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The estimation of river run-off is a complex process, but it is of vital importance to the proper operation
of reservoirs, the design of hydraulic structures, flood control, drought management and the supply
of water and electricity. The high uncertainty in rainfall–run-off modelling and lack of data has made
the development of rainfall–run-off models with acceptable levels of accuracy and precision challenging.
Furthermore, the rainfall–run-off models commonly do not provide an explicit relationship between
run-off and other variables to be used for run-off-related investigations. To overcome the knowledge
and information shortage in rainfall–run-off modelling, data-driven models have been used instead of
conceptual models for the development of rainfall–run-off models. In this paper, three data-driven models,
the genetic algorithm-support vector regression (GA-SVR), genetic algorithm-artificial neural network
(GA-ANN) and the group method of data handling (GMDH) have been used to predict the monthly
run-off of the Gavehroud basin. Their performances are compared with a conceptual hydrological model
(HYMOD) whose parameters are calibrated using the GA. To this end, the monthly data on precipitation,
temperature and run-off at the Gavehroud basin over 49 yr (1960–2009) were analysed. Evaluation
of the results using performance evaluation indicators showed that the hybrid model of GA-SVR
provided better accuracy in predicting the nonlinear behaviour of flow data than the GA-ANN, GMDH
and HYMOD.
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1. Introduction

Stream flow prediction has been considered from
different perspectives for the integrated planning
and management of water resources and demands
at the watershed scale. Rainfall–run-off models are
used for this purpose. To use these models in a
watershed scale, their parameters should be cal-
ibrated to watershed characteristics. This results
in difficulties in model development, especially
when limited data is available. As an alternative
to conceptual rainfall–run-off models, data-driven
models can be used for rainfall–run-off modelling,

especially when there is limited data about
different parameters that affect run-off production
in the study area.

Data-driven methods are commonly based on
regression and neural network techniques. Neural
networks are used to model nonlinear hydrological
processes such as the prediction of dam reser-
voir inflow and rainfall–run-off and soil moisture
based on satellite data (Srivastava et al. 2013).
Multi-layer perceptron (MLP) methods are artifi-
cial neural networks (ANNs) which normally use
a back propagation algorithm for network training
(Rumelhart et al. 1985). If the MLP coefficients are
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determined based on smart optimisation methods
such as genetic algorithms (GAs), the prediction
results can improve (Sedki et al. 2009).

Even though ANNs offer good predictions for
simple problems, they are not efficient at solving
complex hydrological problems. The support vec-
tor machine (SVM) has been applied by numerous
researchers in various fields to overcome limita-
tions in the implementation of ANNs (Ishak et al.
2013; Sudheer et al. 2014). The SVM structure
was developed by Vapnik et al. (1997) to include
nonlinear cases. SVM models are based on proba-
bility training theory, a monitored learning method
used for classification and regression analysis. Var-
ious researchers have implemented SVM to pre-
dict hydrological processes such as rainfall–run-off
(Liong and Sivapragasam 2002; Khadam and Kalu-
arachchi 2004).

Some researchers have used SVM to determine
the radial function structure in networks and for
modelling the rainfall–run-off relationship (Choy
and Chan 2003). Yu et al. (2004) presented a
method for daily run-off prediction by combining
SVM with the turbulence theory. Bray and Han
(2004) used SVM to predict run-off, focusing on
the selection of the proper model and identification
of the model structure and the relevant parame-
ters. Dibike et al. (2001) demonstrated the vari-
ous features of SVM in hydrological predictions.
The classification of remote sensing data and the
model rainfall–run-off using this method provided a
better performance than the ANN method.

Lin et al. (2009) used a SVM to predict effec-
tive reservoir flow. The results showed that SVM
can be trained much faster than common ANNs.
SVM also provided more accurate predictions than
back propagationneural network methods. Asefa
et al. (2006) used the SVM in hydrological models
(HYMODs) to describe the relative uncertainty in
data calibration. Kisi and Cimen (2011) used SVM
and wave function to predict monthly stream flow
rates. Mean square error (MSE) evaluation crite-
ria indicated that the prediction results were more
accurate.

Noori et al. (2011) used the SVM to select
the inputs of SVM and ANN models to predict
monthly flows. They introduced new evaluation
criteria for smart prediction models based on the
results. The new criteria showed the superiority of
SVM for prediction. Sudheer et al. (2014) used a
particle swarm optimisation (PSO) algorithm to
modify the SVM modelling parameters. Su et al.
(2015) used the SVM-GA hybrid model to predict

the concentration of chlorophyll a in the Miyun
reservoir in northern China. The results showed
that the model could solve the nonlinear prob-
lem and complex system and it was appropriate
for the simulation and prediction of chlorophyll a
concentration in a reservoir. Cheng et al. (2015a)
combined the ANN and SVM methods to predict
the monthly flow in the Xinfengjiang reservoir in
China and showed that the hybrid model was more
efficient. By combining a quantum-behaved PSO
(QPSO) algorithm with ANN to determine net-
work weight, Cheng et al. (2015b) predicted the
daily run-off of the Hongjiadu reservoir in China.
The results showed that the hybrid QPSO-ANN
predicted the run-off better than only ANN.

Wang et al. (2015) considered various neural
network models for the daily run-off prediction.
The results demonstrated that the singular spect-
rum analysis-ANN (SSA-ANN) model performs
better than the nonlinear perturbation model
(NLPM) based on ANN (NLPM-ANN). The SSA-
ANN was evaluated using different inputs and
showed that SSA-ANN for precipitation and run-
off inputs and different time delays improved the
results compared with those obtained only with
the precipitation input. Ivakhnenko (1971) devel-
oped the extra-mental group method of data han-
dling (GMDH), a data-based method that can be
used for rainfall–run-off modelling, as a multivari-
ate analysis method for identifying and modelling
complex systems. GMDH can be used to model
complex systems without specialised initial knowl-
edge. The main idea of GMDH is to develop
an analytic function based on a progressive net-
work according to a binomial transfer function
(Muller and Ivakhnenko 1996). Chang and Hwang
(1999) and Samsudin et al. (2011) used GMDH
for river flow forecasting. Samsudin et al. (2011)
used GMDH and the least squares support vector
machine (LSSVM) for this purpose. Badyalina and
Shabri (2015) used GMDH on ungauged basins to
predict flood quantiles and showed that its perfor-
mance was much better than the traditional linear
regression model.

HYMOD is a nonlinear conceptual model with
applications in modelling rainfall–run-off and in
flood warning systems. HYMOD was introduced
and generalised using rainfall–run-off phase disper-
sion minimisation (Moore 1985; Boyle 2001).

The calibration of this model is an important
issue and different optimisation algorithms are
employed for this purpose. Singh and Bárdossy
(2015) used the simple and effective optimisation
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algorithm and sequential replacement of weak
parameters (SRWP) to estimate HYMOD param-
eters and compared the results with those of
other optimisation algorithms. Multi-objective par-
ticle swarm optimisation, non-dominated sorting
GAs, multi-objective shuffled complex evolution
metropolis algorithms and the multi-objective shuf-
fled complex differential evolution algorithm have
been used for the automatic calibration of HYMOD
(Guo et al. 2013).

In the current study, the hybrid GA-support
vector regression (GA-SVR), GMDH, the hybrid
GA-GA-ANN and HYMOD were applied to a
model Gavehroud river flow. This river flows in
a mountainous watershed located in western Iran
HYMOD is a conceptual rainfall–run-off model
that includes five parameters. In this study,
HYMOD was linked to GA to determine the opti-
mal value of the model parameters. For the devel-
opment of the data-driven methods (GA-SVR,
A-ANN and GMDH), run-offs from the previous
1–6 months are used in addition to the common
input variables of temperature and rainfall used
in HYMOD as the model input variables. Dur-
ing the development of each data-driven model,
the best set of its input variables and its opti-
mal structure are determined using optimisation
algorithms. Although the use of data-driven mod-
els for the prediction of a stream flow is not
an innovation, in the present study, kernel func-
tion parameters are used as a chromosome in
the GA models to optimise the SVR parameters
which were not considered in previous studies. The
GA-SVR model was used in a case study to com-
pare the applicability of this new approach. The
obtained results in this study through a compari-
son of different data-driven models with HYMOD
will help in selecting the appropriate simulation
approach.

2. Methodology

In this study, the GA-SVR, GA-ANN, GMDH and
HYMOD methods were implemented to predict
monthly flow rates in the Gavehroud watershed.
The predictors used in the data-driven models are
precipitation, temperature and river flow of up to
three previous months. The inputs of HYMOD
are precipitation and evapotranspiration based
on the conceptual model. About 587 series of
monthly data are used in the development of mod-
els. The representative temperature and rainfall
of the study area are calculated as the average

of the recorded temperature and rainfall in each
time step.

2.1 Genetic algorithm-support vector regression

SVM is a supervised learning method that has
different types and is used for classification and
regression purposes. SVR is a type of SVM used
to predict time series based on the regression
structure. The prediction ability of SVR is fully
dependent on its structure. Trial-and-error is gen-
erally used to determine the appropriate structure
including kernel function type and SVR parame-
ters, but this method is time-consuming and even
may not lead to the best structure. Thus, optimi-
sation methods such as GA were used to find the
optimal kernel function type and SVR parameters.
Figure 1 is a flowchart of the GA-SVR optimisation
(Wu et al. 2009) method that is used in the current
study for river flow prediction. A brief description
of SVR is provided in the next section and further
details can be found in the studies of Lin et al.
(2009) and Zhu et al. (2016).

Different combinations of the inputs (predictors)
are used in developing the GA-SVR model to
find the combination with the best performance in
river flow prediction. The most appropriate kernel
function is determined through the optimisation
process of GA-SVR. The kernel function param-
eters including the polynomial degree (d), the
polynomial constant (b), the variance of the RBF
function (σ) and C and ε are optimised through the
application of GA-SVR to produce the best results
for river flow prediction. The SVR model parame-
ters and the type of kernel function and parameters
were directly coded in the chromosome and the
best one is determined by minimising the fitness
function which is considered to be the MSE.

The parameters of GA, the crossover probability,
the mutation function and the mutation rate have
been considered to be 0.7, uniform and 0.04, respec-
tively. Of the data, 80% was used for training and
the rest was used for testing model performance. It
should be noted that these values are determined
based on initial investigations of model convergence
time and the ability of the algorithm to find the
global optimal solution.

2.1.1 SVR structure

SVR as a proper method for data classification and
regression is briefly introduced. For the given train-
ing sample: Data = {Xi, di|Xi ∈ Rn, di ∈ R}N

i=1,
where Xi is the n-dimensional input vector and di
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Figure 1. Flowchart of the GA-SVR optimisation process.

is the 1D desired output at the sample point i. The
aim of SVR is to find the regression function in the
form of equation (1) as

yi = ω φ (Xi) + b ∀ i = 1, 2, . . . , N, (1)

where φ (Xi) is the nonlinear mapping, ω and b are
weights and bias of the regression function, respec-
tively. The following penalty function is used in
SVR (Gao and Jiang 2011):

⎧⎨
⎩

|di − yi| ≤ ε, not allocating a penalty,

|di − yi| > ε, allocating a penalty,
(2)

where ε denotes the degree of tolerance to error. If
the absolute simulation difference from the obser-
vation is less than ε, it is considered to be a perfect
simulation. When the difference between the esti-
mated and observed values is less than ε, the loss
value will be zero. The parameter of this regression
function can be acquired by minimising the flowing
objective function as follows.

It can be demonstrated that Lε (yi, f (xi)) =
ξ+

i + ξ−i . To simplify the model, 1/2||ω||2 is
minimised as

min

[
1
2
||ω||2 + C

N∑
i=1

Lε(yi, di)

]
(3)

Lε (yi, di) = max(0, |di − yi| − ε), (4)

where parameter C is the positive regularisation
constant that determines the trade-off between
the generalisation ability and the accuracy in the
training data. The importance of the simulation
accuracy over its generalisation ability increases as
the value of C increases. A dual problem can then
be derived for the above model to minimise the fol-
lowing function using kernel function k (xi, xj) =
Φ(xi)Φ(xj):

minimise︸ ︷︷ ︸
α+

i ,α−
i

LD

=
1
2

N∑
i=1

N∑
j=1

(
α+

i − α−i
) (

α+
j − α−j

)

× k (xi, xj) + ε
N∑

i=1

(
α+

i − α−i
)

−
N∑

i=1

yi

(
α+

i − α−i
)

(5)
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To simplify the dual equation for quadratic
programming and to solve for f(x), α+ and α− are
determined and calculated in the following equa-
tions, and the nonlinear function becomes

ω =
N∑

i=1

(
α+

i − α−i
) × k (xi, x) , (6)

b =
1

|S|

[∑
s∈S

ys −
N∑

i=1

(
α+

i − α−i
) × k (xi, x)

−ε × Sign
(
α+

i − α−i
) ]

, (7)

where S = support vector =
{
i
∣∣0 < α+

i + α−i
< C

}
.

The following types of kernel function are
introduced:

(1) Polynomial kernel:

k (xi, xj) =
(
xT

i .xj + b
)d

. (8)

(2) Radial basis function (RBF) kernel function:

k (xi, xj) = exp

(
||xi − x2

j ||
2σ2

)
. (9)

(3) MLP kernel function:

k (xi, xj) = tanh
(
β0 + β1x

T
i .xj

)
. (10)

The parameter d denotes the degree of the poly-
nomial kernel function, b denotes the constant
polynomial kernel function and β0 and β1 are the
constant values.

2.2 GA-ANN model

A hybrid of ANN and GA, GA-ANN, is also used
for river flow prediction. In an MLP, the output
is expressed as Out = f (x|w, b) = f(wTx + b)
where the vectors w and b represent weight and
bias, respectively. Figure 2 shows the architectural
graph of an ANN. MLP minimises the error in sim-
ulation of the outputs. The error is obtained as in
equation (11) as the difference between the neural
network output and the actual value of the inputs:

Error = RObs
i − RSim

i , (11)

where RObs
i and RSim

i are the observed (actual)
and simulated run-offs calculated for the month i,

+

-

Error

Observed

Simulated

Input

Figure 2. Architectural graph of an ANN.

respectively. To minimise the error, the MSE objec-
tive function is used:

MSE =
1
N

N∑
i=1

(
RObs

i − RSim
i

)2
. (12)

The weight and bias vectors are determined at the
end of the calculation. In this study, GA is used to
train neural networks similar to Sedki et al. (2009).
In other words, w and b vectors are calculated using
GA to minimise the fitness function of equation
(12). Next, the fitness function is calculated using
a classic minimisation scheme (figure 3). One of
these methods is the Levenberg–Marquardt algo-
rithm (trainlm function) where gradient descent,
back propagation and adaptive learning techniques
are implemented. In this process, different struc-
tures of the ANN model are also evaluated. For
this purpose, the maximum number of hidden lay-
ers and the neurons in each hidden layer have been
considered to be 2 and 20, respectively, with regard
to the number of available data sets. Based on
the initial investigations, the transition function
of the hidden layers has been considered to be a
hyperbolic tangent sigmoid (tansig) function. Fur-
thermore, the crossover probability, the mutation
function and the mutation rate have been con-
sidered to be 0.9, uniform and 0.08, respectively.
About 80% of the data was used for training and
20%, for the testing of GA-ANN models.

2.3 GMDH model

The last data-driven model used for river flow pre-
diction is GMDH. The GMDH is a self-organising
unidirectional neural network which can be used to
model a complex nonlinear system. This network
has a multilayer structure with each layer playing
the role of a nonlinear function of inputs (Samsudin
et al. 2011). Each layer includes one or more units
plus inputs and output arcs. Figure 4 illustrates a
typical GMDH structure. Each unit corresponds to
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Figure 3. Flowchart of the optimisation process of the GA-ANN.

Input Layer

Layer 1

Layer 3 (Output Layer)

Layer 2

Figure 4. Evolved structure of the generalised GMDH-type
neural network model with four inputs and seven units in
three layers.

the Ivakhnenko polynomial form for a case having
inputs x and y as follows (Ivakhnenko 1971):

z = a + bx + cy + dx2 + exy + fy2 (13)

or

z = a + bx + cy + dxy. (14)

Basic GMDH learning is a self-organisation method
which includes the following steps:

(1) The learning data sample includes the depen-
dent variable y and independent variables x1,
x2, . . . , xm and is divided into a training and
a test set.

(2) The input data of the m input variable is fed
to the model and combined (m, 2) units from
every two variable pairs at the first layer are
generated.

(3) The weights of all units (parameters of each
unit) are determined using the training set.

(4) The MSE between the model output and the
data of each unit is determined using checking
data.

(5) The units are sorted based on MSE and bad
units are eliminated.

(6) The outputs of units in the first layer are
used as inputs for the next layer and a multi-
layer structure is developed by applying steps 2
and 5.

(7) If the MSE is greater than that of the previ-
ous layer, the process of adding new layers is
stopped and the minimum MSE unit in the
highest layer is considered to be the final model
output.

Steps 4 and 5 are the main and basic techniques
of GMDH algorithm development, respectively.
They are called regularity criteria and achieve the
best structure at step 7. About 80% of available
data series are used for GMDH model training
while the remaining data are used to test their
performance.

2.4 Hydrological model

To apply HYMOD, the watershed should be
divided into infinitely small non-interacting areas.
Each area (or point) has a specific storage capacity
(C) and can be filled by storing rainfall. Rainfall
and potential evapotranspiration during a specific
period of time is a feature of these points. If the
stored water at a point exceeds C, then the excess
water flows from that point in the form of surface
run-off.

The storage capacity is different for different
points in accordance with the spatial distribution
of watershed characteristics such as soil struc-
ture. The frequency distribution function for the
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different storage capacities within the watershed
can be expressed as

F (C) = 1 −
(

1 − C

Cmax

)bexp

, 0 < C < Cmax,

(15)

where F is the cumulative probability for storage
C to occur at an arbitrary point in the watershed.
Cmax (mm) is the maximum possible storage capac-
ity in the watershed. The exponent bexp (with a
value between 0.1 and 2) represents the spatial vari-
ability of soil moisture distribution that exists at
different points in the watershed.

HYMOD is a relatively simple model for excess
rain calculation and relates it to two series of
reservoirs (three quick release reservoirs and one
slow release reservoir). Figure 5 is a schematic of
HYMOD (Vrugt et al. 2008). The inputs are poten-
tial evapotranspiration, rainfall and stream flow
rate. The parameters and their allowable ranges
are given in table 1 (Vrugt et al. 2008). The opti-
mum values for these parameters were determined
using a GA. The crossover probability was 0.7, the
mutation function was uniform and mutation rate
was 0.05. In this model, 80% of the data was used
for training and 20% for testing.

2.5 Optimisation

In this study, the optimisation method is used
for the calibration of HYMOD as a conceptual
rainfall–run-off model and to determine the opti-
mal structure of the data-driven models used
for rainfall–run-off simulation. In using HYMOD
in combination with GA, the decision variables
are the five parameters of HYMOD to be cali-
brated. The objective function of the optimisation
model is to minimise the MSE of the model out-
puts and observed run-off values. The constraints
are the reasonable ranges for HYMOD parameter
variation.

The objective of the combined GA and ANN is
to find the optimal structure of the ANN model
that results in the minimum simulation error as
quantified by MSE. The decision variables are the
number of ANN model hidden layers and neurons.
In the SVR-GA model, GA is used to optimise
the SVR parameters for minimum simulation error
based on the MSE index. The decision variables
are the type of kernel function and parameters
d, ε, b, σ and C. In all applications of the opti-
misation tool (GA), optimisation stops when no
further improvement is observed after 10 successive
iterations.

Figure 5. Schematic of the HYMOD.

Table 1. Prior ranges and description of the HYMOD parameters.

Parameter Unit Description Minimum Maximum

Cmax mm Maximum storage capacity in watershed 1 500

bexp – Spatial variability of soil moisture distribution 0.1 2

α – Distribution factor between two reservoirs 0.1 0.99

RS day−1 Residence time of the slow release reservoir 0.001 0.1

Rq day−1 Residence time of the quick release reservoir 0.1 0.99
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2.5.1 Genetic algorithm

GA is an optimisation method developed based on
the principles of natural selection and genetics. GA
encodes each decision variable into a gene. All deci-
sion variables gather in a finite-length string called
a chromosome. The chromosomes are candidate
solutions to the optimisation problem. To improve
the solutions based on natural selection, an objec-
tive function is used to distinguish between good
and bad solutions. To provide the next generation,
the functions of crossover and mutation are used. In
crossover, new children are generated based on the
parent chromosomes. Mutation is used to provide
diversity to the new generation (Holland 1975).

3. Evaluation criteria

RSR (RMSE-observation standard deviation ratio),
NSE (Nash–Sutcliffe efficiency), EFF (error flood
efficiency), CC (correlation coefficient) and error
flood (EF) were selected to evaluate the perfor-
mance of the model and compare the results. The
EF index was used to evaluate rainfall–run-off per-
formance in the reproduction of extreme run-off
events with the probability of exceedance less than
30%. This index has a probability of exceedance
of 40 cm. Smaller values for this index denote bet-
ter performance of the model in the reproduction
of extreme run-off values. The other considered
performance evaluation indices consider the gen-
eral performance of the model, but the EF index
focuses on extreme values simulation. Because the
rainfall–run-off model performance when dealing
with maximum values is generally weak, this index
helps to better compare the models:

RSR =
RMSE

STDEVobs.

=

√∑n
i=1

(
Robs.

i − Rsim.
i

)2√∑n
i=1

(
Robs.

i − Robs.
mean

)2
, (16)

NSE = 1 −
∑n

i=1

(
Robs.

i − Rsim.
i

)2∑n
i=1

(
Robs.

i − Robs.
mean

)2 , (17)

EFF =

⎛
⎝

√∑n
i=1

(
Rsim.

i − Robs.
mean

)2√∑n
i=1

(
Robs.

i − Robs.
mean

)2

⎞
⎠

2

, (18)

CC =
∑n

i=1

[(
RSim.

i − RSim.
mean

) (
RObs.

i − Robs.
mean

)]√∑n
i=1

(
RSim.

i − RSim.
mean

)2
√∑N

i=1

(
RObs.

i − Robs.
mean

)2
, (19)

EF =
100
m

m∑
i=1

∣∣RObs.
i − RSim.

i

∣∣
RObs.

i

. (20)

In these equations, Rsim.
i and Robs.

i are the
simulated and observed flow rates in month i,
respectively, and RSim.

mean and Robs.
mean are the simu-

lated and observed mean data, respectively. The
value m represents the number of months with flow
rates that exceed 40 cm. In hydrological simulation
models, the considered assessment indices with the
following values (NSE > 0.5; RSR < 0.7) usually
produce satisfactory results (Moriasi et al. 2007).
The closer values of CC to one and smaller values
of EFF also indicate the better performance of the
model.

4. Case study

As a case study, the monthly flow data at the
outlet of the Gavehroud river watershed in west-
ern Iran was assessed. Gavehroud watershed is
located in the Zagros mountain range in southern
Kurdistan province and in northern Kermanshah
province. The maximum altitude of this watershed
is 1944 m. The regional climate is semi-dry (accord-
ing to Domarten’s classification) and the mean
annual rainfall is 457 mm. About 44% of the annual
precipitation occurs in winter. The mean tempera-
ture in the region is 14.2 ◦C. The mean flow in the
river is 7.9 cm. The watershed area of the study
region is 2081 km2. A 49-yr (587 months) observa-
tional data set recorded between 1960 and 2009 was
used. This data was collected by the Kermanshah
Regional Water Company. The data corresponding
to the first 39 yr (about 469 months; 80% of total
data) was used for calibration and the data col-
lected within the last 14 yr (168 months; 20% of
total data) for testing (see figure 6).

5. Results and discussion

In this section the results of application of
GA-SVR, GA-ANN and GMDH data-driven mod-
els as well as HYMOD conceptual model are
presented and then results are compared to con-
clude which case would perform better in the study
area.
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Figure 6. Geographical situation of the studied area and Station 1.

5.1 Data preparation

Before development of any data it is needed to
prepare that and check its accuracy. At first, all
considered data sets including rainfall, tempera-
ture and run-off are checked for any missing data.
The few detected missing data are filled using the
data of adjacent stations and considering their cor-
relation with the used data in this study. The
trend analysis of the run-off data using the Mann–
Kendal method shows a slight descending trend
even though it is not significant by a 90% confi-
dence level. As expected, the seasonal behaviour is
observed in the data on using the previous month’s
data for the prediction and it can be addressed
during the development of the models.

5.2 Genetic algorithm-support vector regression

Based on the performance evaluation of different
SVR models, the best GA-SVR model uses RBF
kernel function with the C, σ and ε parameters
equal to 7.13, 0.68 and 0.09, respectively. The out-
puts of the selected GA-SVR model are compared
with the observed values in figure 7(a) for all data.
Based on this figure, the model outputs well fol-
low the observed value behaviours and fluctuations.
The main weakness of model is in the simulation
of peak values (flows more than 25 m3/s which are
commonly underestimated). When the river flow
approaches zero, again the error in simulation is
increased due to overestimations.

The values for RSR, NSE, EFF and CC for the
training data were 0.24, 0.94, 0.87 and 0.97, respec-
tively. These indices for the testing data were 0.41,

0.83, 0.76 and 0.92, respectively (see figure 8 and
table 2). The model performance for the test data is
weaker than that of the training data which can be
due to overfitting of the training data. This is some-
how expected because of the model’s nature which
is based on regression. The considered performance
indices match well with the observed and simulated
values based on CC and NSE. EFF shows that
the simulated values have a more limited range in
comparison with the observed values. This matches
well with figure 7(a) and the model has underesti-
mated peak values and overestimated low values.
The model performance based on PSR shows that
the RMSE does not exceed observed data variance
and therefore is acceptable.

5.3 Genetic algorithm-artificial neural network

The selected ANN model structure includes two
hidden layers with 14 and 7 neurons in the first
and second hidden layers, respectively. Outputs of
the selected GA-ANN model are compared with
the observed values in figure 7(b) for all data.
Based on this figure, the model outputs well fol-
low the observed value behaviours, although more
fluctuations especially in low values are observed.
The model tends to underestimate the river flows
especially in the simulation of peak values.

RSR, NSE, EFF, CC and EF indices results for
selected GA-ANN models are presented in table 2
and figure 8. The values of the RSR, NSE, EFF
and CC indices for the training data were 0.43,
0.81, 0.71, and 0.9, respectively. These indices for
the test data were 0.43, 0.82, 0.75, and 0.9, respec-
tively. The model performance for the test and
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(a)

(b)

(c)

(d)

Figure 7. Observed and forecasted monthly streamflow for four models.
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Figure 8. Results of the run-off simulation models for all data.

Table 2. Results corresponding to the training and testing stages for GA-SVR, GA-ANN, GMDH and HYMOD.

Train Test

Model EF RSR NSC EFF CC RSR NSC EFF CC

GA-SVR 9.1 0.24 0.94 0.87 0.97 0.41 0.83 0.76 0.92

ANN-GA 23.1 0.43 0.81 0.71 0.90 0.43 0.82 0.75 0.9

GMDH 15 0.41 0.83 0.79 0.91 0.4 0.83 0.8 0.91

HYMOD 29.5 0.42 0.83 0.68 0.91 0.52 0.73 0.66 0.85

train data is close which shows that overfitting does
not happen in model development. The considered
performance indices show a good match of observed
and simulated values based on CC and NSE. EFF
shows that the variation range of simulated values
is about 75% of the observed values. This is due to
the model weakness in the development of peak val-
ues that highly impact the data range. The model
performance based on PSR shows that the RMSE
is less than 50% of the observed values variance
and therefore is acceptable.

5.4 Group method of data handling

The selected combination of input variables for the
GMDH model comprised the precipitation of the
previous month (Pt−1), temperature of the pre-
vious month (Tt−1), run-off in time step t − 12
(Rt−12), run-off in time step t−3 (Rt−3), run-off in
time step t − 2 (Rt−2) and the run-off in time step
t − 1 (Rt−1). The GMDH model has six input vec-
tors and when binary combinations of inputs are
considered, the first layer of the GMDH model
had 15 neurons. The results of the selected GMDH
model (for all data) are given in figure 7(c).
Similar to previous models, the peak values are
underestimated while the minimum flow values are

overestimated. It can be said that the flows of more
than 20 m3/s are underestimated and lesser than
20 m3/s are overestimated.

RSR, NSE, EFF, CC and EF indices results are
presented in table 2 and figure 8. The values of
RSR, NSE, EFF and CC indices for the training
data were 0.43, 0.83, 0.79 and 0.91, respectively,
and for the test data were 0.4, 0.83, 0.8 and 0.91,
respectively. The closeness of model performance in
train and test data shows its reliability to be used
for new data because there is no overfitting. The
considered performance indices show a good match
of observed and simulated values based on CC and
NSE. EFF shows that the variation range of sim-
ulated values is about 80% of the observed values.
This is due to the model weakness in developing
peak and minimum values that highly impact the
data range. The model performance based on PSR
shows that the RMSE is about 40% of the observed
values variance and therefore is acceptable.

5.5 Hydrological model

Table 3 shows the optimum values for HYMOD
parameters determined by GA. The simulated river
flows via observed values are given in figure 7(d). It
is observed that some run-off variations are not well
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Table 3. Values of the HYMOD optimum param-
eters comparing the implemented models.

Cmax bexp α Rs Rq

341 1.23 0.98 0.5 0.94

simulated by the model and the peak values are
considerably underestimated. The minimum flow
values are detected well by the model.

RSR, NSE, EFF, CC and EF indices results are
presented in table 2 and figure 8. The RSR, NSE,
EFF and CC indices for the training data were
0.42, 0.83, 0.68 and 0.91, respectively, and for the
test data were 0.52, 0.73, 0.66 and 0.85, respec-
tively. The simulation error is increased in the test
data which may be due to model overfitting to
training data or differences in statistics of the test
and train data. The considered performance indices
show a good match of observed and simulated val-
ues based on CC and NSE. EFF shows that the
variation range of simulated values is about 67% of
the observed values. This is due to the model weak-
ness in the development of peak values higher than
20 m3/s, which highly impacts the data range. The
model performance based on PSR shows that the
RMSE is about 47% of the observed value variance
and, therefore, is acceptable.

5.6 Model performance in the dry and wet periods

To further investigate the considered model per-
formance in river flow simulation, they were also
developed for dry and wet periods separately. The
dry period includes May–October and the remain-
ing months are considered wet. In figure 9, the
developed model results for the wet and dry periods
are compared. As can be seen, the model perfor-
mances in the wet period are completely different:
some models have overestimated observed values
such as GMDH while others have underestimated
values such as HYMOD. All models have a weaker
performance in comparison with the models devel-
oped with all data; however, based on the model
performance indices that are given in table 4, there
is no significant change in model performance. In
the wet period, GA-SVR has the best performance
and HYMOD shows the weakest results. The worse
performance of data-driven models, in this case,
can be due to less data used in the development of
data-driven models which is of high importance in
these kinds of model performance.

In the dry period, all models showed the same
behaviour in simulation and underestimated the
run-off peaks. Based on the PSR index, the GA-
SVR model provides the best performance while
the HYMOD is the second model. In other words,
the performance of HYMOD is much better during
the dry period in comparison with the wet period.
This can be due to a variety of parameters that
affect the run-off production and variability in the
wet period that are not addressed in the HYMOD
simulation structure, but in the dry periods, due
to less uncertainty, the performance is improved.
In the dry period, the worst performance is shown
by GA-ANN.

5.7 Model comparison

Based on the given values of model performance
indices in figures 8 and 9 and tables 2 and 4, it
can be concluded that the GA-SVR model has
performed better than the other models in all
cases. This is because of the maximum CC and
NSE and EFF which shows the model has the
ability to reproduce the variation range of the
observed values. Furthermore, this model has the
minimum RMSE. This model also better simulated
the peak values and the difference is less than the
others. The only concern is about the consider-
able difference between the training and test results
that questions the model reliability to be used for
new data. This can be due to the regression-based
nature of GA-SVR.

The GA-ANN and GMDH models have almost
the same performance based on considered indices
and the closeness of test and train results shows the
model’s trustable performance in dealing with new
data. This can be due to the nonlinear structure of
the relationships developed in these models as well
as their robustness which is a very important issue
in prediction models. A more detailed investigation
of these model results shows that even though the
performance indices show similar performance, the
differences of observed and simulated peak values
in the GA-ANN model are considerably more than
that in the GMDH model. Therefore, it seems that
the GMDH model is a better choice than the GA-
ANN model for river flow prediction especially for
flood warning systems.

A comparison of the rainfall and run-off data
shows that the observed peak run-off values are
not completely correlated with the rainfall data. In
some cases, the very huge run-off peaks are a result
of heavy rainfall, but in some cases, rainfall that is
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Figure 9. Observed and forecast monthly streamflow for the dry and wet periods in different models.
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Table 4. Results of run-off simulation models for wet and dry periods.

Wet period Dry period

Models EF RSR NSC CC EF RSR NSC CC

GA-SVR 9.1 0.31 0.91 0.95 – 0.50 0.75 0.91

GA-ANN 23.1 0.48 0.77 0.88 – 0.763 0.42 0.77

GMDH 15 0.41 0.83 0.91 – 1.27 −0.60 0.69

HYMOD 29.5 0.49 0.76 0.88 – 0.76 0.42 0.73

close to average has also resulted in a considerable
run-off peak. In contrast, heavy rainfall does not
produce a considerable run-off peak. The reason for
this behaviour in the system can be the neglected
snowmelt. As the study area is mountainous with
considerable snow, snow melt can highly affect the
run-off variability in the region.

6. Conclusion

In this study, three data-driven models of GA-
SVR, GA-ANN and GMDH, besides the concep-
tual rainfall–run-off model of HYMOD, have been
used for run-off simulation. In developing GA-SVR
and GA-ANN, due to the parameters considered
in SVR and the ANN structure that highly affect
their performance, GA is used to find the optimal
values of these parameters. It should also be noted
that the optimal value of the HYMOD parameters
are also determined using GA. The model per-
formances were investigated in the three cases by
using all data, wet data and dry data.

Different combinations of the considered predic-
tors of rainfall, temperature and run-off of the
previous months were checked and the results
showed that the use of run-off data with a time lag
beside the temperature and rainfall had a favor-
able impact on the results. In the case of using all
data, GA-SVR shows the best performance while
all models somehow show the same performance.
The main issue is that in all cases, peaks are under-
estimated, and therefore, these models are not good
choices for flood prediction. When models are used
to simulate wet and dry data, separately, the per-
formance of all models becomes worse. This can
show a high sensitivity of model performance to
data sets used for their development. The other
issue in the case of separate simulation of dry and
wet periods is that some peaks are underestimated
while others are overestimated. In both wet and
dry periods, the GA-SVR model shows the best
performance.

The developed models in this study can be
further improved by using the snow melt data as
the study area is mountainous and therefore the
snow melt can highly affect the run-off variations
especially during the dry period. Furthermore, inte-
grating different models can be helpful in providing
more reliable results.
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