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Abstract. In the present paper, the main focus is to study soliton formations of a two-dimensional
magnetohydrodynamic flow over a nonlinear stretching sheet with the help of transformed rational function method.
The fluid is electrically conductive, normal to the stretching sheet and there is no induced magnetic field. The flow
problem is described by the continuity and momentum equation with suitable boundary conditions. For solving the
model, the nonlinearity poses a great challenge. Nonlinear partial differential equation has been converted into a
nonlinear ordinary differential equation by using similarity transformations, and then a trial solution is assumed.
The results indicate complete consistency and effectiveness of the suggested scheme compared with the existing

literature.
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1. Introduction

The study of magnetohydrodynamic (MHD) flow has
become an important research area for researchers,
engineers and scientists because of its wide industrial
applications. The MHD flow has many manufactur-
ing and industrial applications such as in petroleum
industries, polymer industries, plastic sheets production,
purification of raw oil, production of copper wires and
in many other industries. In fluid mechanics, most of
the scientific problems are nonlinear. For instance, the
nature of the MHD viscous flow over the stretching sheet
is nonlinear. Most of the physical problems are highly
complex in nature. The fast improvement in nonlinear
sciences has led to a wide range of well-organised and
trustworthy techniques, which help to deal with such
physical problems. Nonlinear problems are still difficult
to solve either numerically or analytically.

Solitary wave phenomena was first observed by John
Scott Russell. The concept of a soliton has now become
ubiquitous in modem nonlinear science and indeed can
be found in various branches of physics and mathemat-
ics. A soliton can be defined as a stationary localised

Magnetic field; viscous flow; transformed rational function method; stretching sheet; Maple 18.

nonlinear wave, whose profile is determined by a
balance of dispersion and nonlinearity. John Scott Rus-
sell in 1834 was riding a horse along a narrow canal
in Scotland when he observed a ‘rounded smooth well-
defined heap of water’ propagating ‘without change of
form or speed’. These waves were later named as soli-
tons (from the Latin word solitarius — solitary). In 1895,
Diederik Kortweg and Gustav de Varies derived an equa-
tion (now known as KdV equation), which describes the
surface waves, including solitons on shallow water sur-
faces. Because of their stability and robustness, solitons
have found plenty of applications in physics, hydro-
dynamics, nonlinear optics, biology, chemistry, etc.
Various forms of solitary wave solutions are there in
nature: the wave phenomena in elastic media, kink-
shaped tanh solutions, plasma waves, bell-shaped sech
solutions and applications in biogenetics, optical fibres,
chemical kinematics, solid-state physics, condensed
matter physics, etc. The Korteweg—de Vries (KdV)
equation and Boussinesq equation describe the water
wave phenomena and yield travelling wave solutions.
There are various numerical and analytical
techniques to find exact solution of mathematically
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modelled problems. Besides this, if exact solutions of
nonlinear evaluation equations are available, it assists
in the stability analysis and facilitates numerical solvers
in comparison. Many techniques such as the Back-
lund transformation method [1], the variational iteration
method [2], the tanh-function method [3-5], the first
integration method [6], the exp-function method [7-
10], the truncated Painleve expansion method [11], the
Weierstrass elliptic function method [12], the Jacobi
elliptic function expansion method [13—15], the rational
expansion method [16], the F-expansion method [17],
Hirota bilinear method [18], the exp(—¢) expansion
method [19] etc. are available to find out exact solu-
tion of nonlinear evaluation equations. Some results
on solitary wave solution are, the solution of non-
linear cubic—quintic reaction—diffusion equation [20],
some new solutions of MHD flow [21] and exp-function
method for fractional differential equations [22]. For
some topical results about the integral transform meth-
ods and on exact solutions, see [23-25,27].

There have been some recent studies on an
interesting kind of exact solutions called lumps, lump-
kink interaction solutions, lump-soliton interaction
solutions and Rossby wave solutions [28-34]. Chi-
nese mathematicians, Wu and He, have introduced a
very effective method called exp-function technique,
a special case of the transformed rational function
method [35], or more generally, the multiple exp-
function method [36]. This technique gives solution to
many physical nonlinear problems. The study of the
literature reveals that the exp-function method is appli-
cable and highly steadfast on differential equations.
Importantly, Ebaid [37] proved that by applying exp-
function technique to any nonlinear ordinary differential
equation ¢ = p and ¢ = d are the unique relations that
can be attained by equating linear terms with nonlinear
terms involved in the problem.

We use the exp-function method to study solitary
wave phenomena of the MHD incompressible viscous
flow. It is notable that this method is totally compatible
and greatly effective for nonlinear partial differential
equations. Also it can be extended to physical models
that arise in plasma physics, mathematical engineering,
applied sciences and fluid mechanics.

2. Mathematical modelling

Consider an MHD flow over a surface of the nonlinear
stretching sheet (y = 0), and that fluid is incompressible
and electrically conductive under the applied magnetic
field B(x) normal to the stretching sheet. We also
neglect the induced magnetic field. The continuity and
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Boundary layer

Figure 1. Sketch of the physical problem.

momentum equations governing such type of flow are
written as

du Jdv
—+—==0, (1
ax  dy

d 3 92 B?
u—u—l—v—u:v—u—o (x)u, 2)

ax dy dy

where © and v are the components of velocity in the x
and y directions, respectively, p is the fluid density, v =
w/p is the kinematics viscosity and o is the electrical
conductivity of the fluid (figure 1).

Here

B(x) = Box "~ D/2, (3)

The assumed boundary conditions for the flow are as
follows:

u(x,0) =cx, v(x,0 =0
and
u(x,00) = 0. “4)

To solve this problem, we first non-dimensionalised
eqs (1)—(4) by introducing the following similarity vari-
ables:

= LE I, (5)
v
2
Y= \ ﬁx(mﬂ)/z -g(m). (6)
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Using the stream functions

oy oy
u=—, v=——,
ay ox
u=cx"g'(n)
and
_ (m+1)cv (m—1)/2 —1
v=—,/ 5 g + +1ng(n)
(7
a -1
L= emx" N )+ T g ). (®)
0x 2
e (xomne [CRED ) gy, ©)
ay 2v
Pu_ m ey [m+ D)
dy? 2v
1
« (x(m—l)/Z /C(szr )> "), (10)
v
By substituting eqs (7)—-(10) into eq. (2), we obtain
2
g +gme"(m) —y(g' )" — Mg'(n) =0,
(1D
where
2m 20 B2
y = and M = —.
m—+1 pc(m+1)
The transformed boundary conditions are
g(0)=0, g'0)=1, g'(c0)=0. (12)

3. Analysis of the method

The general form of the nonlinear partial differential
equation is as follows:

P(u,ut,ux,uy,uxy,uxx,...) =0. (13)
The exact solution of the equation is in the form
u(x,y,z, 1) =u(m), n=nx,y,z1).

Invoke the wave transformation

n=kx +sy+Ilz+ot, (14)

where k, [, s, @ are constants. We change eq. (13) by
using eq. (14) into nonlinear ordinary differential equa-
tion (ODE) of the form given below:

Q(u, u' u’ u”, .. ) =0,

where the prime denotes the derivative with respect to
n. If possible, integrate eq. (15) term by term one or

15)
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more times. This yields constants of integration. For

simplicity, the integration constants can be set to zero.
In the next step, it is important to introduce a new

variable V = V() by a solvable differential equation.
For the first-order differential equation

Vi=F=F®V).
Two simple solvable cases of function F are as follows:

F=FV)=V, F=F(\V)=a+V,

where a is a constant. The corresponding first-order
equations have the particular solutions V = e and
V = —1/n when a = 0. This case corresponds to the
exp-function method (see [28]).

Consider the rational functions

p(V) . Pme + pmflvm_1 + -
qV) @Vt gua Vi 4
where m and n are natural numbers, p; and ¢g;, 0 <
i < m,n, are constants but also can be functions of

independent variables. We are interested in travelling
wave solutions attained by

+ po
+q0

e(V) =

pV)
uPn) = x(V) = T
where
uth = Fe’
I/l(r+2) — Fiv <u(r)) = F8/+F/8/,....

Now, we assume that the transformed equation (15) is
a rational function equation of V with a given pair of
m and n. This can be achieved for all nonlinear equa-
tions of the differential polynomial type, where F is
a rational function in V. Thus, we need to force the
numerator of the resulting rational function in the trans-
formed equation to be zero. This yields a system of
algebraic equations in all variables k, s, [/, w, p; and
gi, 0 < i < m,n, then solve this system to obtain
p(V), q(V) and n. After that on integrating x (V) with
respect to n, we obtain a class of travelling wave solu-
tions:

u(x,y,z, 1) =u(n)
f f (V(n))
q(V(n))
/ /”’ /”2 p(V(m))
q(V(m))
+ Zi:l in =1

In the above, d;, 1 <i < r, are arbitrary constants. The
case of the exp-function method is discussed as follows.

--dn (r times)

--dn,_1dn,
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If we take V = ¢€", then the solution function is
obtained by

u(x,y,z,t) = u(n)
_ / / pme™ + pmqe(’”_l)" +---+po

Gne€" + gn-1e?" D + -+ qo
xdn---dn (r times).

This can yield solutions generated by the exp-function
method [8]. It is observed that the transformed rational
function method generalised the exp-function
method.

According to the exp-function method developed by
Chinese mathematicians He and Wu [8], we consider
that the wave solutions can be stated as follows:

S agexp(nn)
u(n) = =3

. 16
m=—p bm exp(mn) ( )

In the above travelling wave solution, ¢, d, p and g are
positive integers, which are calculated, and a,, and b,
are constants.

The equivalent form of the travelling wave solution
(16) can be written as

u(n) = G exp(cn) + - - +a—q exp(—dn)
bpexp(pn) + -+ b_gexp(—qn)’

To determine the values of ¢ and p, we balance the
highest order linear term with the highest order non-
linear term in eq. (15). Similarly, for values of d and ¢,
we balance the lowest order linear and nonlinear terms
in eq. (15).

By substituting (17) into ODE (15) and equating the
coefficient of each power of exp(nn) to zero, we obtain
a system of algebraic equations. These algebraic equa-
tions are solved for a,, and b,,, with the help of symbolic
computation software Maple 18. Finally, we attain the
travelling wave solution u(x, y, z, t).

a7

4. Solution procedure

Consider eq. (11) which is a nonlinear differential
equation:

2" + gmg" (m) — v(g' )’ — Mg/ () = 0.

The boundary conditions is given below:

g(0)=0, g0 =1,

where the prime indicates derivation of g with respect
to n.

The solution of eq. (11) can be written in the form
of eq. (16). We can frequently select the values of
p,q,c and d but we shall understand that the final

g'(00) =0,
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solution does not reliably weigh on the selection of these
values.

Case 1. For ease, we setc = p = landgq =d = 1,
eq. (16) reduces to the form given as

_aiexp(n) +ap + a—1 exp(—n)

8 = G expn + bo + brexp(—n)’ 1o
Substituting eq. (18) into eq. (11), we obtain
17 exp(7n) + 16 exp(61) + 15 exp(5n)
+14 exp(4n) + 13 exp(3n) + 1 exp(2n)
1| Atrexp(n) + 10 + 11 exp(—n) _0
A +roaexp(=2n) +1-3exp(=3n) ’
+1_4 exp(—4n) + 1—s exp(—5n)
L +i_eexp(—6n) + t—7 exp(—Tn) _
(19)
where

A = (byexp(2n) + b1 exp(y) + bo + b1 exp(—n))*
ti, i=0,%+1,+£2,..., 47,

are constants obtained by Maple 18. By equating the

coefficients of exp(nn) to zero, we obtain
t_7=0,t_6=0,1_5=0,t1_4=0,t_3 =0,
t»=0,1_1=0,10=0,1; =0, =0,
3=0,14=0,15=0,16 =0, =0

(20)

First solution set:
Consider

a_1 =0, ap = Mbo — bo,al =Mby — by,b_; =0,
Inserting these values into eq. (18), we attain exact
travelling wave solution g(n) of eq. (11) (figure 2):

_ (Mby — bo) + (Mby — by)e"

g(m)

bo + brel
Second solution set:
Consider

a_1bg a_1b;
Gl =aopdp =S A =5

b_1=b_1,by = by, b1 = b.

Using the above-mentioned values in the trial solution,
the exact travelling wave solution g(7) of the flow prob-
lem is attained (figure 3):

_a—j1e”T+ (a_1bo/b_1) + (a_1b1/b_1)e"

g(m b_1e™" 4+ by + b1e"
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Figure 2. Graphical representation of the first solution set
forbp =2, by =0.1,M =0.4.
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Figure 3. Graphical representation of the second solution set
for b() = 2, bl = 0.1, a_| = 2, b_l =1.

Third solution set:
Now we consider that

arb_
a_ e
1 b
by = b;.

,apo=0,a1 =a1,b_1 =b_1,bp =0,

Using the above values we have the following travelling
wave solution g(n) of the given eq. (11) (figure 4):

(a1b—1/b1)e™ " + are”
g = — )
b_1e71 + biel

Casell: If c = p = 1and g = d = 2, then eq. (16)
becomes

__axexp(2n) + aj exp(n) + ao + a—1 exp(—n)

 baexp(2n) + by exp(n) + bo + b_y exp(—n)
1)

g(m
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Figure 4. Graphical representation of the third solution set
for b1 = 0.3, a) = 2, b_1 = 1.
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Figure 5. Graphical representation of the fourth solution set
forby =0.1,b0 = 0.2, M = 0.3.

Fourth solution set:
Consider

1
a_1 =0,a9 = EMbO —2bg,a; =0,

1
a) = —2by + Esz’
b_1=0,byg =by,b1 =0, by = by.

Inserting the above values in the trial solution (21)
we obtain the exact travelling wave solution g(n) of
eq. (11) (figure 5):

(§Mbo — 2bo) + (—2by + $Mb)e?"
by + bye?n ’

gm) =
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Figure 6. Graphical representation of the fifth solution set
forbp=0.1,b1 =2,bp =1, M =4.

Fifth solution set:
Consider the given below values, we have

a_1=0,a90 = Mby — by, a1 = —b1 + Mbq,
ar =M — 1)by,b_1 =0,by = by, by = by, by = bs.

We achieved the following travelling wave solution g ()
of eq. (11) (figure 6):

(Mby—bgo)+(Mby—by) e"+(M — 1) bye?"
bg + bre” +b2€2'7 ’

g(n)=

5. Results and discussion

The soliton wave formations for a two-dimensional
MHD flow model have been examined via a novel
analytical technique. The findings are mentioned and
discussed as follows.

A soliton is a non-trivial time-invariant solution of
a field equation, which arises due to a delicate bal-
ance between the nonlinearity and dispersion of the
medium. The self-steepening effects associated with
nonlinearities and the spreading out of a disturbance
by dispersion give rise to this steady-state pulse (wave
of permanent profile). The linear description produces
waves that experience dispersion and causes localised
disturbance to spread. At amplitudes that are slightly
nonlinear, the competition between the two effects of
steepening and spreading can intuitively be expected to
lead to the aforesaid balance. Depending upon the dis-
persion, waves of different wave numbers, speeds and
amplitudes propagate without changing their shapes.
Of course, strong dispersive media can produce waves
of high amplitudes but weak dispersive media produce
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waves of sufficiently small amplitudes. Again, the
solitary waves, which can preserve asymptotically its
shape and velocity, can also interact and pass through
one another in nearly elastic fashion which is a remark-
able characteristic. By changing the values of phys-
ical and additional free parameters, the velocity and
amplitude of solitary waves are controlled. Also, the
amplitude is proportional to the velocity of propaga-
tion, and taller solitary waves are thinner and move
faster.

The solitary wave moves towards the right direction
if the velocity is positive or towards the left direction if
the velocity is negative and the amplitudes and velocities
are controlled by various physical parameters. The soli-
tary waves show more complicated behaviours, which
are controlled by various physical and additional free
parameters. The figures indicate graphical solutions for
different values of physical parameters. The graphical
representations in figures 2—6 signify solitary waves for
various values of physical and additional free parame-
ters. In all the cases, it is observed that the soliton wave
solutions do not strongly depend on values of additional
free parameters, and we attain equivalent solitary wave
solutions. The graphical outcomes visibly depict soliton
waves of various types.

Solitons can be seen as describing real phenomena,
such as waves in narrow channels. There are many other
examples, such as solitons in fibre optics, condensed
matter and so on. They are all very interesting in their
own right, but in theoretical physics, solitons are so
much more than just a device to describe the phenom-
ena in classical wave theories. The soliton hypothesis in
neuroscience is a model that claims to explain how the
action potentials are initiated and conducted along the
axons based on a thermodynamic theory of nerve pulse
propagation. It proposes that the signals travel along the
cell’s membrane in the form of certain kinds of soli-
tary sound (or density) pulses that can be modelled as
solitons.

6. Conclusion

In this paper, we apply a new and modified technique
to obtain solitary wave solutions to the MHD vis-
cous flow over a nonlinear stretching sheet. We attain
the desired soliton solutions through the exponen-
tial functions. With the help of symbolic computation
softwares such as Maple, Matlab and Mathematica,
finding the exact solution of nonlinear differential equa-
tions becomes very easy and convenient. The presented
method also works for nonlinear differential equations
without linearisation, discretisation and perturbation.
The accuracy of the attained results through backward
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substitution into the original equation with Maple 18 is
guaranteed. In short, the obtained results show that this
scheme is much more operative, more competent and
highly accurate for evaluating exact solution of nonlin-
ear evolution equations. The solitary wave solutions are
represented graphically and the numerical results are
highly encouraging.
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