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The Weyl equation under an external electromagnetic field
in the cosmic string space–time
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Abstract. In this paper we have considered a massless spinor Dirac particle in the presence of an external
electromagnetic field in the cosmic string space–time. To study the Weyl equation in the cosmic string framework
using the general definition of Laplacian in the curved space, elements of covariant derivative have been constructed
and the Weyl equation has been rewritten in the considered framework. Then we have obtained the equation of
energy eigenvalues by using the Nikiforov–Uvarov (NU) method. The wave function has been obtained in terms
of Laguerre polynomials. An important result obtained is that the degeneracy of the Minkowski space spectral is
broken in the transition from Minkowski to cosmic string space.
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1. Introduction

In cosmology, topological defects arise from phase tran-
sitions in the early Universe. These include domain
walls, cosmic strings and monopoles. Among them,
cosmic strings have attracted much attention. In 1976,
Kibble [1] proposed the existence of cosmic strings
when he was working on the theory of linear vertexes
in superconductors. A cosmic string has a conical sin-
gularity at the origin and its presence can influence the
behaviour of a quantum mechanical system [2]. Cosmic
strings appear in a number of physical effects such as
γ -ray bursts, the emission of gravitational waves and the
generation of high-energy cosmic rays. Also, the string-
like defects appear in a number of condensed matter
systems, including liquid crystals and graphene-made
structures [3]. The presence of a cosmic string changes
the solution and shifts the energy levels compared with
the flat Minkowski space–time results. It is interesting
to observe that these shifts depend on the parameter
that defines the angle deficit. These shifts arise from
the topological features of the space–time generated by
this defect [4–6]. Recently, the Dirac and Klein–Gordon
equation has been studied in a curved space and its pres-
ence destroys the degeneracy of all the energy levels

[4,7]. In [4,8] the effect of topology of the space–time on
the energy spectrum of the hydrogen atom is considered.
The influence of curvature has been shown in the energy
spectrum of electrons [9]. In recent years, the gravita-
tional effect on quantum mechanics has been studied in
many-particle systems [10–12]. Santos and Bezerra de
Mello [13] investigated the influence of cosmological
constant in the geometry of non-Abelian and Abelian
cosmic string space–times. Beresnyak [14] derived a
hydrodynamic solution for the supersonic flow of the
collisional gas before the cosmic string that depends
on the angle defect of the string and its speed. Mota
and Bakke [15] investigated the influence of non-inertial
effects on the ground-state energy of a massive scalar
field in the cosmic string space–time. Muniz et al [16]
studied the Landau levels of a charged particle placed
in the space–time of a spinning cosmic string, which
is straight and infinitely long. The quantum vacuum
interaction energy between two straight parallel cosmic
strings has been investigated by Muñoz-Castañeda and
Bordag [17] and the topological defects have been stud-
ied in other works [18–22]. Kulkarni and Sharma [23]
studied the exact solutions of the Dirac equation. The
invariant properties of the Dirac equation with external
electromagnetic field have been studied in [24]. Also, the
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Dirac equation has been investigated in various space–
times [25–27]. In 1950, Weyl found powerful geometric
reasons which suggested that the Dirac equation must
include a nonlinear term representing a spin–spin self-
coupling of gravitational origin [28–30]. Weyl was the
first person who investigated the Dirac equation in the
presence of a massless particle and the result of this sur-
vey was the parity conservation. In the quantum field
theory, the Weyl equation is used for describing mass-
less spin-1/2 particles [22,31–33].

In this paper, we are going to consider the Weyl
equation in the presence of an external electromagnetic
field within the cosmic string framework. Therefore, this
paper has been organised as follows: in §2 we introduce
the Weyl equation and study the influence of cosmic
string on it. Next, we find our solutions in terms of
Laguerre polynomials. Conclusions are given in §3.

2. Solution of the Weyl equation in the presence of
an external electromagnetic field

The Weyl equation is used for describing the massless
spin-1/2 particles whereas the Dirac equation describes
the massive spin-1/2 particles. The Weyl equation in the
presence of an external electromagnetic field in a curved
space–time can be written as

iσ aeμ
a (∇μ + ieAμ)ψ = 0, (1)

in which σ a are the Pauli matrices and the covariant
derivative is ∇μ = ∂μ+�μ. When α = 1, �μ identically
vanishes, and we obtain the Weyl equation in flat space–
time. The geometry of a cosmic string in cylindrical
coordinates is defined by the following line elements:

ds2 = −dt2 + dr2 + α2r2dφ
2 + dz2 (2)

with −∞ < (t, z) < ∞ and r ≥ 0, 0 ≤ φ ≤ 2π. The
parameter α = 1 − 4m̃/c2 is the angular deficit and
runs in the interval (0, 1]. m̃ represents the linear mass
density of the cosmic string. The components of the
non-coordinate basis e(a)

μ are called tetrads that satisfy
the property [34]

gμυ(x) = eμ

(a)(x)eυ
(b)(x)ηab (3)

and the tensor ηab = diag(− + ++) is the Minkowski
space–time metric tensor. The tetrad and its inverse are
defined as

ea
μ(x) =

⎛
⎜⎝

1 0 0 0
0 cos φ −αr sin φ 0
0 sin φ αr cos φ 0
0 0 0 1

⎞
⎟⎠,

eμ
a (x) =

⎛
⎜⎝

1 0 0 0
0 cos φ sin φ 0
0 − sin φ/αr cos φ/αr 0
0 0 0 1

⎞
⎟⎠. (4)

By substituting the tetrads in eq. (3) we have

gμυ =
⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 1/α2r2 0
0 0 0 1

⎞
⎟⎠,

gμυ =
⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 α2r2 0
0 0 0 1

⎞
⎟⎠. (5)

ωa
μb represents the spin connection, which is given by

ωa
μb = ηāc̄ec̄

υeσ

b̄
�υ

σμ − ηāc̄eυ

b̄
∂μec̄

υ. (6)

�υ
σμ are the Christoffel symbols of the second kind and

can be obtained from [35]

�
μ
i j = 1

2
gμk

[
∂gik

∂q j
+ ∂g jk

∂qi
− ∂gi j

∂qk

]
. (7)

The non-zero components of spin connections are

ω1
φ2 = −ω2

φ1 = 1 − α. (8)

�μ is the spinor affine connection given by

�μ = −1

8
ωa

μb[σ a, σ b]. (9)

It is valid for massless spin-1/2 particles. By using Pauli
matrices, the non-vanishing component of the spinorial
affine connection is found to be

�φ = −1

8
(ω1

φ2[σ 1, σ 2] + ω2
φ1[σ 2, σ 1])

= −1

2
ω1

φ2σ
1σ 2, (10)

�φ = −i
(1 − α)

2
σ z. (11)

In eq. (1), the vector potential associated with a uni-
form magnetic field parallel to the string

−→
B = B0k̂ is

considered as

Aμ = (0, 0, Aφ, 0), Aφ = rB0

2
, (12)
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where it has no dependence on α. So, the Weyl equation
takes the form

iσ 0 ∂ψ

∂t
+ iσ 1

(
cos φ

∂

∂r
− sin φ

αr

∂

∂φ
+ i sin φ

αr

ω1
φ2

2
σ 3

− i sin φ

αr
eAφ

)
ψ

+ iσ 2

(
sin φ

∂

∂r
+ cos φ

αr

∂

∂φ
− i cos φ

αr

ω1
φ2

2
σ 3

+ i cos φ

αr
eAφ

)
ψ + iσ 3 ∂ψ

∂z
= 0. (13)

To solve eq. (13) we take the following form for the
wave function:

ψ =
(

ψ1(r)

ψ2(r)

)
= e−iEt+imφ+ikz

(
ϕ1(r)

ϕ2(r)

)
. (14)

Substituting eq. (14) into eq. (13) leads to two coupled
differential equations

(E − k)ϕ1(r) + ie−iφ
(

∂r + m

αr
+ 1 − α

2αr
+ eB0

2α

)
× ϕ2(r) = 0, (15)

(E + k)ϕ2(r) + ieiφ
(

∂r − m

αr
+ 1 − α

2αr
− eB0

2α

)
× ϕ1(r) = 0. (16)

By using eqs (15) and (16) we can write the wave func-
tion ϕ2(r) in terms of ϕ1(r) as follows:

ϕ2(r) =
[−ieiφ(∂r − (m/αr) + (1 − α)/(2αr) − (eB0)/(2α))

E + k

]
ϕ1(r). (17)

Then, we can write the system of equations in terms
of ϕ1(r) as

ϕ′′
1(r) +

(a

r

)
ϕ′

1(r) +
(

1 − 4m2 − 4α + 4αm + 3α2

4α2r2

−meB0

α2r
+ −e2 B2

0 − 4k2α2 + 4E2α2

4α2

)
ϕ1(r) = 0,

(18)

where a = (1 − α)/α. To solve the above equation,
we use the Nikiforov–Uvarov (NU) method, which has
been described in detail in Appendix A and write the
solution of eq. (18) as [36]

d2ϕ1(r)

dr2 +
(a

r

)dϕ1(r)

dr

+ 1

r2 (−ξ1r2 + ξ2r − ξ3)ϕ1(r) = 0, (19)

where

ξ1 = e2 B2
0 + 4k2α2 − 4α2 E2

4α2 , (20)

ξ2 = −meB0

α2 , (21)

ξ3 = −1 + 4m2 + 4α − 4αm − 3α2

4α2 (22)

and

α1 = 1 − α

α
, α2 = α3 = α5 = 0, α4 = 2α − 1

2α
,

α6 = α9 = ξ1, α7 = −ξ2,

α8 = (2α − 1)2

4α2 + ξ3, α10 = 1 + 2

√
(2α − 1)2

4α2 +ξ3,

α11 = 2
√

ξ1,

α12 = 2α − 1

2α
+

√
(2α − 1)2

4α2 +ξ3,

α13 = −√
ξ1. (23)

From the following energy eigenvalue equation

(2n + 1)
√

ξ1 − ξ2 + 2

√√√√(
(2α − 1)2

4α2 +ξ3

)
ξ1 = 0

(24)

Figure 1. The energy spectrum vs. B0 for n = 2 with
e = k = 1, m = 1 for different α.
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the energy spectrum can be obtained as

E±,n,m

= ±
√

k2 + B2
0 e2(1−[4m2/(2 + 2n−(2m/α))2])

4α2

(25)

and for α = 1, we have

E±,n,m

= ±
√

k2 + B2
0 e2(1 − [4m2/(2 + 2n − 2m)2])

4
.

(26)

The wave function is obtained as

ϕ1(r) = r ([(2α−1)/2α]+
√

[(2α−1)2/4α2]+ξ3)

× e−√
ξ1r L

2
√

[(2α−1)2/4α2]+ξ3
n (2

√
ξ1r) (27)

and by using eq. (17) we obtain

ϕ2(r)

=
[−ieiφ(∂r− (m/αr)+[(1 − α)/2αr ]− (eB0/2α))

E + k

]

×
(

r ([(2α−1)/2α]+
√

[(2α−1)2/4α2]+ξ3)

×e−√
ξ1r L

2
√

[(2α−1)2/4α2]+ξ3
n

(
2
√

ξ1r
))

, (28)

where the wave function is obtained in terms of Laguerre
polynomials Ln .

In figure 1, we observe energy decreases by increasing
α and decreasing B0. The energy spectrum as a func-
tionof B0 for flat space–time (α = 1) is shown in figure
2 for different n that breaks the degeneracy of energy
levels. The energy spectrum as a function of α for differ-
ent B0 is shown in figure 3. The density of probability
|�(r)|2 vs. r for different values of n is shown in figure 4.

Figure 2. The energy spectrum vs. B0 for α = 1 with
e = k = 1, m = 1 for different n.

Figure 3. The energy spectrum vs. α for n = 1 with
e = k = 1, m = 2 for different B0.

Figure 4. |�(r)|2 vs. r for n = 2 with B0 = e = k = 1,
m = 1 for different α.

3. Conclusion

In this work, we have considered spin-1/2 particles in
the presence of gravitational fields of a cosmic string. We
obtained the solution of the Weyl equation in a curved
space in the cylindrical coordinate. After the determi-
nation of elements of covariant derivative and using an
ansatz form for the wave function, a system of cou-
pled differential equations were derived. The coupled
system of differential equations are decoupled and an
explicit differential equation for one of the components
of the wave function was found. We have obtained the
energy equation and the wave function using the terms of
Laguerre polynomials. An important result that we have
shown is that the degeneracy of the Minkowski space
spectral is broken in the transition from Minkowski to
cosmic string space.
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Appendix A. The NU method

We consider the following differential equation [37]:

d2�(r)

dr2 + α1 − α2r

r(1 − α3r)

d�(r)

dr
+ 1

r2(1 − α3r)2

× {−ξ1r2 + ξ2r − ξ3}�(r) = 0. (A1)

According to the NU method, the equations of energy
eigenvalues and eigenfunctions, respectively, are
obtained from

α2n − (2n + 1)α5 + (2n + 1)(
√

α9 + α3
√

α8)

+ n(n − 1)α3 + α7 + 2α3α8 + 2
√

α8α9 = 0, (A2)

�(r) = rα12(1 − α3r)−α12−(α13/α3)

×P(α10−1,(α11/α3)−α10−1)
n (1 − 2α3r), (A3)

where

α4 = 1

2
(1 − α1), α5 = 1

2
(α2 − 2α3),

α6 = α2
5 + ξ1, α7 = 2 α4 α5 − ξ2,

α8 = α2
4 + ξ3, α9 = α3 α7 + α2

3 α8 + α6,

α10 = α1 + 2 α4 + 2
√

α8,

α11 = α2 − 2 α5 + 2(
√

α9 + α3
√

α8),

α12 = α4 + √
α8, α13 = α5 − (

√
α9 + α3

√
α8).

(A4)

In the special case of α3 = 0 [38]

lim
α3→0

P(α10−1,(α11/α3)−α10−1)
n (1 − α3r)

= Lα10−1
n (α11r), (A5)

lim
α3→0

(1 − α3r)−α12 − α13

α3
= eα13r (A6)

and

�n(r) = rα12eα13r Ln
α10−1(α11r). (A7)
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