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Abstract

The movement of microglia is regulated mainly by P1 and P2 purinergic receptors, which are activated by various nucleotides
and their metabolites. Recently, such purinergic signalling has been spotlighted because of potential roles in the pathophysiol-
ogies of neurodegenerative and neuropsychiatric disorders. To understand the characteristics of microglia in relation of P1 and P2
signalling, we investigated the ectoenzymes expressed in microglia. At first, we profiled the expression of all known ectoenzymes
in cultured microglia. We found that, like NTPDasel (ectonucleoside triphosphate diphosphohydrolase 1, CD39), NPP1
(ectonucleotide pyrophosphatase/phosphodiesterase 1, PC-1) is also highly expressed in primary cultured murine microglia.
Knockdown of NPP1 significantly reduced ATP hydrolysis and P; production in cultured microglia. In addition, the knockdown
of NPP1 enhanced basal nucleotide-stimulating responses of cultured microglia, such as phagocytosis and cell migration, and
these results were very similar to NTPDasel knockdown results. Moreover, inhibition of the adenosine receptors by caffeine
treatment reduced phagocytosis of NPP1 knock downed-cultured microglia. In conclusion, we suggest that these potent
ectoenzymes of primary cultured murine microglia, NPP1 together with CD73 (ecto-5'-nucleotidase) maintain the adenosine

levels for triggering nucleotide-stimulating responses.

Keywords Microglia - Ectoenzyme - NTPDasel - NPP1 - Migration - Phagocytosis

Introduction

Much of what is known about ATP primarily concerns its
function as an intracellular energy unit, and the mechanisms
by which this nucleotide and its various metabolites act as
signalling molecules remain largely unexplored [1]. An un-
derstanding of ATP and its metabolites in purinergic signalling
is important because it explains many aspects of the patho-
physiologies of neurodegenerative and neuropsychiatric dis-
orders [2-4].

ATP secreted from live cells or released from ruptured dead
cells is metabolised by four major groups of
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ectonucleotidases, including the ectonucleoside triphosphate
diphosphohydrolases (NTPDases), ecto-5'-nucleotidase
(CD73), ectonucleotide pyrophosphatase/phosphodiesterases
(NPPs) and alkaline phosphatases [5—8]. NTPDasel (also
known as CD39), is the most researched ectoenzyme, with
functions in microglia [5, 9, 10]. In the case of NPP1 (or
PC1), it is a known regulator of blood vessel calcification
and PP; concentration [11], and its mutation causes the “tiptoe
walking” phenotype in mice [11-13], although NPP1 expres-
sion in microglia was firstly reported by Zhang et al. [14], but
its function in microglia was not studied yet.

Microglia are resident macrophages and constitute a total of 5—
10% of cells in the central nervous system (CNS) [15—17]. Recent
evidence has shown that the microglia have diverse functions in
the development and plasticity of CNS [18-20]. Interestingly, ex-
tracellular ATP can act as a warning signalling molecule via
microglial activation [21]. The migration and phagocytic activity
of microglia are controlled by signalling through purinergic recep-
tors [17, 22-24], which are among the most abundant signalling
receptors in living organisms [6]. Extracellular ATP is degraded by
ectoenzymes to ADP, AMP and adenosine, which bind various
types of ATP and adenosine (P2 and P1, respectively) receptors to
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control a wide array of cellular responses [2, 21]. Ionotropic P2X
ATP receptors, of which there are seven (P2X;-P2X), were iden-
tified according to their mechanisms of action, pharmacology and
molecular cloning [2]. Metabotropic P2Y receptors (P2Y, P2Y,,
P2Y,, P2Y¢ and P2Y,,—P2Y4) are coupled to heteromeric G-
proteins to induce intracellular second-messenger signalling [6].
Similarly, the P1 receptor subtypes Al and A3 are G; coupled,
whereas A2a and A2b are G, coupled receptors [2, 25]. In microg-
lia, it has been suggested that ATP induces a “modal shift” of
activation, transitioning from P2 activation to P1 activation as
ATP is metabolised to adenosine in the extracellular space [5].

We accidentally discovered that cultured microglia have an
outstanding ATP degradation capacity using a Glu-titre sys-
tem, which measures ATP concentrations for analyses of cell
survival. We used this system to compare the capacities of
cultured astrocytes and neurons to metabolise ATP and found
that cultured microglia were superior in this regard. The pre-
vious reports that brain slices of NTPDasel-knockout mice
that show almost no inorganic phosphate (P;) production sug-
gested that NTPDasel works as a main ectoenzyme hydrolys-
ing ATP in microglia [10, 26]. However, we hypothesised that
another enzyme may contribute to cultured microglial ATP
degradation on the bases that (i) the profile of ectoenzymes
expression in cultured microglia is not known and (ii) there are
no small interfering RNA (siRNA) screening studies to con-
firm that NTPDasel is the only ectoenzyme in microglia.

In this study, we investigated the expression of all known
ectoenzymes in cultured microglia and found that, in addition
to NTPDasel, NPP1 is also highly expressed. Moreover,
knockdown of NPP1 significantly inhibited P; production af-
ter addition of ATP. Like NTPDasel, NPP1 is involved in the
adenosine-producing process together with CD73 in cultured
microglia in the resting state to maintain a threshold sufficient
for triggering a nucleotide-stimulating purinergic response.

Materials and methods
Cell culture

Female C57BL/6 mice (weight, 20-25 g, 14~17 day of gestation)
were purchased from Orient (Seongnam, South Korea). All exper-
imental protocols in this study were approved by the Institutional
Animal Research Ethics Committee at the Yonsei Medical Center
(TACUC Approval No. 2017-0041-1). Primary cultures of mi-
croglia were prepared from the brains of embryonic day 17 mice.
Briefly, cells were chemically and mechanically dissociated and
seeded in DMEM/F12 medium (11320-033; Gibco, Thermo
Fisher Scientific, Waltham, MA, USA) [27]. After 3—4 weeks,
microglia were isolated from primary mixed cells via mild
trypsinisation [28] and shaking [29]. The upper cell layer of mixed
cells was removed in one piece after incubation for 20 minat 37 °C
in a trypsin 0.25% solution (SH30042.01; Hyclone, GE
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Healthcare Bio-Sciences, Pittsburgh, PA, USA) diluted 1:4 in
DMEM/F12 medium containing 10% foetal bovine serum
(26140-079; Gibco) and 1% penicillin-streptomycin (15140-
122; Gibco). The remaining cultured microglia attached to the
surface of the T75 flask were isolated by shaking at 120 rpm
(SLOS-20; SeouLin Bioscience, Seoul, Korea) at 37 °C for 1 h.
The supernatants were strained through a 40-pum cell strainer
(352,340; BD Falcon, San Jose, CA, USA) and centrifuged at
4000 rpm at room temperature for 5 min. Glial cells were grown
to a high density in T75 flasks.

To isolate the astrocyte, the mixed cell culture mentioned
above was maintained in astrocyte-conditioned medium and
microglia were depleted by adding 50 mM L-leucine-methyl
ester (Sigma-Aldrich, St. Louis, MO, USA) for 4 h.

To culture cortical neurons, cells were prepared from embry-
onic day 14-15 mice (C57BL/6 strain) as described previously
[19] with some modifications. The cerebral cortex was dissociated
in an EDTA solution (Versene) and plated on laminin-coated
(10 pg/mL in serum-free DMEM) plates. Cells were then incu-
bated in DMEM supplemented with heat-inactivated horse serum
(5%), foetal bovine serum (5%), 20 mM glucose, 38 mM sodium
bicarbonate, and 2 mM L-glutamine. To inhibit the growth of non-
neuronal cells, 7.5 uM Ara-C (cytosine-D-arabinoside; Sigma-
Aldrich) was added to the medium 72 h after plating. Cortical
neuronal cells were used at 9 days after primary culture.

The purities of the cell cultures were verified by immuno-
staining with anti-glial fibrillary acidic protein (GFAP) (clone
GAS, MAB360; Millipore, Billerica, MA, USA), anti-Ibal
(019-19,741; Wako, Japan) and anti-microtubule-associated
protein 2 (MAP2) (AB5622; Millipore) antibodies for glia,
microglia and neurons, respectively. The numbers of cells
were counted with a haemocytometer (Paul Marienfeld,
Lauda-Kd&nigshofen, Germany).

RT-PCR and qPCR

Total RNA was extracted with TRIzol reagent (Invitrogen,
Thermo Fisher Scientific), and cDNA was synthesised using
an AccuScript high-fidelity first-strand cDNA synthesis kit
(200436; Agilent Technologies, Santa Clara, CA, USA). RT-
PCR was performed with 100 ng of cDNA using Solg 2x Tag
PCR Smart mix (STD02-M10h; SolGent Co., Daejeon,
Korea). The thermocycling conditions for RT-PCR were an
initial denaturation at 95 °C for 5 min followed by 31 cycles
of 95 °C for 30 s, 58 °C for 40 s and 72 °C for 40 s, and a final
extension at 72 °C for 7 min. The primer sets are provided in
Supplementary Table 1. RT-PCR results were quantified by
calculating the band intensity using Multi Gauge software
(Fuji Film).

The expressions of NTPDasel, NPP1 and NPP2 (negative
control) were analysed by quantitative real-time PCR (qPCR).
qPCR reactions were performed in triplicates using TOP real
gPCR 2x PreMix (SYBR green with high ROX, RT501;
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Enzynomics, Daejeon, Korea). Each qPCR reaction contained
25 ng of cDNA. The 18s rRNA primer set was used as a
loading control.

RNAi screening

Specific SMARTpool siRNAs were purchased from
Dharmacon (Lafayette, CO, USA) as listed in
Supplementary Table 2. For siRNA transfections, cultured
microglia were seeded into 48-well plates at 5 x 10* cells/
well and incubated overnight at 37 °C with a 5% CO, atmo-
sphere. Then, 25 nM of each siRNA was transfected with
Lipofectamine RNAi MAX transfection reagent (13778030;
Invitrogen) in Opti-MEM (31985-070; Gibco) overnight [19].
Seventy-two hours after transfection, P; production or ATP
hydrolysis activity was measured.

Measurement of ATP concentrations

To measure ATP and metabolite levels, we used a luciferase-
dependent ATP determination kit (A22066; Molecular Probes,
Thermo Fisher Scientific) and a CellTiter-Glo luminescent
cell viability assay (G7570; Promega, Madison, USA) accord-
ing to the manufacturers’ protocols. For these assays, the cul-
ture media for astrocytes, neurons and microglia (3.5 x 10°
cells/well in 24-well plates) were changed for 120, 60, 30,
15 or 0 min with media with or without 50, 300 or 1000 uM
ATP in regular solution (150 mM NaCl, 5 mM KCI, 1 mM
MgCl,, 10 mM glucose, 10 mM HEPES [pH 7.4, adjusted
with NaOH] and 2 mM CaCl,). At the endpoint of the assay,
500 pL of solution from each well was placed in 1.5-mL
microcentrifuge tubes and mixed with 50 uL of the assay
reagent. Next, 100 pL of these solutions was placed in a white
96-well plate for reading on an LB 960 microplate
luminometer Centro XS® (Berthold Technologies GmbH &
Co. KG, Germany).

P; measurement

The production of inorganic phosphate (P;) from siRNA-
transfected cells was detected using a malachite green
phosphatase assay kit (K-1500; Echelon Biosciences,
Inc., UT, USA). The culture medium of each well of
siRNA-transfected microglia was changed after 72 h with
200 pL of regular solution containing 50 uL of ATP stock
(final concentration; 50 uM ATP). After 10 min, the super-
natants were collected, and 20 uL was mixed with the
malachite green (in regular solution, up to 100 pL) accord-
ing to the manufacturer’s protocol. The mixtures were then
incubated in a transparent 96-well plate at room tempera-
ture for 10 min, and the absorbance at 610 nm was read
using a VersaMax spectrophotometer plate reader
(Molecular Devices, Sunnyvale, CA, USA). For the

assessment of ATP hydrolysis by enzymes released into
the medium, the cells were incubated for 10 min with
300 uM ATP, but the only supernatants were further incu-
bated for 50 min prior to mixing with malachite green. For
the quantitation of total protein from cells, 100 pL/well of
0.02% SDS was treated and then BCA assay was used.

Phagocytosis assay

Cultured microglia were seeded in 12-well plates at 3 x 10°
cells/well and transfected as described in “RNAi screening”
section. Transfected microglia were treated with FITC-
labelled E. coli opsonised beads (conjugated with Alexa
Fluor 488, E-13231; Molecular probes) for 2 h at 37 °C,
5% CO, incubator with or without 100 puM uridine 5'-di-
phosphate (UDP). After washing with phosphate-buffered
saline, cells were treated with 0.4% trypan blue (15250-
061; Gibco) at room temperature for 2 min to quench the
particle fluorescence. Cells were fixed with a 4% formalde-
hyde solution and nuclei were stained with 5 pg/mL DAPIL.
Cells were visualised on an inverted fluorescence micro-
scope (IX73-F22PH; Olympus), and fluorescence intensity
was quantified with MetaMorph software (Molecular
Devices). For flow cytometry, cells were treated with
FITC-labelled E. coli opsonised beads in the presence or
absence of UDP as described above and then treated with
0.05% trypsin-EDTA (25300-062; Gibco) and harvested by
centrifugation at 2000 rpm at 4 °C for 5 min. The cell pellets
were resuspended in 500 pL ice-cold serum-free medium
and analysed using a BD FACSVerse (BD Biosciences,
Franklin Lakes, NJ, USA) with FlowJo software (Treestar,
Ashland, OR, USA).

Migration assay

Analyses of cultured microglial migration were performed by
quantifying the numbers of cells migrating into a scratched
arca as previously described [24, 30]. All of scramble
siRNA control and siRNA-transfected microglia were
scratched with a scraper, and the scratched region of the plate
was imaged by light microscopy. After 7 h, the same regions
were imaged. Cell counting was performed using MetaMorph
software (Molecular Devices).

Statistical analyses

Data are presented as the means + standard errors of the
means. Statistical analyses were performed with Student’s ¢
tests or with one-way or two-way analyses of variance
(ANOVAs) followed by Tukey’s multiple comparisons
using the GraphPad Prism software package (version
5.0), as appropriate. A P value of <0.05 was considered
statistically significant.
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Results
Extracellular ATP hydrolysis by cultured microglia

To compare ATP hydrolysis between cultured microglia and
astrocytes, we measured ATP concentrations using a lucifer-
ase assay (Fig. la). Cultured microglia treated with 50 uM
ATP showed rapid ATP hydrolysis, with all ATP degraded
within 1 h. In contrast, astrocytes showed almost no ATP
hydrolysis until 2 h. Alternatively, P; production from ATP
hydrolysis was also compared in cultured microglia and astro-
cytes (Fig. 1b). Cells were treated with 50, 300 and 1000 uM
ATP, and time-dependent P; production was compared using a
malachite green colorimetric assay, which is more stable for
long-term measurements than the luciferase assay. Cultured
microglia treated with 50 uM ATP showed almost maximal
P; production within 20 min and maximal production at
60 min when treated with 300 uM ATP. Addition of
1000 uM ATP showed the similar P; production of 300 pM
ATP, which implied that 300 uM ATP is enough to see the
maximum function of the enzymes in our experiment condi-
tion. By contrast, astrocytes showed minimal P; production
upon treatment with any of the three ATP concentrations.
We then assessed ATP hydrolysis in activated cultured mi-
croglia treated with 100 ng/mL lipopolysaccharides (LPS).
Interestingly, LPS did not significantly enhance ATP hydroly-
sis by microglia (Fig. 1c). These results demonstrate that cul-
tured microglia rapidly and proficiently hydrolyse ATP com-
pared with that of cultured astrocytes. Furthermore, this high
level of activity is not enhanced by microglial activation.

High expression of NTPDase1 and NPP1 mRNA
in cultured microglia

To determine which enzyme is driving the potent extracellular
ATP hydrolysis by cultured microglia, we performed RT-PCR

for four groups of ectoenzymes in whole brain and cultured
microglial samples: group 1, NTPDasel-NTPDaseS8; group 2,
NPP1, NPP2 and NPP4-NPP6; group 3, ecto-5"-nucleotidase
(Nt5e/CD73); group 4, AKP3, AKP5 and AKP6 (Fig. 2a and
Supplementary Figs. 1 and 2). Notably, the expression levels
of NTPDasel and NPP1 transcripts were enriched in cultured
microglia samples nearly sixfold and ~ threefold, respectively,
compared with the expression levels in the whole brain sam-
ples. On the basis of the results of this RT-PCR analysis, we
considered expression levels of at least 50% of that of whole
brain as indicative of specific expression in cultured microg-
lia, namely, NTPDasel, NTPDase4, NTPDase5, NTPDase7,
NPP1, NPP4, CD73, AKP3, AKP5 and AKP6 (Fig. 2a, b).
We further confirmed by qPCR that cultured microglia has
high expression of NTPDasel and NPP1 by comparing their
expressions in astrocytes and neurons (Fig. 2c, d).

siRNA screening of cultured microglial ectoenzymes

Using the above-defined ectoenzyme expression profile in
cultured microglia, we next used siRNAs to knockdown each
ectoenzyme in turn to discover which is responsible for driv-
ing the ATP hydrolysis activity. siRNA for NPP2 was includ-
ed as a negative control, as it is not expressed in cultured
microglia. After transfections with each siRNA construct,
ATP hydrolysis activities were assayed via P; production
using a malachite green assay. However, cells expressing
siEntpd5 and siEnpp4 exhibited 40 and 75% cell death, re-
spectively, and so these were not included in subsequent anal-
yses. Cells with at least 70% survival 72 h after siRNA trans-
fection were treated with 50 uM ATP for 10 min, and P;
production was measured. Figure 3a shows the results from
three independent experiments. Most notably, siRNA-induced
knockdown of NTPDasel, NTPDase4 and NPP1 significantly
reduced P; production relative to the scramble siRNA control.
As NPP1, AKP3, AKP5 and AKP6 are enzymes released into
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Fig. 1 ATP hydrolysis by primary cultured murine microglia. a ATP
hydrolysis by microglia and astrocytes was measured by a luciferase
assay. In the assay, 50 uM ATP was initially added to the medium and
the time-dependent degradation of ATP was measured. b Time- and dose-
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dependent production of P; using a malachite green-based colorimetric
assay in microglia and astrocytes treated with 50, 300 and 1000 pM ATP.
¢ ATP was measured in resting microglia and in fully activated microglia
treated with 100 ng/mL LPS for 24 h
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Fig. 2 Expression of ectoenzymes in cultured microglia. a Relative
mRNA expression levels of various ectoenzymes in whole brain and in
resting and activated microglia were assessed by RT-PCR anaysis. Levels
are relative to those from whole brain samples (dotted line). The thin solid
line denotes the 50% expression cutoff used to define microglial expres-
sion. Group 1, D1-D8 for NTPDasel-NTPDaseS8; group 2, pl, p2 and

the extracellular space [6, 31], we also tested the ATP-
hydrolysing activities of supernatants of cells transfected with
the corresponding siRNAs. 300 uM ATP was added to each
cells for 10 min, and then the supernatants were collected and
incubated for further 50 min to analyse hydrolysis of ATP via
released enzymes. Interestingly, only the supernatants from
cells transfected with siNPP1 showed significantly reduced
P; production relative to the scramble siRNA control, while
siAKP5 and siCD73 showed more enhanced Pi production
(Fig. 3b). Additionally, we measured P; production in cells
receiving double transfections of siNTPDasel and siNPP1;
however, the cell survival was significantly reduced, suggest-
ing that activity of at least one of these is required to maintain
the viability of cells (Supplementary Fig. 3). Nevertheless, the
data suggest that NTPDasel and NPP1 are the primary

p4—6 for NPP1, NPP 2 and NPP 4-NPP 6, respectively; group 3, CD73
for ecto-5"-nucleotidase; group 4, AKP3, AKP5 and AKP6 for AKP 3,
AKPS5 and AKP6, respectively. The relative enrichment of NTPDasel (b)
and NPP1 (¢) was specifically from cultured microglia, as significantly
decreased levels were observed in cultured astrocytes and neurons in
qPCR analyses. *p <0.05; **p <0.01; ***p <0.001

contributors to cultured microglial ATP hydrolysis and that
NPP1 is the chief secreted enzyme from cultured microglia
for ATP hydrolysis.

siNPP1 increases basal phagocytosis and migration
of cultured microglia

The physiological roles of NPP1 were investigated by
phagocytosis and cell migration assays in cultured mi-
croglia transfect with siNPP1. To assess nucleotide-
stimulating purinergic responses, cultured microglia were
first treated with 100 uM UDP, which enhances phagocy-
tosis via P2Y signalling, and the phagocytosis of FITC-
labelled E. coli opsonised beads was assessed via flow
cytometry. UDP treatment time-dependently increased
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Fig. 3 siRNA screening for ectoenzymes with ATP hydrolysis activity in
cultured microglia. a Microglia were transfected with individual sSiRNAs
targeting ectoenzymes identified by RT-PCR, and the relative production
of P; was assessed after addition of 50 uM ATP for 10 min. b P;
production by secreted enzymes was assessed in superantants collected

the phagocytosis of fluorescent beads as evidenced by
increased fluorescence (Fig. 4a). Interestingly, siNPP1-
transfected microglia showed basal phagocytic activity
that was significantly higher than that of scramble
siRNA controls (Fig. 4b). The enhanced phagocytosis of
siNPP1-transfected microglia was also observed in phago-
cytosis analysis of cultured microglia on the coverslip,
and siNTPDasel-transfected microglia also showed the
similar result of siNPP1 (Supplementary Fig. 4). In a cell
migration assay, scramble siRNA-transfected microglia
showed increased migration into a scratched area upon
ATP stimulation. Similar to the observations regarding
phagocytosis, microglia transfected with siNPP1 showed
greater migration compared with scramble siRNA con-
trols, and this activity was inhibited by ATP addition
(Fig. 4c, d). Together, these data indicate that knockdown
of NPP1 enhances nucleotide-stimulating purinergic re-
sponses in resting microglia.

Inhibition of adenosine signalling reverses enhanced
phagocytosis in cultured microglia with NPP1
knockdown

To assess the role of adenosine signalling in siNPP1-
transfected microglia, cells were treated for 30 min with
50 uM caffeine and an inhibitor of adenosine receptors.
Caffeine treatment of scramble siRNA control cells signifi-
cantly increased the phagocytosis of FITC-labelled beads to
an extent similar to that with UDP treatment. By contrast,
phagocytic activity of siNPP1-transfected microglia, which
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and further incubated 50 min after addition of 300 pM ATP for 10 min.
Scramble siRNA and siNPP2 were used as negative controls, and siNPP2
were indicated by filled grey boxes. *p <0.05; **p<0.01. ns not
significant

show enhanced activity compared with controls and are not
affected by UDP, was significantly suppressed by caffeine
(Fig. 5a, b). The enhancement of phagocytosis of siNPP1-
transfected microglia at the resting state may result from re-
duced adenosine production due to the deficient extracellular
ATP hydrolysis.

Discussion

In this study, we found that the primary cultured murine mi-
croglia predominantly expressed NTPDasel and NPPI1. In
addition, we found that the inhibition of the NTPDasel or
NPP 1 enzyme activities by siRNA showed a high nucleotide
stimulating activity in the basal condition. This tendency was
especially prominent in the cell migration experiment. These
data indicated that the ectoenzymes supplied a certain level of
adenosine via hydrolysing the secreted small amount of ATP
from the cells. Our results confirmed previous findings by
Bulavina et al. [10] and Braun et al. [9] demonstrating the
importance of NTPDasel in microglial purinergic responses
and ATP hydrolysis, respectively, via experiments with
NTPDasel-knockout mice.

In addition to termination of nucleoside triphosphate
receptor activation and creation of agonist for nucleoside
diphosphate-sensitive receptors, producing adenosine is
also a critical role of microglial ectoenzymes. Adenosine
generated by NPP1 and NTPDasel seems to set the
threshold for triggering purinergic responses via activat-
ing P1 receptors in the resting state. Indeed, RT-PCR
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Fig.4 NPP1 knockdown increases phagocytosis and migration of resting
microglia. a Representative results from fluorescence-activated cell
sorting analysis of phagocytic uptake of FITC-labelled beads by microg-
lia with or without 100 uM UDP after 10, 20 and 40 min. b Quantification
of regions of fluorescence from fluorescence-activated cell sorting anal-
ysis summarised from geometric means and shown as fold difference
relative to the bead-only condition (Bead) of the scramble siRNA control.

analyses demonstrated that microglia express both Gj-
coupled (A1l and A3) and G,-coupled (A2a and A2b) P1
receptors, and their expression levels were not changed
after NTPDasel or NPP1 knockdown (Supplementary
Fig. 5). Thus, the amount of adenosine produced by
ectoenzymes rather than adenosine receptor expression is
the factor determining the cellular responses. In addition,
microglia also express P2 receptors which activate chemo-
taxis and phagocytosis [17, 25] and are activated by ATP
secreted from damaged or dying cells [22]. Further studies
manipulating the P1 and P2 receptors will uncover the
detailed molecular mechanisms of enhanced nucleotide-
stimulating purinergic responses after the knockdown of
NTPDasel or NPP1 in cultured microglia.

The pre-treatment of scramble siRNA transfected
microglial with caffeine increased phagocytic activity as

¢ Representative images showing the migration of microglia into a
scratched region (between white dashed lines) immediately (0 h) and
7 h after scratching in the absence (mock) or presence of 50 uM ATP. d
The numbers of control (scramble siRNA) or siNPP1-transfected microg-
lia that migrated were counted from three independent experiments.
#p < 0.05; **p < 0.01; ns not significant; *p <0.01 and *p <0.001 vs.
scramble siRNA mock

UDP treatment (Fig. 5). However, in the case of siNPP1-
transfected microglia, phagocytosis was dramatically at-
tenuated by caffeine which inhibits the adenosine recep-
tor. These results suggested the following: (1)
Phagocytosis is normally suppressed by adenosine, which
is continuously produced by NPP1; (2) however, when
phagocytosis is suppressed by adenosine in this way, in-
hibition of adenosine signalling by caffeine seems to rath-
er activate the phagocytosis activity; and (3) enhanced
phagocytosis following Enppl knockdown at the resting
state is due to the depletion of adenosine, which is no
longer increased by further UDP treatment. We therefore
hypothesise that producing adenosine by NPP1 might
maintains the threshold for triggering nucleotide-
stimulating purinergic responses. Very strangely, when
treated with adenosine inhibitor, phagocytosis was
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Fig. 5 Inhibition of adenosine a
receptors mimics the effects of
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dramatically reduced, which is difficult to explain at this
time. Previous studies have reported that ATP sensitivity
is increased by adenosine on the basis that ATP-induced
current was maintained by co-treatment with adenosine
[26, 32, 33]. These results also supported the notion that
ectoenzymes such as NPP 1 provide adenosine under nor-
mal conditions.

In our experiments, siRNA knockdown of NPP4 or
NTPDase5 caused severe cell death (approximately 70
or 40%, respectively), which disturbed the accurate mea-
surement of ATP hydrolysis. Thus, these enzymes might
not work as ectoenzymes in microglia but are critical fac-
tors for microglial survival. Further investigation of their
role in microglia is needed to understand the exact func-
tion of each enzyme. In addition, inhibition of both
NTPDasel and NPP1 caused cell death of 50% of microg-
lia (Supplementary Fig. 3). This might imply that the ac-
tivity of at least one enzyme is required to maintain cell
survival.

Recently, Matyash et al. reported that CD39/CD73 is
mainly in charge as an adenosine-producing enzyme in
microglia which controls the microglial process ramifica-
tion in mouse brain [34]. In accordance, we suggested that
in cultured microglia, NPP1 together with CD73 fulfils a
similar role in adenosine production. In addition, NPP1
and CD73 are secreted proteins [5, 6]; these enzymes
might remain stationary and exhibit functional activity
when microglia is migrating. Considering the high
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mobility of the cell, the secreted protein is thought to
confer properties related to migration.

Microglial ectoenzymes have not been studied extensively.
This may be due in part to the complexity of purinergic sig-
nalling and the difficulty with analysing intracellular and se-
creted ATP and its metabolites. Nonetheless, our findings
demonstrate the importance of ectoenzymes in microglia for
maintaining basal cell responsiveness by producing adeno-
sine. The production of adenosine by microglia may be to
minimise irritation to nearby cells during migration.
Considering the secreted characteristics of NPP1, it is possible
that NPP1 is able to sustain the production of adenosine in situ
by remaining in the pathway of microglia movement.
Accordingly, we demonstrated that microglia have an extraor-
dinarily powerful ATP hydrolysis via NTPDasel and NPP1,
which strongly support the modal shift phenomena in ATP-
stimulated microglia.
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