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First law of black hole thermodynamics for the Kerr black hole
using foliation
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Abstract. This article follows a simpler approach (Siddiqui et al. 2011, Chin. Phys. Lett. 28, 050401) using
foliation’s concept with virtual displacement of hyper-surfaces near the event horizon to derive the first law of
black hole thermodynamics for the Kerr black hole spacetime.
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1. Introduction

A connection to thermodynamics and black hole begin
from an argument given by Penrose, revealing that we
can reverse the entropy increase by using black holes.
Penrose and Floyd (1971) constructed a mechanism for
extracting energy from the rotating black holes. At that
time when Penrose presented the argument, it seemed
unbelievable to extract energy from a black hole. How-
ever, sooner it is realized that the Kerr spacetime stored
energy in its ergo-sphere. Thus no energy in real goes
out from the black hole, and it appeared to lose the mass
on account of some supposed mass being stored as an
energy outside a black hole. Christodoulou and Ruffini
(1971) worked out that due to an irreducible mass in the
black hole, it had an extra energy of electromagnetic
nature stored in it. Thus ‘black hole thermodynam-
ics’ is an electrifying developing branch of black hole
physics. The laws of energy conservation provide solid
footing to the subject. Historically, it makes a clear
connection among heat conduction and chemical trans-
formation. It also explains conversion between heat and
mechanical energy. Later, Maxwell and others gave a
better comprehension related to macroscopic variables
as a driving force for microscopic mechanical variables.
Classically, thermodynamics requires equilibrium state
in a system. Hence, the laws laid an axiomatic base-
ment to thermodynamics and are acknowledged after a

vigilant investigation. These laws are a comprehensive
set of appropriate axioms, and from there the remain-
ing thermodynamics can be obtained. The laws by
Bekenstein (1972) and Smarr (1973) enlightened tem-
perature equality as the zeroth law, energy preservation
as the first law, entropy affinities as the second law
and state for an absence of temperature as the third
law of thermodynamics. The reinforcement of these
laws took place after the innovation of Hawking (1975)
radiation.

The fruitful relation among Einstein field equations
and the first law for black hole thermodynamics was first
explored by Jacobson (1995) and thereafter by Padman-
abhan (2002a, b) who made a formalism to understand
the thermodynamics of horizons in space-times. He
showed that we can write Einstein equations in the form
of the first law of thermodynamics

T dS = dE + PdV . (1)

After that there was a stream of work in that direc-
tion for different black hole geometries (Ashtekar 2002;
Padmanabhan 2002a, b; Paranjape et al. 2006; Akbar &
Cai 2006, 2007; Eling et al. 2006; Akbar 2007; Akbar
& Siddiqui 2007; Cai & Cao 2007; Ali 2014; Ali et al.
2015; Gangopadhyay & Dutta 2016; Kim et al. 2016;
Rudra et al. 2016; Heydarzade et al. 2017).
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1.1 Foliation and black hole spacetime

The word foliation has been originated from the Latin
word folia meaning leaf. The slicing idea was developed
from differential equation theory where the paths of the
solution’s space were considered to be the leaves of
the foliation in the seventeenth century. Poincare, in the
late nineteenth century, developed techniques to explore
global and qualitative features of dynamic systems in
cases where the explicit methods of solutions failed.
He discovered this during the research on geometry of
solution space having complex phenomena of dynami-
cal model. He strongly emphasized on the topological
methods and on the phenomena of qualitative nature
that led to foliation. To foliate an n-dimensional man-
ifold M , it is decomposed into sub manifolds, having
the same dimension p. The sub manifolds are consid-
ered to be the leaves of the foliation. The co-dimension
s of foliation is defined as s = n − p. A foliation
of co-dimension one is called a foliation by hypersur-
faces. The pioneers of foliation theory were Reeb (1952)
and Ehresmann (1961), the former who coined the term
‘foliation’. Some physically suitable solutions to Ein-
stein’s field equations are singular and represent black
hole space-time (Stephani et al. 2002). These space-
times have special importance due to the horizons in
their geometries. For the analysis of the dynamics of
these types of geometries, one have to foliate the space-
time by null or space-like hypersurfaces (York 1972;
Estabrook et al. 1973; Smarr & York 1978; Eardley
& Smarr 1978; Marsden & Tipler 1980; Iriondo et al.
1996; Beig & Nurchadha 1998; Guven & Murchadha
1999; Hussain et al. 2002; Qadir & Siddiqui 2002,
2006; Beig & Siddiqui 2007).

1.2 Foliation and first law of black hole
thermodynamics

Siddiqui et al. (2011) used the concept of foliation
and presented a simple and elegant way of obtaining
the first law of black hole thermodynamics for the
Schwarzschild and Reissner–Nordstrom space-times.
The foliations of these space-times were used in such a
way that the horizon corresponds to a particular leaf
(hypersurface) of foliation. Then the field equations
were worked out for the induced metric of the hyper-
surfaces and they showed that the field equations for
the induced metric at the horizon can be expressed
as the first law of black hole thermodynamics. An
important aspect of this approach is that one has to
essentially deal with (n − 1)-dimensional induced met-
ric for an n-dimensional spacetime, which significantly

simplifies the calculations to obtain such results. Thus
manipulation in lower dimensional gravity helps and
is used as an arena for investigating various problems
that arise in higher dimensions but are not solvable
there. Those that have been investigated include quan-
tum gravity in lower dimensions (Ashtekar et al. 1989)
and black hole evaporation in two dimensions (Mann
& Mclenagham 1994). Also, black hole solutions of
the Einstein field equations in lower dimension share
many important features with higher dimensional black
holes. Both have an event horizon. They occur as an
endpoint of gravitational collapse. Both show mass
inflation and have non-vanishing Hawking tempera-
ture and interesting thermodynamic features (Banados
et al. 1992; Akbar & Siddiqui 2007). The space-time
in lower dimensions provide a simple toy model for
a number of studies including super-string and super-
gravity theories. Another important aspect of lower
dimension space-time is that it significantly simplifies
the calculations in numerical relativity. The reason for
the simplicity of lower dimension lies in the fact that
in higher dimension, e.g., (3 + 1) spacetime, the cur-
vature tensor decomposes into a curvature scalar, R, a
Ricci tensor, Rμν and a remaining trace-free Weyl ten-
sor, Cσ

μνρ , whereas in lower dimension, e.g., (2 + 1)

dimension, the Weyl tensor vanishes identically and the
full curvature tensor is determined by the Ricci tensor
and its trace

Rμνρδ = gμρ Rνσ + gνσ Rμρ − gνρ Rμσ − gμσ Rνρ

−1

2
(gμρgνσ − gμσ gνρ)R. (2)

Thus the fundamental difference between lower- and
higher-dimensional gravities, i.e., (2 + 1)- and (3 + 1)-
dimensional space-times, originates in the fact that the
curvature tensor in the (2 + 1) dimension depends lin-
early on the Ricci tensor. Therefore, the structure of the
(2 + 1) dimensional gravity is simple enough to allow
a number of exact computations that are impractical in
the (3+1) dimension (Carlip 1995). In the next section,
we follow a formulation presented by Siddiqui et al.
(2011) for the Schwarzschild and Reissner–Nordstrom
black holes to derive the first law of thermodynamics of
a Kerr black hole space-time. Section 3 contains con-
clusion and discussion.

2. First law of black hole thermodynamics for the
Kerr space-time

Consider Einstein’s field equations for (3 + 1)-dimen-
sional space-time (in gravitational units G = 1)
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Gab = −8πTab (a, b = 0, 1, 2, 3), (3)

where Gab and Tab are Einstein’s tensor and stress–
energy tensor respectively.

The vaccum solution of the field equations for axis-
symmetric gravitational field due to mass M is called the
Kerr black hole given (in gravitational units G = c = 1)
by the metric

ds2 = −�2

ρ2 (dt − a sin2 θdφ)2 + ρ2

�2 dr2 + ρ2dθ2

+ sin2 θ

ρ2 (adt − (r2 + a2)dφ)2, (4)

where �2 = (r2 + a2) − 2Mr, ρ2 = r2 + a2 cos2 θ.

Consider r = constant = k. We get the induced
metric as

ds2 = −�2

ρ2 (dt − a sin2 θdφ)2 + ρ2dθ2

+ sin2 θ

ρ2 (adt − (k2 + a2)dφ)2, (5)

where �2 = (k2 +a2)−2Mk and ρ2 = k2 +a2 cos2 θ .
We discuss the thermodynamic properties of the Kerr

black hole at the event horizon. The Kerr space-time is
associated with temperature T , entropy S and angular
velocity 
 as

T = K

2π
= M(k2 − a2)

2π(k2 + a2)2 , (6)

S = π(k2 + a2), (7)


 = a

k2 + a2 . (8)

The mass M is given by

M = (k2 + a2)

2k

and hence

dM = k2 − a2

2k2 dk. (9)

Since

J = aM,

so

dJ = adM = a(k2 − a2)

2k2 dk (10)

and also,

T dS = M(k2 − a2)

2π(k2 + a2)2 2πk = Mk(k2 − a2)

(k2 + a2)2 dk

= − (a2 − k2)

2(k2 + a2)
dk (11)

and


dJ = a

k2 + a2 dJ = a2(k2 − a2)

2k2(k2 + a2)
dk. (12)

The (0, 0)-component of the field equation for the
induced metric (5) can be written in the form

2Mk − k2

(k2 + a2)2 + 4Mka2

(k2 + a2)3 − 12M2k2a2

(k2 + a2)4 = 0.

Multiplying by (k2+a2)2

2k2 , we get

2Mk − k2

2k2 + 4Mka2

2k2(k2 + a2)
− 12M2k2a2

2k2(k2 + a2)2 = 0.

By subtracting and adding Mk(k2−a2)

(k2+a2)2 , we get

2Mk − k2

2k2 + 4Mka2

2k2(k2 + a2)
− 12M2k2a2

2k2(k2 + a2)2

− Mk(k2 − a2)

(k2 + a2)2 + Mk(k2 − a2)

(k2 + a2)2 = 0, (13)

by considering a virtual displacement dk of the horizon
and then by multiplying it on both sides of the above
equation. Using (11), we get

2Mk − k2

2k2 dk + 4Mka2

2k2(k2 + a2)
dk − 12M2k2a2

2k2(k2 + a2)2 dk

−T dS + Mk(k2 − a2)

(k2 + a2)2 dk = 0. (14)

Then using 2Mk = k2 + a2 in the first and fifth term,
we get

(k2 + a2) − k2

2k2 dk + 4Mka2

2k2(k2 + a2)
dk

− 12M2k2a2

2k2(k2 + a2)2 dk − T dS + (k2 − a2)

2(k2 + a2)
dk = 0,

(15)

and

k2

2k2 dk + a2 − k2

2k2 dk + 4Mka2

2k2(k2 + a2)
dk

− 12M2k2a2

2k2(k2 + a2)2 dk − T dS + (k2 − a2)

2(k2 + a2)
dk = 0.

(16)
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Rearranging the terms, we get

(k2 − a2)

2(k2 + a2)
dk + a2 − k2

2k2 dk + k2

2k2 dk

+ 4Mka2

2k2(k2 + a2)
dk − 12M2k2a2

2k2(k2 + a2)2 dk − T dS = 0.

(17)

Simplifying the first and second terms, and using
2Mk = k2 + a2 in the fourth and fifth terms, we get

−a2(k2 − a2)

2k2(k2 + a2)
dk + k2

2k2 dk

+
(

2a2

2k2 − 3a2

2k2

)
dk − T dS = 0.

Again simplifying, we get

−a2(k2 − a2)

2k2(k2 + a2)
dk + k2

2k2 dk − a2

2k2 dk − T dS = 0.

Combining the second and third terms, we get

−a2(k2 − a2)

2k2(k2 + a2)
dk + k2 − a2

2k2 dk − T dS = 0.

Using Equations (9) and (12), we get

−
dJ + dM − T dS = 0.

Finally, we get

dM = T dS + 
dJ.

Hence the first law of thermodynamics holds at hori-
zons. Therefore, foliation of Kerr black hole behaves
like a thermal system satisfying the first law of thermo-
dynamics.

3. Conclusion and discussion

In this article, we follow an elegant and simple way
of obtaining the first law of black hole thermodynam-
ics, using the concept of foliation for the Kerr black hole
space-time. Instead of obtaining field equations of black
hole space-time and analysing thermal interpretation at
the horizon, here the main idea is to consider a foliation
so that the horizon corresponds to a particular hyper-
surface. Then we work out the field equations for the
induced metric of the hypersurfaces and obtain the ear-
lier thermal analysis with very simple manipulations. It
will allow us to work on higher dimensional gravities in
future, to study different aspects of spacetime without

massive calculations. It will be interesting to extend this
approach to the Kerr–Newmann black hole and also to
other black hole geometries.
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