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Abstract: In this study, small-signal stability issue associated with uncertainty excitation is investigated by using differential
inclusion theory. Specifically, a polytopic linear differential inclusion (PLDI) model for Energy Internet is developed, in which a
modified non-sequence Monte Carlo method is introduced to identify a series of time-variant operation states. Additionally, a
simplified small-signal model of renewable energy sources (RES) with virtual synchronous generator control is proposed, and
the outputs of RES are modelled as time-varying elements in PLDI model to reflect the inner stochastic excitation in the
linearised matrix. The stability criterion for the stochastic time-varying system is mathematically deduced based on convex hull
Lyapunov function. Simulation demonstrates the benefits of the proposed model in describing system stochastic characteristics

and reducing computational burden.

1 Introduction

Unpredictable events and disturbances caused by high penetration
of renewable energy sources (RES) have brought new challenges to
small-signal stability analysis of Energy Internet [1]. To address the
challenges, the following two research efforts have been elaborated
by the engineering community to identify uncertainties in stability
analysis: (i) stochastic time-varying equilibrium points [2] caused
by time-varying power flows with RES output fluctuations, and (ii)
stochastic state matrix coefficients also caused by fluctuations of
RES but may not affect steady-state operating.

The emerging issue, usually based on several critical operation
states, is widely studied. Based on a certain probability distribution
function (PDF), a large number of scenarios can be generated by
Monte Carlo (MC) [3] or latin hypercube [4] method for
deterministic simulation. Gram—Charlier expansion and cumulants
methods are utilised in [5] to obtain scenarios and identify the
distribution density of the critical eigenvalues so as to derive the
possibilities of system stability. Those methods, however, are still
based on the deterministic model of the Riemann differential
equation that ignores the uncertainty during time series. Therefore,
stochastic differential equation (SDE) theory [6] is introduced to
better describe the dynamic behaviours of the intrinsic nature of the
stochastic components and hence demonstrates the stability
criterion for systems with external excitation. However, the method
ignores the inclusion of perturbations. For this concern, the authors
in [7, 8] developed a ‘region-wise’ approach to probe into the
impact of uncertainty on large-scale system stability. Nevertheless,
the consideration of varying equilibrium point is ignored in these
approaches. Recently, enabled by massive historical data, random
matrix theory is introduced to dig out the evolution law of system
operating trajectory and predict the tendency of operation state [9,
10]. Need not to consider varying equilibrium point issue, this
promising method provides a possibility to grasp the behaviour of a
power system from the data-driven perspective without accurately
establishing detailed system models. However, it still needs some
works on establishing mathematic stability analysis models to
figure out and characterise intrinsic regularity of a stochastic
system.

To address the issues mentioned above, this paper proposes an
advanced small-signal model for Energy Internet based on linear
differential inclusion (LDI) theory. The LDI only requires a
motion-changed region of the uncontrolled resource in the time
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period [11]. This advantage provides a possibility to apply a
stochastic forecast model to deal with the stability analysis with
rational prediction errors. Meanwhile, the uncertainty system can
also be described by a set-valued mapping of operating states. In
[12], polytopic LDI (PLDI) is adopted to achieve a robust control
design of flexible AC transmission systems (FACTS) for the power
system. Through a linearising system under a number of typical
conditions, a satisfactory global optimum operation condition can
be obtained. In [13], the definition and property of composite
quadratic hull Lyapunov functions (CHLFs) are investigated. This
method is subsequently applied to construct a stabilising feedback
law for saturated systems, such as AC-DC converters [14] and
battery boost converter [15]. Inherited from this innovative idea,
this paper tackles the stability analysis problem due to the
following salient features:

i. Introducing an operation-point identification method based on
a modified non-sequence MC method, which enables a
stochastic time-varying PLDI model for system analysis.

ii. Proposing a simplified small-signal stability model for RES,
considering virtual synchronous generator (VSG) control
strategy.

iii. Demonstrating a stability criterion for Energy Internet based on
CHLF, and a resultant stochastic-stability constraint is
established for robustness control.

This paper is organised as follows. Sections 2 and 3
theoretically present the principle of LDI as well as the simplified
small-signal model of RES and introduce the operation-point
identification method to establish the time-varying PLDI model.
The stability criterion based on CHLF is demonstrated in Section 4.
Section 5 is devoted to the simulation analysis of a two-machine
system. Section 6 presents conclusions and future works.

2 Simplified small-signal model of RES

For simplicity and without loss of generality, this paper mainly
focuses on solar and wind resources. The linearised mechanical
powers of wind power P, and solar power P, are characterised as
follows:
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where p is the air density coefficient (kg/mz), R is the length of
wind turbine blade, Vy, is the wind velocity. For PV, 4 and G, are
the respective array of photovoltaic solar panels (m’) and solar
radiation (W/m’), respectively. The conversion efficiency
parameters of wind generator and PV under normal operation state
are set as Cp(4, f) = 47%, 1y, = 0.97, nyy = 15%.

Since the time-scale of converter controllers is inconsistent with
the mechanical adjustment of synchronous machines (SMs), Jaime
et al. [16] proved that the integration of RES will not involve in the
original electromagnetic oscillation mode (EOM) of system. This
conclusion indicates that the corresponding SMs replaced by the
RES in EOM do not need detailed model converter control
strategies and provide a possibility to represent RES as simple as a
time-varying controlled current source. However, when the phase-
locked loop (PLL) controller is considered, the RES becomes
coupled with dynamic characteristics especially in a weak network
[17]. Therefore, the simplified small-signal stability model for RES
should include the PLL:

dAXpLL

a AU @
dA§

dtp L = K pLoAxprs + K, pLLAUg

where K, prr. and K pry are the proportion integration (PI)
parameters of the PLL controller.

Assume the controller is ideally accurate, then U, ~ U, which is
the terminal voltage of integrated node and meets the steady
equation if the network appears inductive:

2

U
sin 3
Xou Xom ®)

EU .
Py + Prof = w—siné =~

where Py is the system electrical output governed by generator.
P.f and E are the respective output and terminal voltage of RES,
and X, is the equivalent impedance between the two terminals.
Then, according to (3) and assuming Py, = constant, AU ~ AU
should satisfy

_ APref-xout - U2COS SHAS

AUy = 2Usin 6,

“)

In (4), AP, satisfies (1) and &, is the initial rotor angle of system.
Then, (2) can be expressed as

dAxprL _ AP efXout _ Ucos 8,Adpr 1,
dt  ~ 2Using, 2sin &, s
dA5pLL _ A K APrefxout Ucos 50A5PLL ( )
ar o ARt R P FTGR S T T Osin g

As traditional current/voltage source inverters lack inertia, VSG
control algorithm shown in Fig. 1 is introduced to mimic SM
characteristics. It is able to provide frequency and voltage support
during power fluctuations or failures [18]. As the VSG control
strategy results from the movement of SM, the VSG-based
converters participate in EOM of system and hence influence the
small-signal stability of power systems [19]. Therefore, this type of
controller should be considered in the small-signal model of RES.
Combined with @ — P droop strategy and assuming Pt = Py, or
Pyt = Ppy, the linearisation model for a VSG yields
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In (3), ® and w, are operational and rated rotor angular velocity,
respectively. J is the virtual inertia, D is the damping coefficient,
and K, is the active droop coefficient.

Assume the power system appears inductive according to (3),
the linearised form of the real powers is expressed as

2

AP, = ﬂcos 0ipAS; ~
X()ll[

XOllt

€0S 6jpAd; @)

In (5) and (6), AP,.s meets (1) and can be expressed as
APrei = APreticos(Ximin) + APregivar(Xi = Ximin) ®)

where APpefivar and APpficos are the varying and constant parts of
electromagnetic power provided by RES, respectively. x; represents
the external excitation that is either wind velocity V,, or solar
radiation in this case. X, represents the minimum stochastic
external excitation. Equation (8) indicates that the external
excitation can be divided into the constant part and the variable
part. Hence, (8) can be represented as a matrix with a bounded
time-varying region.

Note that the controller often uses a PLL to synchronise its
output voltage with the grid voltage before actually connecting to
the grid. In current control approaches, the PLL remains in the
control loop all the time. Therefore, especially under weak grid
conditions, it can cause oscillations and stability issues for the
system. This issue does not exist in VSG-type controls where the
PLL (even if it exists initially, it) does not remain in the loop
during normal operation. Once the switching is done, the VSG
control is properly initialised and activated to ensure a smooth
power output and the PLL can be removed [20]. Therefore, the
PLL is only for one-time use and is not considered in the small-
signal model of RES. Hence, the small-signal model of renewable
generation is revised as

Eqgs. (6), (7), and (8) VSG control

Egs. (5) and (8) PLL control ©)
According to (8), the detailed matrix identified by (9) can be
divided into certainty and uncertainty parts. Then, the constant
state variables and control variables take wind farm, for instance,
with respect to (9) are Ax = [AS;, Aw; |* or Ax = [Adprr, Axprr 1,
Au = AV Vy = V. The related matrices of RES based on PLL
and VSG are (see (10))

0 1 0
AREScosi = —[J2 _( km + 2) > BREScosi = kVVéﬁn
JwoXout Jw, J Jaw, (1
0
HRESi = kv(vw - VWmin)2
Jw,
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3 Small-signal model of Energy Internet based on
PLDI

3.1 Definition and theory of PLDI

Definition 1: For a known set-valued mapping F:
[0, T]xR" = R", if x(): [0,T] = R" is an unknown function
satisfying x(0) = x,, then a system in the following form is called
LDI:

x() € F(t, x(t)) (12)

If the set-valued mapping F in R" — R" does not explicitly contain
T, we have a time-invariant system LDI as follows:

x(1) € F(x.1) (13)
Let S C v, co{S} denote all the convex hulls S in v, for A; € R**",

i=1,2,...,N, are N real matrices and the convex set co(A)
satisfies

N
co(4;i=1,2,....,N) = IA = ZYiAia(y“}'z’“-v}’N)T eIt (14)
=1

=

N
Wby vn) 0y < Li=1,2,.. N, Zy,: 1](15)
i=1

rer" represents a closed convex set in the first quadrant, and
then the LDI system with the set co(A) is called PLDI.

For a typical time-varying system containing uncertainty
element, it meets the following form:

x(t) € co(Ax + K(o)x + Bu + H(o)u) (16)

where x € R" and u € R" are the respective state and input
variables of the system, respectively. A; and B; are the constant
matrices of the system. K(¢) and H;(o) represent the uncertainty of
system, which satisfies the following:

K{(0) =6'K, = 6:Kis + 6:Kin + -+ + 6,Kiy

, an
Hio) = O'TH,‘ =oHy+oHp+ - +0,Hy

_ T - T
In (17), 6 = [o1,....0,]", Ki = [KiL....Kix| . Hy=[H]}. ... H}|
and K;. € R"" and H;, € R"*™ are the respective constant-varying

matrices at each state according to uncertainty functions
o, i€[1,N].

Theorem 1: Suppose a set-valued mapping F: R - R" is a
bounded closed convex, solutions in both (10) and (11) exist.
Denote solutions set R(x,) and the LDI system is exponentially
stable, only if Vx() €R(x), 3Jf>0, c¢>0 satisfies
x(t) < cexp(—pir).

For a typical PLDI, the system has a globally uniform stability
when it satisfies exponentially stable Theorem 1 [13]. This
criterion indicates that, for a certain closed compact convex set, the
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global stability of this PLDI system can be estimated by analysing
the boundary property of the convex set. This stable characteristic
provides a possibility to apply PDLI theory to qualitatively judge
the stability of a stochastic time-variant system, and simplifies the
analysis process of uncertainty disturbances, further improving the
modelling accuracy. For instance, the essence of the kernel
function of multi-equilibrium linearisation means in [21] can be
theoretically elaborated by PLDI.

3.2 Modelling of Energy Internet based on PLDI

For a given perturbation, e.g. wind velocity [Vimin, Vimax], power
system exists a series of representative equilibrium points. This
characteristic indicates that the range of excitation, such as light
intensity, can be divided into several intervals with respect to its
equilibrium points, and also indicates that the operation state of
interconnect system is constant under the external excitation of
each interval of perturbation.

Therefore, the stochastic time-variant power system can be
represented as a series of typical states with their internal
excitations by utilising (9) and (16). The system is described as a
convex hull of multiple operation states, and the perturbation
excitation at each interval is presented as bounded excitation in
each state. Then, to obtain a series of system operation points under
large fluctuations caused by RES, a method that judges the trigger
of SM additional adjustment should be developed.

Instead of calculating the PDF of uncertainties at each bus, a
modified non-sequence MC method is introduced to identify
various operation states of the uncertainty system. According to
frequency constraints, the deviation threshold of additional
adjustment is set to+0.2 Hz, which triggers the secondary
frequency modulation [22]. The adjustment of SM and additional
device will change system equilibrium point and hence the state of
the system. As the procedure is similar to the bulk power system
reliability evaluation, this proposed algorithm is based on heuristic
adjustment strategy, which is summarised as follows:

(a) Generate stochastic excitation and the mechanical power input
of RES using MC; if it is NOT the first iteration, go to step (g).

(b) Calculate bulk system power flow.

(c) For a previous evaluated status, if it is NOT a new one and
evaluated early, go to next status.

(d) Check the power flow constraints and bus voltage/frequency
constraints and list SM adjustment candidates, if it system
operation indexes exceed limits, go to (e), otherwise go to (g).

(e) Adjust the generator outputs: Give higher priority to those
adjustments that can meet the constraints.

(f) Calculate power flow again and go to (d).

(g) Store equilibrium point and the corresponding excitation input
value.

(h) Sort and identify the ranges of perturbation input values
according to different operation states: Generate a series of system
linearised matrices.

Using the above-mentioned method, a number of typical
operating states of power system and the corresponding interval of
excitations can be identified. Then, form (16) can be introduced to
represent these random variables and formulate vertex systems of a
PLDI model.
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As mentioned earlier, RES and synchronous system are mainly
coupled with each other through power flow. However, for each
equilibrium point identified by non-sequence MC method, the
excitation of RES wunder this scenario does not trigger the
movement, which indicates the independence of the power system
and RES. Similar to [6], the polytopic linear differential matrices
A; and B; in (16) yield

A,‘ _ [Asysi 0
0 Aggscosi

]7 B,' _ [Bsysi (18)

0 BRESCOS[]

Equation (18) includes linearised interconnect system matrices
Agysi and Bgyg; under operation state 7. Based on the Heffron—Philips
model, the classic third-order small-signal model of SM is
introduced and Agy,; and Byy; are described as follows [22]:

D K, K, 1
so| T, T, T ey [T O
AS |=|2zf, O 0 AS |+]0 0O
AE’q 0 _If4 _ 1/ AE/q 0 #

T 4 KT 4 T 4 (19)
AM,,
AEgy

ARES cosi and Brgs cos; are the constant parts of the small-signal
model with stochastic excitation in (18). Then, the convex
combination of linear differential matrices A; and B; identified by
the modified non-sequence MC method will be a closed set.

The time-varying elements in PLDI can be obtained by using
(9), (16), and (17). In this case, the varying parts in the RES model
(9) only constitute uncertainty matrix H;(6). Then, for each
external variable, let 6;; € [X; min Xi max)> the matrices H;, € R"*"
can be rewritten as

HI(G) = GTﬁi = ximinHimin + ximaxHimax (20)

In (20), Xjmin and xjmax represent the maximum and minimum of
the stochastic external excitation, i.e. wind velocity and light
intensity. Then, with the above-presented model, the small-signal
model based on PLDI can be expressed as (16).

4 Stability analysis of Energy Internet based on
CHLF
4.1 Definition and general properties of CHLF

1 X 1N

For a set of positive-definite symmetric matrices P; >0 € R"™",
i=1,2,...,N, let Q;=P;', if a vector y €' and satisfies (15),
then define [13]

N
0 = D70, Q'@ =Py @1
i=1

It is easy to see that both Q(y) > 0 and P(y) > 0 are continuous
surjective linear mappings in y € I'. CHLF is defined as [13]
N =1
Vo(x) = min x"P(y)x = min xT( Z yiQi) x (22)
yerl yerl i=1

Obviously, Vi(x) is quadratic and satisfies V. (ax)= a’V.(x).
According to the Schur complement rule, we have
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V.(x) = min a

a

xT
. }20, yel
x 0@

N
ZJ’i:l
i=1

Then, we give a simple preliminary that will be used throughout
this section [13].

(23)

Lemma 1: Let x € bdL.. For simplicity and without loss of
generality, assume y;>0 for ke€[l,N)] and y;=0 for

k € [Ny+ 1,N]. Combine (21) and denote Q(7y") = ZkNily,ﬁQk,
x. = 00(7") 'x, k €[1,N,], then we have [13]

N ~1
7°(x) = arg min xT( 2 ijj) x (24)
yel Jj=1
No
x= ) rx (25)
k=1

V) = VVeln) =20 ') =2{00) x| @6)
4.2 Stability criterion for PLDI-based CHLF

Theorem 2: Consider a composite positive function V. (x) in
(22). A PDLI system is exponentially stable if and only if there
exist  positive-definite ~ matrices Q€ R"*", F, € R"",

F(y)= X0 viFw (7)) = X4_ 70 k € [1,J], i € [1,N] such
that

AQ, + QAT + BF,+B'F + FIH,6,+ 6/HF, <0 (27)
Proof According to the definition of V(x), it satisfies
V(x) € co{ VV (x)[A;Ax + A;Au + H{(c)Au]} (28)

Consider x € bdLy, and F, € R"*" both satisfy Lemma 2, for
simplicity —and  without loss of generality, assume
F(7)= Y 7iF: and construct u = F(y)Q'(y")x [13]. Then,
substituting (25) and (26) into (22) yields

V(x) € co{ VV(x)[Ax + (B; + H(6)F(y)Q™'(r)x]}

= co{2x"Q7'(")[A; + (A; + H(0)F(y)Q™'(r")]x} )
Hence, as x = Y1° vixe. F(7") = Y1°,7iFy, we consider
2x"Q7'(r")[Ai + (B + H(o)F()Q™'(r)]x
= ﬁ:l 2x"Q7'(r)[viAixi + 7i(Bi + H(o)DF Q™' (7 )] (30)
No

= Y 240: [viAii + 7i(B; + H{0)F(Q; 'x]
k=1

According to the properties of the symmetric quadratic matrix, (28)
can be represented as

No
D ik |@'Ai+ AT + O BFQ; ' + Oc'BIF Q! o
k=1

— — T_ - 1 - — _
+0; ' (HF)) 6,0;' + leo'lTHiFkal]xk
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Hence, for the linear control system, the problem V(x) <0 is
equivalent to

0c'A; + A/ Q' + ' BFQ;' + O;'BIFLQ;

113 T 1 1 =Ty 1 (32)
+(Qx HiFy) 6,0y + 0Oy 6 HFQ; <0
Multiply (32) from the left and from the right with @y, the PDLI
system will be stable only if it satisfies

AQ,+ QAT+ BF, + B'Ff + (H,— F)'6,6 + 6/H; — F;

<0 (33)

5 Tests and results

To validate the proposed approach, a two-machine bus system test
case is utilised. The case is shown in Fig. 2. In this case, a wind
farm based on a permanent magnet synchronous generator (PMSG)
of 10% equivalent MVA rating of the SM is added in bus 1. The
specification and setting of PMSG are presented in Table 1. The
wind velocity range is set as V;,€[8—-6]m/s and
Vi € [8 — 2] m/s, respectively.

As previously mentioned, the stability analysis procedure can
be summarised as follows:

Step I: Calculate stochastic system equilibrium points and identify
respective fluctuation range of excitation resource for each
operation state.

Step 2: Generalise a series of linearised matrices according to
system operation states. Describe the uncertain system using the
PLDI model with time-varying elements.

Wind Farm

N
Bl By @

Synchronous generator

Fig. 2 Two-machine system containing PMSG

Table 1 Control parameters of RES

Step 3: Estimate the stability of the stochastic interconnect system
based on CHLF.

According to power flow analysis results, there are two
equilibrium points that correspond to two fluctuation intervals, i.e.
Vwinai € [8 — 10.47]1m/s, Vying; € [10.47 — 12] m/s. The bounds of
voltage are shown in Fig. 3, and the active power of SM is limited
to [0.72,0.78] p . u.

The calculation results with or without the VSG control strategy
are shown in Tables 2 and 3, respectively. According to Theorem 2,
as exist and only exist positive-definite matrices Q,,, F,,, Q,,, F.,,
under VSG-based RES satisfying the above inequalities, the
stochastic PLDI system is exponentially stable. However, for PLL
control, there only exist Q,,, F, @, F,, during
Vwinai € [8 —10.47]m/s. This result indicates that, without
auxiliary control, the PLDI system is not stable under PLL control
during V,, € [8 — 12] m/s.

To verify the consistency of theoretical analysis and numerical
simulation results, an electromagnetic transient model is
established using MATLAB/SIMULINK. A step change from 8§ to
16 m/s in wind velocity happens at 2 s. To adequately demonstrate
the validity of the proposed method, the output of the PMSG after
step change is modelled as a persistent disturbance and meets the
four component-model [4] shown in Fig. 4. Fig. 5 shows the
dynamic response of respective state variables under the VSG
control strategy using simulation. For traditional PLL control, the
system is not stable after the applied disturbance shown in Fig. 6.
According to the simulation results, the VSG-based system is
stable under fluctuation. In contrast, the PLL -based system is
unable to reach a desired steady-state operating point. This finding
is in accord with the theoretical analysis.

35kV

v 4
- <)
o 690V/35kV

110kV
35kV/110kV
Bus 2 Load

Bus 1

VSG control parameter

droop coefficient, K,;

damping coefficient, D;

virtual inertia, J

200 12 4.8 kg/m?
PLL control parameter
Ki pLL Ky pLL —
100 20 —
1.05
sl \linimum
1.04 b |2 XiMUM
1.03
>
o
S 1.02
s
[
> 1.01
-
om
1 b
0.99
0.98 .
0 2 3

Fig. 3 Bounds of bus voltage

1900

Bus number
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Table 2 Matrices Q,,, F,,, 0O,

F,, calculation results in VSG-based RES

g, F;l:,
-6669.72 -9847.76 -963.15 -6291.35 -5804.75 10,763.65 595.71 -905.813
-9847.76 0.1482 -8541.41 489.67 -15,472.64 15,863.94 -0.008415 0.00149
-963.15 -8541.41 -332.32 -9018.70 -654.67 1554.08 -16,853.64 -8546.77
-6291.35 489.67 -9018.70 -31.22 10,421.93 10,133.28 92.798 19.599
-5804.75 -15,472.64 -654.67 10,421.93 13,738.41 9368.04 -8832.828 -1162.81
Q2v FZTV
-0.0404 -542.29 243 68.73 2.591 0.1145 -1785.48 -1197.34
-542.29 -0.0275 182.35 -6.5274 98.443 -1329.23 -0.01833 -0.00313
243 182.35 -94.187 -1351.0 -100.71 -7.0089 -6501.682 -5765.60
68.73 -6.5274 -1351.0 -0.7699 385.374 -198.177 -92.956 -42.947
2.591 98.45 -100.71 385.374 1492.26 -7.4802 -6065.434 -1300.08
Table 3 Matrices Q,,, F,, calculation results in PLL-based RES
o, F),
129.967 -0.00269 0.03313 24.698 2.1451 -2.1297 4.1169 4.863
-0.0027 -0.03382 -1.45%10~7 -0.0002 -1.63%10~5 0.1065 -0.20585 -0.2432
0.03313 -1.45%10~7 0.0305 -4.4817 0.1086 0.2602 -196.488 26.79
24.698 -0.0002 -4.4817 2.9324 86.449 -0.0003 0.02446 -0.04317
2.1451 -1.63x1075 0.1086 86.449 87.97 0.3199 27.8864 -50.5692
160 ‘W‘./ A 1 0 //\
»n / (N W‘/\ / N
£ 14.0), A W _ 09 \
> ‘wﬂ« \ ,,)4’ /\,, | | (=] /
§ 12.0 " 1\ T /W\ | | = 08 X//X/
| y ’J ¥ 4 4 " . \ ‘A\\‘ w‘\v‘\\ "
1 00 ¥ ‘f\wm | ‘j\v /”! W \v\ N ‘/ﬁ‘f‘ \\/ h»\ N}‘ " \M/M”\M/v’\“\\\ 0 7
T W W b
goL : 0.6
T] T2 T3 T4 T5 T] T2 T3 T4 TS
a b
Fig. 4 Output of PMSG at certain moments
(a) Wind velocity of PMSG, (b) Active power of PMSG
e r
13 207 B
525
%2.0 ; 12 gﬂl's’ |
215 § 1 S &
& @ a
3 1.0 210 ol |
05 09- B -
. . . . = 1 1.5 2 25 3 : L
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To highlight the benefits of this advanced model in stability
assessment and simulation speedup, two test cases including case 1
is introduced to compare with MC and SDE models. The additional
case, i.e. case 2, is based on IEEE 145-bus system, and the detailed
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system parameters can be found in [6]. The magnitudes of small
disturbance caused by wind power are set to 2.0 for these three test
systems. The simulation is carried out on a personal laptop (Intel
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Table 4 Performance comparison between the PLDI method and other methods

Case Stability analysis (v represent stable, otherwise x ) Simulation, time/s
MC SDE PLDI MC SDE PLDI
1 PLL based N v x 374.92 3.37 16.27
VSG based N y «/ 382.79 3.927 20.45
2 PLL based v v N 2146.95  179.84  583.66
VSG based N v d 2285.73 20591  695.83

Core CPU 17-5500U 2.40 GHz, 16 GB RAM). The results are
presented in Table 4.

According to Table 4, both MC and SDE methods yield
inconsistent results with the PLDI method in case 1. Meanwhile,
the previous simulation has proved the instability of the PLL-based
system in case 1. As those types of methods are based on constant
equilibrium-point assumption, they cannot accurately reflect all the
dynamic responses caused by RES. Besides, as shown in Table 4,
the proposed method has an advantage of reducing computational
burden in MC simulation. In contrast, though the SDE method has
a faster convergence rate, it requires engineering experiences to
quantify stochastic excitation, and this process may be prone to
introduce man-made error. The results of this case study illustrate
the effectiveness and correctness of the proposed algorithm in both
small-scale and medium-sized systems.

To be mentioned, typical power system models are often
composed of several hundreds of state variables. One disadvantage
of this proposed method is that an iterative BMI solver with high
dimension may be time consuming. Of course, the computational
cost of optimisation has to be further reduced to be applicable for
practical use. Therefore, the technique presented in [7] can be
utilised to generate the reduced-order models of real-sized power
systems. Hence, the previously mentioned model in this paper can
be successfully applied to a large-scale power system.

6 Conclusion

This paper has introduced differential inclusion theory to
investigate the static angle stability. Based on theoretical analysis
and simulation study, the major conclusions include the following:

(1) The authors delicately derive the linearised model of a
stochastic time-varying power system containing RES in
accordance with VSG-based and PLL-based strategies by utilising
the PLDI model, and the corresponding asymptotic stability
criterion is proposed.

(i) Compared to MC and SDE models, the proposed model can
accurately reflect the impact of the inner stochastic excitation and
time-varying operation states of system caused by RES.
Meanwhile, analysis efficiency is significantly improved.

Admittedly, concerning the proposed small-signal the state—
space model, a few aspects should be enriched, such as the design
and optimise robust controller by utilising asymptotic stability
criterion, and the process optimisation of BMI systems calculation.
These research tasks will be carried out in future.
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