposite boundary [13]. In
this process, the carrier’s energy and the other Cartesian
coordinates, other than the directions along which the
PBC is applied, remain the same as those at the bound-
ary. In essence, the advantage of using the PBC is that
the simulation can be performed on a sample length of
several microns using an array of smaller size while at
the same time reproducing the results obtained when
simulated without using the PBC. If PBC is not used,
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Figure 1. Schematic diagram showing a typical hopping motion of the carrier inside the lattice for (a) Case 1, (b) Case 2 and
(c) Case 3. Shaded region in (a) shows the hops that are neglected at the boundaries when Case 3 is implemented.

then an array of bigger sizes, in all the three Cartesian
directions, is required, which demands large computa-
tional resources.

A meticulous implementation of the carrier’s hop-
ping pattern across the boundaries is indispensable for
implementing PBC. All the backward and forward hops
across the boundaries must be taken care of. Otherwise,
serious artefacts may arise. In this work, we propose
an alternative method of implementing the simulation
with the help of buffer lattice region at the boundaries.
Buffer regions have been commonly used for simula-
tions in other areas of research [14], but the use of buffer
lattice in the Monte Carlo simulation of charge trans-
port in disordered organic system [1–4] has not been
reported earlier. In this method, when the carrier reaches
a defined final boundary plane in the field direction,

then the carrier is taken to another defined plane of the
lattice in the opposite direction, where the carrier gets
a buffer lattice region. In the buffer lattice region, the
carrier is allowed to perform all the hopping processes
that it would have made in the absence of a boundary.
This method does not require the stringent tracking of a
carrier’s hopping pattern. The accuracy of this method
is established by reproducing various charge transport
properties of the disordered organic systems obtained
by simulating the charge transport, without implement-
ing PBC along the field direction, in a lattice array
whose size along the field direction is equal to the full
length of the sample. In order to emphasise the role
of the buffer lattice, the field dependence of mobility
is simulated without using the buffer lattice along the
field direction and the data are compared with the one
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Figure 2. Comparison of the field dependence of mobility simulated for Case 1 (•) and Case 2 (◦). Inset shows the comparison
of total number of hops made by the carrier in Case 1 (�) and Case 2 (◦).

obtained by full sample length simulation (FLS). The
discrepancy is observed mainly at the low field regime.
At low field regime, the field dependence of mobility,
when simulated without buffer lattice and with zero
positional disorder, shows negative field dependence
of mobility (NFDM) for all values of energetic disor-
der. But, by FLS, a clear saturation of mobility with
field is observed at low field regime. In the absence
of buffer lattice, some of the hops that the carrier may
make in the absence of such a boundary are neglected.
These neglected hops give an extra bias to the carrier,
resulting in the enhanced mobility that leads to NFDM.
Thus, this study also highlights the importance of the
flawless implementation of the carrier’s hopping pattern
at the boundaries, while implementing PBC, failure of
which results in a serious artefact that can mislead the
interpretation and the modelling of charge transport in
disordered organic systems.

2. Details of Monte Carlo simulation

The Monte Carlo simulation is based on the commonly
used algorithm reported by Schönherr et al [15]. A 3D
array is considered as the lattice with size 70×70 along
x and y directions. Along the z direction, i.e. the direc-
tion of the applied field, various array sizes are used to
implement different simulation approaches adopted for
covering the required sample thickness. Simulation is

always performed for a sample length of 4 μm along
the field direction with lattice constant a = 6 Å [1]. In
all, the following approaches are considered:

Case 1 (FLS): In this case, a lattice of size 70×70×7000
along x, y and z directions is used for simulation. Sim-
ulation is performed without using PBC along the z
direction (figure 1a), which requires array of bigger size.
However, PBC is implemented along x and y directions.
In this case, the carrier does not see any boundary along
the z direction till it covers the required sample thick-
ness.

Case 2: This is an alternative method for simulating the
charge transport (figure 1b) by using a buffer lattice at
the boundaries. In this case, a lattice of size 70×70×150
along x , y and z directions is used. The carrier injected
into z = 1 plane is allowed to move in the direction
of the applied electric field. The carrier is taken into
z = 70th plane once it crosses z = 140th plane while
maintaining the same carrier energy and x/y coordi-
nates. Therefore, the lattice region up to z = 69 acts as
a buffer lattice for the carrier taken to the 70th plane.
Around z = 70th plane, the carrier performs all the
hops that it would have made in the absence of a bound-
ary. Similarly, the carrier reaches any boundary along
x and y directions and is taken to the middle of the
plane defined by the current value of z with the same
energy. This approach considers all the carrier hops at
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the boundaries to be perpendicular to the z direction
because the carrier is allowed to execute the necessary
hops inside the lattice. Use of the buffer lattice region
along the x and y directions similar to the z direction is
also possible. However, this requires a bigger array for
providing buffer lattices around the boundaries along
the x and y directions. In general, this method is an
alternative method for simulating the charge transport
in disordered organic systems with reasonable compu-
tational resources. Case 2 requires less computational
resources than Case 1. Moreover, this method does not
require the careful tracking of the carrier’s hopping
pattern.

Case 3: In this case, a lattice of size 70×70×70 along x ,
y and z directions is used for simulation (figure 1c). This
method of simulation and analysis of the data empha-
sises and illustrates the role of buffer lattice adopted
in Case 2, as described earlier. In this case, PBC is
implemented only along x and y directions. Along the
applied field direction, the carrier is taken to the first
plane (z = 1) once the carrier reaches 70th plane, keep-
ing the carrier energy and the other coordinates the same
as those at the boundary. In this method, the carrier taken
to the first plane cannot perform a backward hop at the
boundary along the field direction, i.e. carrier taken to
the first plane proceeds in the field direction similar to
a carrier injected initially but with the relaxed energy it
has attained during the hopping process. Hence, some of
the hops that the carrier would have made in the absence
of boundaries, which it encounters in the process of
transit along the z directions, are neglected. In Case 2,
the carrier performs these neglected hops in the buffer
region. Hence, the data obtained by this method not only
emphasise the role of buffer lattice in Case 2 but also
highlight the possible artefact that can arise if the car-
rier’s hopping pattern across boundaries is not properly
taken care of while implementing the PBC. In Case 3,
if PBC is also applied along the z direction, then this
method becomes similar to the conventional simulation
methodology with PBC along all the directions and the
data produced are similar to the other two cases (data
not shown).

In each of the aforementioned cases, the hopping of
the carrier between sites i and j is decided by the prob-
ability that a carrier jumps from the present site i to
another site j around and within a cube of size 7×7×7
(343 sites) [11]. Therefore, in Case 2, the buffer lattice
between z = 140 and 150 eases the probability calcula-
tion for carrier hopping (within 7×7×7 sites around the
carrier) at the boundary, instead of dealing with the sites
at the opposite boundaries. Each node of the array is con-
sidered as a localised transport site with uncorrelated site
energy. The uncorrelated site energies of the lattice are

Figure 3. Comparison of (a) relaxation and (b) diffusion of
carriers simulated using Cases 1 and 2. Open symbols show
the data obtained using Case 2. Simulation is carried out for
E = 7.5× 104 V/cm and T = 300 K.

taken randomly from a Gaussian distribution with a
known standard deviation (σ ), which is the measure of
the energetic disorder of the sample. Simulations are
performed for various values of σ and electric field
strengths at 300 K. Throughout the simulation, the posi-
tional disorder is neglected (� = 0). This is to avoid
the huge computational time required for simulating
the charge transport with non-zero positional disorder.
Moreover, the outcome of this study can be clearly
shown even without positional disorder. The carrier hop-
ping in this energetically disordered lattice is governed
by the Miller–Abrahams equation [16,17]. The Miller–
Abrahams equation for the jump rate (νij) of the charge
carrier from the site i to site j is given by

νi j = ν0 exp

(
−2γ a

�Ri j

a

)

×
⎛
⎜⎝ exp

(
−ε′j − ε′i

kT

)
, ε′j > ε′i

1, ε′i > ε′j

⎞
⎟⎠, (1)
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Figure 4. Comparison of field dependence of mobility for various values of disorder for Case 3 (◦) and Case 1 (•). Arrow
shows the minima of mobility occurred at low field regime in Case 3. Enlarged view of the low field regime for the respective
cases is shown in the inset.

where ε′i and ε′j are the effective energies of the sites i
and j including the electrostatic energy, a is the inter-
site distance, �Ri j = |Ri − R j | is the distance between
sites i and j, k is the Boltzmann constant, T is the tem-
perature in kelvin and 2γ a is the wave function overlap
parameter that controls the electronic exchange interac-
tion between the sites. Throughout the simulation, we
took 2γ a = 10 [1,15]. Transit time of a carrier is calcu-
lated by adding all the hopping times and averaging over
a few hundreds of carriers. The mobility is calculated
using drift mobility equation. The electric field range
(>104 V/cm) over which the simulations are carried out
is higher, and hence, the diffusion cannot dominate the
charge transport [18,19]. Thus, the use of drift mobility
equation is justified.

3. Results and discussion

Figure 2 shows the comparison of the field dependence
of mobility, for various values of energetic disorder,
obtained from Cases 1 and 2. For both the cases, the field
dependence of mobility for all the values of energetic
disorder under study is similar and superimposes on
each other. Inset shows the total number of hops that the
carriers take for traversing the required sample length.
There is no remarkable difference in the total number of
hops made by the carrier in traversing the sample when

simulated using Cases 1 and 2. In addition to the field
dependence of mobility, other data such as relaxation,
diffusion, etc. calculated using Case 2 are also identical
to that obtained using Case 1. Figures 3a and 3b show
the temporal changes in the mean energy and diffusion
of carriers during the transit. Both the energy of the
carriers and the diffusion have attained a steady-state
value which confirms that in both the cases, the car-
rier has attained a dynamic equilibrium [20,21]. In both
the cases, the temporal variation of mean energy and
diffusion of the carrier occur in a similar manner and
attain their respective steady-state values in the same
time frame. This clearly shows that the charge transport
in disordered organic system can be accurately simu-
lated by using the buffer lattice at boundaries as in Case
2. Inside the buffer lattice, the carrier makes all the nec-
essary hops that it would have made in the absence of
such a boundary. Case 2 requires less computational
space than Case 1. In addition, a precise following of
the carrier’s hopping pattern is also not necessary when
simulation is carried out as in Case 2.

In order to emphasise the role of buffer lattice in
Case 2, the field dependence of mobility is also sim-
ulated without using the buffer lattice (Case 3) and
compared with the data obtained using Case 1. The field
dependence of mobility, for various values of energetic
disorder, obtained from Cases 1 and 3 is shown in figure
4. For both the cases, the field dependence of mobility
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Figure 5. Variation in the strength of NFDM (�μNFDM),
observed in Case 3, with energetic disorder. Solid line is a
guide to eye.

for all the values of energetic disorder under study is
similar except at lower electric field strengths (∼<

3.6 × 105 V/cm). In Case 3, at lower electric field
strengths, the mobility first decreases with an increase in
the electric field, i.e. NFDM. The mobility attains a min-
imum value (indicated by arrows in figure 4) and then
shows a positive field dependence given by ln μ ∝ E1/2

as predicted by GDM [1–4]. In Case 1, for all the values
of energetic disorder, a clear saturation of mobility is
observed at lower electric field strengths [1–4]. NFDM

is observed in Case 3 without any positional disorder
(� = 0). The strength of the observed NFDM becomes
remarkable when the energetic disorder decreases, as
shown in figure 5. The strength of NFDM (�μNFDM) is
assigned as the difference in mobility value for the low-
est electric field strength under study and the observed
minima of the mobility at low field regime. The ori-
gin of the difference in field dependence of mobility, at
lower electric field strengths, between Cases 1 and 2 is
explained subsequently.

Figure 6 shows the variation in the total number of
hops with electric field, for various values of energetic
disorder, executed by the carrier to cover the required
sample length when simulated with Cases 1 and 3. At
low electric field strengths, for all the values of ener-
getic disorder, the total number of hops made by the
carrier to cover the required sample length in Case 1 is
higher than that in Case 3. The maximum difference in
total number of hops (�hops) occurs at lowest electric
field strength (4 × 104 V/cm), which decreases as the
electric field strength increases and becomes negligible
at very high electric field strengths. As the value of the
energetic disorder increases, the value of �hops also
increases (inset of figure 6). In Case 3, the neglected
hops can certainly influence the charge transport, espe-
cially the transit time. It is confirmed through simulation
that the charge carriers have attained dynamic equilib-
rium [20,21] while covering the required sample length
(data not shown). The neglected hops provide an extra

Figure 6. Field dependence of the total number of hops made by the carrier in two cases (Case 3 (solid line) and Case 1
(dashed line)) for various values of energetic disorder. Inset shows the dependence of difference in the total number of hops
(�hops), made by the carrier in Cases 1 and 3, with energetic disorder at 4× 104 V/cm.
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Figure 7. Variation of ξ (a) with electric field strength for the values of energetic disorder where reasonably strong NFDM is
observed and (b) with energetic disorder for various values of electric fields at low field regime. Solid line is a guide to eye.

bias for the carrier to move in the applied field direction.
The carrier covers the required sample length in less
number of hops, which reduces the carrier transit time,
thereby enhances the mobility. The maximum difference
in transit time (�τ) between Cases 1 and 3 occurs at the
highest value of �hops. Thus, the strength of the NFDM
in Case 3 is higher at lower electric field strength for any
value of energetic disorder. As the electric field strength
increases, �hops and �μNFDM diminish concurrently.
Similarly, for a constant electric field, the strength of
the observed NFDM in Case 3 is expected to be higher
at a higher value of energetic disorder. However, higher

NFDM is observed at lower energetic disorder (figure 5).
This is because the difference in mobility, for constant
electric field and thickness, depends on the value of ξ

instead on �τ alone, as shown in the following equation:

�μ = μ2 − μ1 = L

E

[
1

τ2
− 1

τ1

]
= L

E
ξ, (2)

where L is the thickness of the sample, E is the applied
electric field, ξ = [�τ/τ2τ1] and �τ is the difference
in transit time between Cases 1 and 3, τ2 is the transit
time in Case 3 and τ1 is the transit time in Case 1. Fig-
ures 7a and 7b show the variation of ξ as a function of
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electric field and energetic disorder. The electric field
is limited to the range where the value of �τ is signif-
icant. For any value of energetic disorder, ξ decreases
with an increase in the electric field strength (figure 7a).
This supports the observed NFDM at low-field regime
for all the values of energetic disorder. In addition, ξ

decreases with an increase in energetic disorder (fig-
ure 7b). This suggests a higher �μNFDM for a lower
value of energetic disorder and vice versa, as shown
in figure 5. The aforementioned data clearly show an
artefact that occurs at low electric field regime due to
hops neglected when simulated using Case 3. Thus, the
data obtained from Case 3 not only highlight the role
of buffer lattice used in Case 2 but also assert the need
for precise consideration of the carrier’s hopping pat-
tern across the boundaries while implementing the PBC
for simulating charge transport in disordered organic
materials.

Therefore, in Case 2, enough buffer array must be
provided so that the carrier should not reach the z = 1
plane after it has taken to z = 70th plane. After tak-
ing into z = 70th plane, if the carrier hops back and
touches z = 1 plane, then some hops may be neglected
which in turn may result in NFDM. Hence, a sufficient
buffer lattice must be provided for the wandering of the
carrier around the z = 70th plane. The dimension of
the buffer lattice used in the study (70 × 70 × 69) is
optimum for simulating the field dependence of mobil-
ity and other parameters for various energetic disorders
under study.

4. Conclusion

In this study, a simulation method that excludes the
use of PBC in the Monte Carlo simulation of charge
transport in disordered organic systems is demonstrated.
This method adopts the use of buffer lattices at the
boundaries for the simulation. In this method, a car-
rier reaching one boundary plane is taken to another
plane where the carrier is provided with a buffer lat-
tice region. Inside the buffer lattice region, the carrier
makes all the necessary hops that it would have made
in the absence of a boundary. The importance of buffer
lattice is emphasised by simulating the field dependence
of mobility without using a buffer lattice, which results
in NFDM at low field regime. The observed NFDM is
due to the extra bias the carrier gains from the neglected
hops at the boundaries in the absence of a buffer lattice
region.
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