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Abstract. This paper is devoted to the passivity analysis of an array model for coupled inertial delayed neural
networks (NNs) with impulses under different network structures, namely directed and undirected topologies.
Firstly, utilising the information of eigenvectors for the directed coupling matrix, a new Lyapunov functional is
constructed, by which, together with the aid of some inequality techniques and network characteristics, the two
sets of sufficient criteria are established to, respectively, guarantee the strictly input passivity and strictly output
passivity of the impulsive network with directed coupling. Secondly, benefited from the properties of the undirected
coupling matrix, some more concise conditions that are easier to be verified for the passivities of the undirected
coupled network accompanied by impulsive effects are proposed. Finally, two numerical examples are designed to
execute the verification of the derived theoretical results.
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1. Introduction

Over the past few decades, the artificial neural
networks (NNs) have attracted a high degree of research
owing to their extensive applications in pattern recog-
nition [1], signal processing [2], optimisation, motion
control [3] and so on. Customarily, they are described
by a variety of first-order differential equations, such as
Hopfield NNs, bidirectional associative memory (BAM)
NNs, Cohen–Grossberg NNs, Memristor NNs [4–7],
which, however, do not take into consideration the pos-
sible influence arising from the second derivatives of
the states, also called the inertia item or inductance in
physics. The inertial NNs mean the incorporation of the
inertial terms into neuron models, which are proposed
in [8] and subsequently are applicable to diverse areas.
Take biology issue as an example in [9,10], the induc-
tance of the semicircular canals for some animals is used
to design an equivalent circuit, by which the electrical
tuning or filtering behaviours of the membrane for a hair

cell can be successfully modelled. It has been found that
when the neurons are of an inertial nature, more compli-
cated dynamic characteristics could be depicted or richer
dynamic behaviours could be generated, such as bifur-
cation and chaos for a system [11,12]. So the inertial
NNs have been a highly promising research topic and
fruitful findings were reported, including synchronisa-
tion, bifurcation and stability analyses of inertial NNs
[13–18].

As is well known, the qualitative analysis of system
dynamics is an indispensable procedure for the actual
application and modelling of NNs. Among them, the
passivity, originating from the circuit theory [19], is
an important one. It employs the product of input and
output as the energy supply and represents an energy
attenuation characteristic of the system in that the energy
is only burned but not produced. Therefore, a pas-
sive system can sustain internal stability referring to
the energy-related considerations. From this point of
view, it is regarded that passivity can deduce broader
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and more general results on the dynamic analysis
of a system. Recently, it has been successfully used
to analyse the stability [20], synchronisation [21],
signal processing [22] and chaos control [23] of systems.
Meanwhile, the passive analysis of various models is
also extensively investigated [24–27]. In [24], by using
the Wirtinger-type inequality, the passivity analysis is
addressed for memristive NNs with consideration of
probabilistic time-varying delays. With the aid of the
delay fractioning technique and linear matrix inequality
approach, Sakthivel et al [25] derived several criteria to
guarantee the passivity of the fuzzy Cohen–Grossberg
BAM NNs with uncertainties. Wang et al [26] investi-
gated the passivity for coupled reaction–diffusion NNs
by designing appropriate adaptive coupling strategies.
Unfortunately, the passivity of the inertial NNs remains
an open problem.

Owing to the complexity of the real world, the
established models often have the framework that the
multiple NNs simultaneously operate accompanied by
the interaction with each other through nodes coupling,
which is named coupled NNs. Recently, the coupled
NNs have sparked much research interest from differ-
ent fields [15,16,26,28]. Remarkably, Hu et al [15] and
Dharani et al [16] considered the synchronisation con-
trol of coupled inertial NNs, in which the former is
for the pinning synchronisation, and the latter is for
the sampled-data synchronisation of that with reaction–
diffusion terms.

In the circuit implementation of the NNs, it sometimes
occurs that the instantaneous perturbations or sharp
changes in the voltages come out of electronic com-
ponents, namely the impulsive phenomena. Besides,
in dynamical investigation, the impulses can be added
to the system at certain instants for the effective or
quick achievement of the desired state behaviour [28–
30]. On the other hand, it inevitably brings the signal
delays suffering from the limitation of the finite speed
of an amplifier switch and signal propagation, whereas
these time-delay terms in systems may heavily affect the
original performance of the system, leading to instabil-
ity, bifurcation, oscillation and chaotic attractors [5,31].
Furthermore, generally, the form of delay is a function
that varies with time rather than the case of constant
delays. Hence, the impulses and time-varying delays
deserve consideration in view of the practical appli-
cations as well as theoretical analysis of the NNs. It
is worth mentioning that in [14], a designed impulsive
controller acted on the inertial NNs with time-varying
delays for the purpose of exponential stability of sys-
tems. However, until now, there has been no study on
the delayed inertial NNs both with impulsive and cou-
pling effects, which is exactly the model that we shall
consider.

Inspired by the aforementioned statements, this paper
is intended to explore the passivity of the coupled inertial
NNs with time-varying delays and impulsive effects.
From what we know, so far no attempt has been made on
this aspect. Compared with the existing relevant litera-
ture, the main contributions of our work can be attributed
as follows: (i) The features of the inertial terms, coupled
nodes and impulsive effects are included when address-
ing NNs, which is more general and consistent with
the reality. (ii) Both directed and undirected coupling
topologies are considered, respectively, in which differ-
ent Lyapunov functions are constructed based on the
graph theory. (iii) For the first time, the passivity of the
inertial NNs is investigated, which further exploits the
performance of the inertial NNs.

The framework of the paper is listed as follows.
Section 2 presents the model to be addressed and pro-
poses some preliminaries, including useful conceptions,
assumptions and lemmas. The main results of the pas-
sivity analyses are, respectively, reported in §3 and 4,
in which the former is for impulsive inertial NNs with
directed coupling, whereas the latter is for the same
network but with an undirected coupling topology. Sec-
tion 5 exhibits two numerical examples to validate the
correction of the theoretical conclusions. At last, con-
clusions are drawn in §6.

Notations: Throughout the paper, R and Rn denote
the space of real numbers, and the n-dimensional real
Euclidean space, respectively. For a ∈ R, Res(a) rep-
resents the real part of a. For two number sets M and
N ,C (M, N ) andC 1(M, N ) represent, respectively, the
set of all continuous maps and the set of all contin-
uous differentiable maps, both from M and N . For a
real symmetric matrix P ∈ Rn×n , P > 0 means P is
a positive-definite matrix. For a symmetric matrix G,
λmax(G) and λ2(G) denote, respectively, the maximum
eigenvalue and the second largest eigenvalue of P . In is
the n × n identity matrix, AT denotes the transpose of
matrix A and ⊗ is the Kronecker operation.

2. Problem description and preliminaries

In what follows, we shall show the model to be addressed
and display some necessary preliminaries. Let us begin
with two critical definitions.

DEFINITION 1 [32,33]
A system is said to be passive if there exists non-negative
function S : R+ → R+, called the storage function,
such that∫ tp

t0
yT(t)u(t) dt ≥ S(tp) − S(t0)
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for any tp, t0 ∈ R+ and tp ≥ t0, where u(t) and y(t) ∈
Rn are, respectively, the input and output of the system.

DEFINITION 2 [33]
A system is said to be strictly passive if there exists a
non-negative function S : R+ → R+, called the storage
function, such that∫ tp

t0
yT(t)u(t) dt ≥ S(tp)−S(t0)+ε1

∫ tp

t0
uT(t)u(t) dt

+ ε2

∫ tp

t0
yT(t)y(t) dt,

where ε1, ε2 ≥ 0 and ε1 + ε2 > 0, u(t), y(t) ∈ Rn

represent the same meanings as those in Definition 1.

Remark 1. In Definition 2, if ε1 > 0, the considered
system is specially said to be strictly input passive, and
if ε2 > 0 the system is said to be strictly output passive,
both of which are the objectives to be achieved in this
paper.

In this paper, we consider an array of linearly coupled
delayed inertial NNs with impulsive effects, in which
N identical nodes are incorporated. The model of this
network is described by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2xi (t)

dt2 = − D
dxi (t)

dt
− Cxi (t) + A f (xi (t))

+ B f (xi (t − τ(t))) + J

+ c
N∑
j=1

Gi j�

(
dx j (t)

dt
+ x j (t)

)
+ui (t),

t �= tk,

�xi (tk) = − δk · x(t−k ), �ẋi (tk) = −δk · ẋ(t−k ),

(1)

where xi (t) = (xi1(t), . . . , xin(t))T ∈ Rn corresponds
to the state vector of node i , i = 1, 2, . . . , N , k =
1, 2, . . ., N , is the number of nodes in the network, D =
diag{d1, d2, . . . , dn} and C = diag{c1, c2, . . . , cn} are
positive-definite matrices, A = (ai j )n×n, B = (bi j )n×n
denote, respectively, the connection weight matrices
without and with time delays, J ∈ Rn is the constant
external input; f (xi ) = ( f1(xi1), . . . , fn(xin))T is the
activation function, τ(t) is the time-varying delay with
0 ≤ τ(t) ≤ τ and τ̇ (t) ≤ ρ < 1, ui (t) ∈ Rn denotes the
control input. c > 0 represents the coupling strength,
� = diag{γ1, γ2, . . . , γn} is the individual coupling
between two nodes, in which γ j > 0, j = 1, . . . , n;
G = (Gi j )N×N represents the topological structure
of the network, and will be given different forms in
the sequel, referring to the directed and undirected
networks, respectively. For convenience, we always

assume that the configuration coupling matrixG in (1) is
irreducible.

Besides, in (1), tk are the impulsive instants
satisfying 0 < tk < tk+1 < · · · for k = 1, 2, . . ., and
limk→+∞ tk = +∞. δk is the impulsive gain at instant
tk . �x(tk) = x(tk)− x(t−k ) and �ẋ(tk) = ẋ(tk)− ẋ(t−k )

are the impulses at moments tk , in which x(tk) =
x(t+k ) = limt→t+k

x(t), x(t−k ) = limt→t−k
x(t) and ẋ(tk)

= ẋ(t+k ) = limt→t+k
ẋ(t), ẋ(t−k ) = limt→t−k

ẋ(t).
The initial conditions with network (1) are

xi (s) = ϕi (s), ẋi (s) = ψi (s), s ∈ [−τ, 0], (2)

where

ϕ(s) ∈ C 1([−τ, 0],Rn), ψ(s) ∈ C ([−τ, 0],Rn).

Our intention in this paper is to construct a reasonable
input-out system based on coupled NNs (1) and exploit
its passivity. For this purpose, the following three lem-
mas are indispensable, in which, the first plays a pivotal
role for the construction of both the input-out system
and the Lyapunov functional, and the other two are used
in the proof of the main results.

Lemma 1 [34]. Let G = (Gi j ) be an irreducible matrix
with non-negative off-diagonal elements, and satisfies
Gii = ∑N

j=1, j �=i Gi j . Then the following items hold:

(1) For any non-zero eigenvalues λ of the matrix G,
we have Res(λ) < 0.

(2) G has an eigenvalue 0withmultiplicity 1, and the
corresponding right eigenvector is (1, 1, . . . ,1)T.

(3) Suppose that ξ = (ξ1, ξ2, . . . , ξN )T ∈ RN ,∑N
i=1 ξi = 1 is the normalised left eigenvec-

tor of G with respect to eigenvalue 0, then we
have ξi > 0 for all i = 1, 2, . . . , N . Especially,
if G is symmetric, then it can be ξi = 1/N for
i = 1, 2, . . . , N .

Lemma 2 [35]. For any vectors x, y ∈ Rn , and
positive-definite matrix Q ∈ Rn×n , the following
inequality holds:

2xTy ≤ xTGx + yTG−1y.

Lemma 3 [28]. Let μ ∈ R, and P, Q, R, S be matrices
with appropriate dimensions. Then the Kronecker prod-
uct has the following properties:

(1) (P ⊗ Q)T = PT ⊗ QT.
(2) (μP) ⊗ Q = P ⊗ μQ.
(3) (P + Q) ⊗ R = P ⊗ R + Q ⊗ R.
(4) (P ⊗ Q)(R ⊗ S) = (PR) ⊗ (QS).

Moreover, the following assumptions are also
necessary to draw our conclusions.
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Assumption 1. For j = 1, 2, . . . , n, suppose the
activation functions f j (·) satisfy the Lipschitz condi-
tion, i.e. there exist constants l j > 0 such that

| f j (u) − f j (v)| ≤ l j |u − v|
hold for any u, v ∈ R, j = 1, 2, . . . , n. Denote L =
diag{l1, l2, . . . , ln} for convenience.

Assumption 2. For k = 1, 2, . . ., suppose that the
impulsive gains satisfy 0 < γk < 2.

3. Passivity of impulsive inertial NNs with coupling
via directed topology

In this section, the coupled network under directed
topology is considered, and the passivities of the target
network are analysed, including strictly input passivity
and strictly output passivity.

Let the coupling matrix G of (1) is defined as follows:
if there exists a connection from node j to node i , then
Gi j > 0, otherwise, Gi j = 0 (i �= j), and the diagonal
elements of the matrix G are defined by

Gii = −
N∑

j=1, j �=i

Gi j , i = 1, 2, . . . , N .

It means that the network is directed and the matrix
G may be asymmetric. Let ξ = (ξ1, ξ2, . . . , ξN )T is
the normalised left eigenvector of G corresponding to
eigenvalue 0, i.e. ξTG = 0 and

∑N
i=1 ξi = 1. Then it is

seen from Lemma 1 that ξi > 0 for i = 1, 2, . . . , N . Let
x̄(t) = ∑N

i=1 ξi xi (t) and define ei (t) = xi (t) − x̄(t),
the dynamics of the error system relating to (1) is given
by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2ei (t)

dt2 = −D
dei (t)

dt
− Cei (t)

+ A f̃ (ei (t)) + B f̃ (ei (t − τ(t)))

+ c
N∑
j=1

Gi j�

(
de j (t)

dt
+ e j (t)

)
+ ũi (t),

t �= tk,

�ei (tk) = −δkei (t
−
k ), �ėi (tk) = −δk ėi (t

−
k ),

(3)

where f̃ (ei (t)) = f (xi (t)) − ∑N
j=1 ξ j f (x j (t)) and

ũi (t) = ui (t) − ∑N
j=1 ξ j u j (t).

Next, introduce the variable transformation zi (t) =
(dei (t)/dt) + ei (t), then the second-order differential

system (3) can be degenerated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dei (t)

dt
= −ei (t) + zi (t),

dzi (t)

dt
= −C̃ei (t) − D̃zi (t)

+ A f̃ (ei (t)) + B f̃ (ei (t − τ(t)))

+ c
N∑
j=1

Gi j�z j (t) + ũi (t), t �= tk,

�ei (tk) = −δkei (t
−
k ), �zi (tk) = −δk zi (t

−
k ),

(4)

where C̃ = C + In − D and D̃ = D − In .
Further, letting e(t) = (eT

1 , eT
2 , . . . , eT

N )T and z(t) =
(zT

1 , zT
2 , . . . , zT

N )T and combining the operator of the
Kronecker product, system (4) can be written in the fol-
lowing compact form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de(t)

dt
= − e(t) + z(t),

dz(t)

dt
= − (IN ⊗ C̃)e(t) − (IN ⊗ D̃)z(t)

+ (IN ⊗ A)F̃(e(t)) + c(G ⊗ �)z(t)

+ (IN ⊗ B)F̃(e(t − τ(t))) + Ũ (t),

t �= tk,

�e(tk) = −δke(t
−
k ), �z(tk) = −δkz(t

−
k ),

(5)

where F̃(e(t)) = ( f̃ (e1(t)), f̃ (e2(t)), . . . , f̃ (eN (t)))T

and Ũ = (ũ1, ũ2, . . . , ũN )T.
For the analysis of the passivity for system (5), the

corresponding output vector y(t) is defined as

y(t) = (IN ⊗ F)e(t) + (IN ⊗ H)u(t), (6)

where F, H ∈ Rn×n are known real matrices.

Theorem 1. In the light of Assumptions 1 and 2,
let 
 = diag{ξ1, ξ2, . . . , ξN } and G̃ = 
G +
GT
. Then the coupled inertial system (3) accompa-
nied by the output system (6) is strictly input pas-
sive if there exist a scalar γ > 0 and a matrix
P = diag(P1, P2, . . . , PN ) > 0 (Pi ∈ Rn×n, i =
1, 2, . . . , N ) such that

H + HT − γ In > 0 (7)

and
(−2P + ϒ1 P − 
 ⊗ C̃
P − 
 ⊗ C̃ ϒ2

)
≤ 0, (8)
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where

ϒ1 = 2 − ρ

1 − ρ
(
 ⊗ L2)

+ 2IN ⊗ (
FT(H + HT − γ In)

−1F
)
,

ϒ2 = 
 ⊗ (−2D̃ + AAT + BBT) + c(G̃ ⊗ �)

+ 2
2 ⊗ (H + HT − γ In)
−1.

Proof. Choose the Lyapunov functional as

V (t) = V1(t) + V2(t), (9)

where

V1(t) = eT(t)Pe(t) + zT(t)(
 ⊗ In)z(t),

V2(t) = 1

1 − ρ

∫ t

t−τ(t)
eT(s)(
 ⊗ L2)e(s) ds.

Firstly, taking the time derivative of V1(t) along the tra-
jectory of (5) leads to

V̇1(t) = 2eT(t)Pė(t) + 2zT(t)(
 ⊗ In)ż(t)

= − 2eT(t)Pe(t) + 2eT(t)Pz(t)

− 2zT(t)(
 ⊗ C̃)e(t)

− 2zT(t)(
 ⊗ D̃)z(t) + 2zT(t)(
 ⊗ A)F̃(e(t))

+ 2zT(t)(
 ⊗ B)F̃(e(t − τ(t)))

+ 2czT(t)(
G ⊗ �)z(t) + 2zT(t)(
 ⊗ In)Ũ (t).

(10)

Since
∑N

i=1 ξi = 1 and combining with the definitions
of ei (t) and x̄(t), we can derive that

N∑
i=1

ξi ei (t) =
N∑
i=1

ξi (xi (t) − x̄(t))

=
N∑
i=1

ξi

⎛
⎝xi (t) −

N∑
j=1

ξ j x j (t)

⎞
⎠ = 0 (11)

and

N∑
i=1

ξi ėi (t) =
N∑
i=1

ξi

⎛
⎝ẋi (t) −

N∑
j=1

ξ j ẋ j (t)

⎞
⎠ = 0. (12)

The combination of (11) and (12) yields

N∑
i=1

ξi zi (t) =
N∑
i=1

ξi (ėi (t) + ei (t)) = 0. (13)

Then, by means of (13), Lemma 2 and Assumption 1, it
is found that

2zT(t)(
 ⊗ A)F̃(e(t))

= 2
N∑
i=1

zT
i (t)ξi A

⎛
⎝ f (xi (t)) −

N∑
j=1

ξ j f (x j (t))

⎞
⎠

= 2
N∑
i=1

ξi z
T
i (t)A( f (xi (t)) − f (x̄(t)))

+ 2

(
N∑
i=1

ξi z
T
i (t)

)
A

⎛
⎝ f (x̄(t)) −

N∑
j=1

ξ j f (x j (t)

⎞
⎠

= 2
N∑
i=1

ξi z
T
i (t)A( f (xi (t)) − f (x̄(t)))

≤
N∑
i=1

ξi z
T
i (t)AATzi (t) +

N∑
i=1

ξi ( f (xi (t))

− f (x̄(t)))T( f (xi (t)) − f (x̄(t)))

≤ zT(t)(
 ⊗ AAT)z(t) + eT(t)(
 ⊗ L2)e(t). (14)

Take the same schemes, we can obtain

2zT(t)(
 ⊗ B)F̃(e(t − τ(t))) ≤ zT(t)(
 ⊗ BBT)z(t)

+ eT(t − τ(t))(
 ⊗ L2)e(t − τ(t)). (15)

Besides, it is also acquired from (13) that

2zT(t)(
 ⊗ In)Ũ (t)

= 2
N∑
i=1

zT
i (t)ξi

⎛
⎝ui (t) −

N∑
j=1

ξ j u j (t)

⎞
⎠

= 2
N∑
i=1

zT
i (t)ξi ui (t)

= 2zT(t)(
 ⊗ In)u(t). (16)

Applying (14)–(16) to (10) deduces

V̇1(t) ≤ eT(t){−2P + 
 ⊗ L2}e(t)
+2eT(t){P − 
 ⊗ C̃}z(t)
+zT(t){
 ⊗ (−2D̃ + AAT + BBT)

+ c(G̃ ⊗ �)}z(t)
+eT(t − τ(t))(
 ⊗ L2)e(t − τ(t))

+2zT(t)(
 ⊗ In)u(t). (17)

Next, by taking the time derivative of V2(t) along the
trajectory (3), and noting that 0 < τ̇(t) < ρ, we have
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V̇2(t) = 1

1 − ρ
eT(t)(
 ⊗ L2)e(t)

− (1 − τ̇ (t))

1 − ρ
eT(t− τ(t))(
 ⊗ L2)e(t− τ(t))

<
1

1 − ρ
eT(t)(
 ⊗ L2)e(t)

− eT(t − τ(t))(
 ⊗ L2)e(t − τ(t)). (18)

In light of (9), (17) and (18), the estimate of V̇ (t) can
be expressed by

V̇ (t) ≤ eT(t)

{
−2P + 2 − ρ

1 − ρ

 ⊗ L2

}
e(t)

+ 2eT(t){P − 
 ⊗ C̃}z(t)
+ zT(t){
 ⊗ (−2D̃ + AAT + BBT)

+ c(G̃ ⊗ �)}z(t) + 2zT(t)(
 ⊗ In)u(t). (19)

Owing to the output (6), we have

V̇ (t) − 2yT(t)u(t) + γ uT(t)u(t)

≤ eT(t)

{
−2P + 2 − ρ

1 − ρ

 ⊗ L2

}
e(t)

+ 2zT(t)(
 ⊗ In)u(t)

+ zT(t){
 ⊗ (−2D̃ + AAT + BBT)

+ c(G̃ ⊗ �)}z(t)
+ 2eT(t){P−
 ⊗ C̃}z(t)−2eT(t)(IN ⊗ FT)u(t)

− uT(t)(IN ⊗ (HT + H − γ HTH))u(t). (20)

By Lemma 2 and condition (7), we have

2zT(t)(
 ⊗ In)u(t) ≤ 2zT(t)(
 ⊗ In)

× (IN ⊗ (H + HT − γ In)
−1)(
 ⊗ In)z(t)

+ 1

2
uT(t)(IN ⊗ (H + HT − γ In))u(t)

= 2zT(t)(
2 ⊗ (H + HT − γ In)
−1)z(t)

+ 1

2
uT(t)(IN ⊗ (H + HT − γ In))u(t) (21)

and

− 2eT(t)(IN ⊗ FT)u(t)

≤ 2eT(t)(IN ⊗ FT)(IN ⊗ (H + HT − γ In)
−1)

× (IN ⊗ F)e(t) + 1

2
uT(t)

× (IN ⊗ (H + HT − γ In))u(t)

= 2eT(t)(IN ⊗ (
FT(H + HT − γ In)

−1F
)
)e(t)

+ 1

2
uT(t)(IN ⊗ (H + HT − γ In))u(t). (22)

Letting ζ(t) = (eT(t), zT(t))T and then substituting
(21) and (22) into (20) we derive

V̇ (t) − 2yT(t)u(t) + γ uT(t)u(t)

≤ eT(t)

{
− 2P + 2 − ρ

1 − ρ
(
 ⊗ L2)

+ 2IN ⊗ (
FT(H + HT − γ In)

−1F
)}

e(t)

+ zT(t)

{

 ⊗ (−2D̃ + AAT + BBT)

+ c(G̃ ⊗ �) + 2
2 ⊗ (H + HT − γ In)
−1

}
z(t)

+ 2eT(t){P − 
 ⊗ C̃}z(t)
= ζT(t)

(−2P + ϒ1 P − 
 ⊗ C̃
P − 
 ⊗ C̃ ϒ2

)

× ζ(t) < 0, t �= tk . (23)

For any tp > t0, there exists m ∈ Z+ such that tm ≤
tp < tm+1. By integrating (23) with respect to t from t0
to tp, one can obtain

∫ tp

t0
[V̇ (t) − 2yT(t)u(t) + γ uT(t)u(t)]dt

=
m∑
l=1

∫ tl

tl−1

V̇ (t) dt +
∫ tp

tm
V̇ (t)) dt

−
∫ tp

t0
[2yT(t)u(t) − γ uT(t)u(t)]dt

=
m∑
l=1

[V(t−l ) − V(tl−1)] + V(tp) − V(tm)

−
∫ tp

t0
[2yT(t)u(t) − γ uT(t)u(t)]dt

=
m∑
l=1

[V(t−l ) − V(tl)] + V(tp) − V(t0)

−
∫ tp

t0
[2yT(t)u(t) − γ uT(t)u(t)]dt. (24)

On the other hand, it is known from Assumption 2 that
|1 − δk | < 1 for all k ∈ Z+, and noticing the impulses
formed as (5), one yields

V(tk) = eT(tk)Pe(tk) + zT(tk)(
 ⊗ In)z(tk)
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+ 1

1 − ρ

∫ tk

tk−τ(tk)
eT(s)(
 ⊗ L2)e(s)ds

= (1 − δk)
2eT(t−k )Pe(t−k )

+ (1 − δk)
2zT(t−k )(
 ⊗ In)·

z(t−k ) + 1

1 − ρ

∫ tk−

t−k −τ(t−k )

eT(s)(
 ⊗ L2)e(s)ds

≤ eT(t−k )Pe(t−k ) + zT(t−k )(
 ⊗ In)z(t
−
k )

+ 1

1 − ρ

∫ tk−

t−k −τ(t−k )

eT(s)(
 ⊗ L2)e(s)ds

≤ V (t−k ). (25)

The combination of (23)–(25) yields

V(tp) − V(t0) −
∫ tp

t0
[2yT(t)u(t) − γ uT(t)u(t)]dt

≤
∫ tp

t0
[V̇(t) − 2yT(t)u(t) + γ uT(t)u(t)]dt ≤ 0,

which implies that∫ tp

t0
yT(t)u(t) dt ≥ V(tp)

2
− V(t0)

2

+γ

2

∫ tp

t0
uT(t)u(t) dt.

Thus, from Definition 2, the strictly input passivity of
system (1) is proved. 
�
Theorem 2. On the basis of the same assumptions and
notations as Theorem 1, the coupled inertial system (3)
accompanied by output system (6) is strictly output pas-
sive if there exist a scalar γ > 0 and a matrix P > 0
such that

H + HT − γHTH > 0 (26)

and( −2P + �1 P − 
 ⊗ C̃
P − 
 ⊗ C̃ �2

)
≤ 0, (27)

where

�1 = 2 − ρ

1 − ρ
(
 ⊗ L2) + IN ⊗ (γ FTF)

+ 2IN ⊗ (FT(γ H − In)(H + HT − γ HTH)−1

× (γ HT − In)F),

�2 = 
 ⊗ (−2D̃ + AAT + BBT) + c(G̃ ⊗ �)

+ 2
2 ⊗ (H + HT − γ HTH)−1.

Proof. Employ the same Lyapunov functional V (t) as
in Theorem 1, and the time derivative of V (t) along
system (5) is estimated as in (19), then by means of the
output (6), we can derive

V̇ (t) − 2yT(t)u(t) + γ yT(t)y(t)

≤ eT(t)

{
− 2P+ 2 − ρ

1 − ρ

 ⊗ L2+γ IN ⊗ (FTF)

}
e(t)

+ zT(t){
 ⊗ (−2D̃ + AAT + BBT)

+ c(G̃ ⊗ �)}z(t) + 2zT(t)(
 ⊗ In)u(t)

+ 2eT(t){IN ⊗ FT(γ H − In)}u(t)

+ 2eT(t){P − 
 ⊗ C̃}z(t)
− uT(t)(IN ⊗ (HT + H − γ HTH))u(t). (28)

By Lemma 2 and condition (26), we have

2eT(t){IN ⊗ (FT(γ H − In))}u(t)

≤ 2eT(t)(IN ⊗ (FT(γ H − In)))

× (IN ⊗ H + HT − γ HTH)−1)

× (IN ⊗ ((γ HT − In)F))e(t)

+ 1

2
uT(t)(IN ⊗ (H + HT − γ HTH))u(t)

= 2eT(t){IN ⊗ (FT(γ H− In)(H + HT

− γHTH)−1(γ HT − In)F)}e(t)
+ 1

2
uT(t)(IN ⊗ (H + HT − γ HTH))u(t). (29)

Let ζ(t) = (eT(t), zT(t))T, and substitute (29) and (21)
into (28), then for t �= tk it is obtained that

V̇ (t) − 2yT(t)u(t) + γ yT(t)y(t)

≤ eT(t)

{
− 2P + 2 − ρ

1 − ρ
(
 ⊗ L2) + IN ⊗ (γ FTF)

+ 2IN ⊗ (FT(γ H − In)(H + HT − γ HTH)−1

× (γ HT − In)F)

}
e(t)

+ 2eT(t){P − 
 ⊗ C̃}z(t)
+ zT(t){
 ⊗ (−2D̃ + AAT + BBT)

+ c(G̃ ⊗ �)+2
2 ⊗ (H + HT−γ HTH)−1}z(t)
= ζT(t)

( −2P + �1 P − 
 ⊗ C̃
P − 
 ⊗ C̃ �2

)
ζ(t) < 0.

(30)

Then, based on (30) and applying that similar techniques
as in (24) and (25), we can conclude that

V (tp) − V (t0) −
∫ tp

t0
[2yT(t)u(t) − γ yT(t)y(t)]dt

≤
∫ tp

t0
[V̇ (t) − 2yT(t)u(t) + γ yT(t)y(t)]dt ≤ 0,
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which implies that
∫ tp

t0
yT(t)u(t) dt ≥ V (tp)

2
− V (t0)

2

+γ

2

∫ tp

t0
yT(t)y(t) dt.

So the strictly output passivity of system (1) in the sense
of Definition 2 holds. 
�

Remark 2. According to the formation of G̃ and �, we
can read that G̃ ⊗ � ≤ 0 from Lemma 1, which implies
that ϒ2 ≤ 0 and �2 ≤ 0 are possible. By Schur comple-
ment lemma [36], conditions (8) and (27) are reasonable.

Remark 3. The delayed inertial NNs are considered in
[37,38], where the former addresses the stabilisation
problem via periodically intermittent control, and the
latter studies the synchronisation by means of the matrix
measure technique. The coupled inertial NNs with time-
varying delays are considered in [15] to realise the
synchronisation based on the pinning control strategy,
while the delayed inertial NN is stabilised in [14] under
the designed impulsive control. Howbeit, none of them
concerns delayed inertial NNs both with coupling and
impulse effects simultaneously. Moreover, none of them
involved the passivity analysis of the inertial NNs, which
is exactly our aim in this paper. From Theorems 1 and 2,
the information of the coupled matrix, which implies the
structure of the network topology, is utilised not only to
construct the Lyapunov functional but also to establish
the sufficient conditions of passivity. Thus, our model is
more universal, the method is different and the passivity
results fill the gap in the field of the inertial NNs.

4. Passivity of impulsive inertial NNs with coupling
via undirected topology

In this section, we consider the case when network (1)
is undirected, which implies the coupling matrix G is
symmetric and is defined as for i �= j , if there exists
a connection between node i and node j , then Gi j =
G ji > 0, otherwise, Gi j = G ji = 0, and the diagonal
elements of matrix G are defined by

Gii = −
N∑

j=1, j �=i

Gi j , i = 1, 2, . . . , N .

Let x̄(t) = (1/N )
∑N

i=1 xi (t), define e(t) = (x1(t)−
x̄(t), . . . , xN (t) − x̄(t))T and z(t) = (de(t)/dt) + e(t),
we can derive the error system of (1) with an undirected
topology by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de(t)

dt
= −e(t) + z(t),

dz(t)

dt
= −(IN ⊗ C̃)e(t) − (IN ⊗ D̃)z(t)

+ (IN ⊗ A)F̃(e(t)) + c(G ⊗ �)z(t)

+ (IN ⊗ B)F̃(e(t − τ(t))) + Ũ (t), t �= tk,

�e(tk) = −δke(t
−
k ), �z(tk) = −δkz(t

−
k ),

(31)

where the coefficient matrices are the same as (5).
Besides, F̃(e(t)) = ( f̃ (e1(t)), . . . , f̃ (eN (t)))T with
f̃ (ei (t)) = f (ei (t)) − (1/N )

∑N
j=1 f (e j (t)), and Ũ =

(ũ1, . . . , ũN )T with ũi = ui (t) − (1/N )
∑N

j=1 u j (t).

Theorem 3. Suppose that Assumptions 1 and 2 hold,
then the undirected system (31) and the corresponding
output system (6) are strictly input passive, if there exist
a scalar γ > 0 and a positive-definitematrix Q ∈ Rn×n

such that

H + HT − γ In > 0 (32)

and(−2Q + �1 Q − C̃
Q − C̃ �2

)
≤ 0, (33)

where

�1 = 2 − ρ

1 − ρ
L2 + 2FT(H + HT − γ In)

−1F,

�2 = −2D̃ + AAT + BBT + 2cλ2(G)�

+ 2(H + HT − γ In)
−1.

Proof. Construct the Lyapunov functional as follows:

V (t) = eT(t)(IN ⊗ Q)e(t) + zT(t)z(t)

+ 1

1 − ρ

∫ t

t−τ(t)
eT(s)(IN ⊗ L2)e(s) ds.

Similar to the derivation of (17), the time derivative of
V (t) along the trajectory of (31) is estimated by

V̇ (t) ≤ eT(t)

{
IN ⊗

(
−2Q + 2 − ρ

1 − ρ
L2

)}
e(t)

+ 2eT(t){IN ⊗ (Q − C̃)}z(t)
+ zT(t){IN ⊗ (−2D̃ + AAT + BBT)}z(t)
+ 2czT(t)(G ⊗ �)z(t) + 2zT(t)u(t). (34)

Now we focus on the estimation of the coupling term
in (34). Since G is an irreducible symmetric matrix
with non-negative off-diagonal elements, zero row
sum and zero column sum, then by Lemma 1, we have
0 = λ1(G) > λ2(G) > · · · > λN (G). Furthermore,
there exists a unitary matrix V = (v1, . . . , vN ) ∈
RN×N such that G = V�V T, where � = diag



Pramana – J. Phys. (2018) 91:69 Page 9 of 14 69

{0, λ2(G), . . . , λN (G)} and v1 = (1/
√
N , 1/

√
N . . . ,

1/
√
N )T.

Let η(t) = (V T ⊗ In)z(t) and since
∑N

i=1 zi (t) = 0,
one has

η1(t) = (vT
1 ⊗ In)z(t) =

N∑
i=1

1√
N
zi (t) = 0. (35)

Noting that λ1(G) = 0, together with Lemma 3 and
(35), we have

2czT(t)
(
G ⊗ �

)
z(t) = 2czT(t)((V�V T) ⊗ �)z(t)

= 2cηT(t)(� ⊗ �)η(t)

≤ 2cλ2(G)

N∑
i=2

ηT
i (t)�ηi (t)

= 2cλ2(G)

N∑
i=1

ηT
i (t)�ηi (t)

= 2cλ2(G)zT(t)(IN ⊗ �)z(t).
(36)

Applying (36) to (34) we get

V̇ (t) ≤ eT(t)

{
IN ⊗

(
−2Q + 2 − ρ

1 − ρ
L2

)}
e(t)

+ zT(t){IN ⊗ (−2D̃ + AAT

+ BBT + 2cλ2(G)�)}z(t)
+ 2eT(t){IN ⊗ (Q − C̃)}z(t) + 2zT(t)u(t).

(37)

Note the estimation (37) and the expression of output
(6), as well as employ (21) and (22) by replacing 
 with
IN , we can obtain

V̇ (t) − 2yT(t)u(t) + γ uT(t)u(t)

≤ eT(t)

{
IN ⊗

(
−2Q + 2 − ρ

1 − ρ
L2 + 2FT

×(H + HT − γ In)
−1F

)}
e(t)

+ 2eT(t){IN ⊗ (Q − C̃)}z(t)
+ zT(t){IN ⊗ (−2D̃ + AAT + BBT + 2cλ2(G)�

+ 2(H + HT − γ In)
−1}z(t)

= ζT(t)

{
IN ⊗

(−2Q + �1 Q − C̃
Q − C̃ �2

)}

× ζ(t) < 0, t �= tk,

where ζ(t) = (eT(t), zT(t))T.
Then the rest of the proof matches mutatis mutandis

to a similar proof in Theorem 1 and thus is omitted. So
the strictly input passivity of (31) under the output (6)
is obtained. 
�

Utilising (36), and making some slight alterations for
the proof of Theorem 2, we can easily gain the strictly
output passivity under the case of undirected topology,
which is exhibited below without proof.

Theorem 4. Under Assumptions 1 and 2, then the
undirected system (31) is strictly output passive from
input u(t) to output vector described by (6), if there exist
a scalar γ > 0 and a positive-definitematrix Q ∈ Rn×n

such that
H + HT − γ HTH > 0 (38)

and(−2Q + �1 Q − C̃
Q − C̃ �2

)
≤ 0, (39)

where

�1 = 2 − ρ

1 − ρ
L2 + γ FTF + 2FT(γ H − In)

× (H + HT − γ HTH)−1(γ HT − In)F,

�2 = −2D̃ + AAT + BBT + 2cλ2(G)�

+ 2(H + HT − γ HTH)−1.

Remark 4. It is seen that under directed topology, the
dimension of the matrix needed to be chosen in Lya-
punov functional, namely P , reaches Nn × Nn, and
the dimension under LMI condition (8) or (27) is
2Nn × 2Nn. Comparatively, the corresponding magni-
tudes in the undirected network are, respectively, n × n
and 2n × 2n, which greatly reduced the computations.
So, Theorems 3 and 4 have the unique advantages dur-
ing the modelling of the coupled inertial network on
account of the passivity.

5. Numerical examples

Example 1. Consider a complex dynamical network
including five identical nodes with impulsive effects,
in which each node is a 3D NN modelled by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2xi (t)

dt2 = −D
dxi (t)

dt
− Cxi (t) + A f (xi (t))

+ B f (xi (t − τ(t))) + J + ui (t)

+ c
N∑
j=1

Gi j�

(
dx j (t)

dt
+ x j (t)

)
,

t �= tk,

�xi (tk) = −δk x(t
−
k ), �ẋi (tk) = −δk ẋ(t

−
k ),

(40)
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Figure 1. The states of systems (40) with non-zero control
input.
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Figure 2. Norm evolutions of error vectors for (40) with
non-zero control input.

where i = 1, 2, . . . , 5, k = 1, 2, . . ., xi = (xi1, xi2,
xi3)T, f (xi ) = 0.2(tanh(xi1), tanh(xi2), tanh(xi3))T,
and the time delay is given by τ(t) = 0.3−0.3e−t . So it
is easy to obtain that li = 0.2, τ = 0.3 and ρ = 0.3. Set-
ting D = diag{2.8, 3.0, 3.2}, C = diag{2.8, 3.2, 3.5},
J = (0, 0)T and c = 0.6, the other coefficient matrices
and coupling matrix are given as

A =
⎛
⎝ 0.35 0.75 −0.4

−0.55 0.6 0.65
0.5 0.3 0.7

⎞
⎠ ,

B =
⎛
⎝ 0.5 −0.7 0.7

−0.6 −0.35 0.4
−0.55 0.75 0.45

⎞
⎠ ,

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

t

y i
(t
)

y1(t)
y2(t)
y3(t)
y4(t)
y5(t)

Figure 3. Norm evolutions of output vectors for (40) with
non-zero control input.
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Figure 4. The states of systems (40) without control input.

G =

⎛
⎜⎜⎜⎝

−3.5 1.5 0 1 1
2 −3 1 0 0
0 1 −2 1 0
1 0 1 −4 2
1 0 0 1 −2

⎞
⎟⎟⎟⎠ .

Moreover, we take δk = 0.2, tk − tk−1 = 0.1.
By employing the MATLAB function NULL, it is
derived that the normalised left eigenvector of G is ξ =
(0.2222, 0.1667, 0.1667, 0.1667, 0.2778)T. Choose

F =
⎛
⎝0.3 0 0

0 0.6 0
0 0 0.4

⎞
⎠ , H =

⎛
⎝0.75 0 0

0 0.8 0
0 0 0.7

⎞
⎠.
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Figure 5. Norm evolutions of error vectors for (40) without
control input.
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Figure 6. Norm evolutions of output vectors for (40) without
control input.

Employing the YALMIP Toolbox of MATLAB, the
feasible solution P1 = diag{0.3612, 0.4985, 0.4249},
P2 = P3 = P4 = diag{0.3438, 0.4780, 0.4027} and
P5 = diag{0.3786, 0.5191, 0.4471} can be acquired by
referring to (8) with γ = 0.4. Thus, in light of Theo-
rem 1, system (3) derived by (40) is strictly input passive
under output system (6).

In addition, by the same technique, we can also
find the matrices P1 = diag{0.3565, 0.4473, 0.4016},
P2 = P3 = P4 = diag{0.3391, 0.4267, 0.3794}
and P5 = diag{0.3739, 0.4679, 0.4238} asserting (27)

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

t

x i
1(
t)

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

t

x i
2(
t)

Figure 7. The states of systems (41) with non-zero control
input.
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Figure 8. Norm evolutions of error vectors for (41) with
non-zero control input.

accompanied by γ = 0.7. From Theorem 2, system
(3) derived from (40) is strictly output passive with the
output (6).

Pick the control input as ui1 = ie−0.1t , ui2 =
1.5ie−0.1t andui3 = 2ie−0.1t , i = 1, 2, . . . , 5, the initial
values are randomly selected within interval [−1.2, 1.2],
the results of numerical simulations are described in
figures 1–3, Meanwhile, the simulation results without
control input are also exhibited in figures 4–6 for com-
parison. It can be directly observed that the numerical
conclusions affirm Theorems 1 and 2.

Example 2. Consider a coupled network with undirected
topology described by
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Figure 9. Norm evolutions of output vectors for (41) with
non-zero control input.
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Figure 10. Norm evolutions of output vectors for (41) with-
out control input.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2xi (t)

dt2 = −D
dxi (t)

dt
− Cxi (t) + A f (xi (t))

+ B f (xi (t − τ(t))) + J

+ c
N∑
j=1

Gi j�

(
dx j (t)

dt
+ x j (t)

)
+ ui (t),

�xi (tk) = −δk · x(t−k ), �ẋi (tk) = −δk · ẋ(t−k ),

(41)

where i = 1, 2, . . . , 6, k = 1, 2, . . . , xi = (xi1, xi2)T,
f (xi ) = 0.5(sin(xi1), cos(xi2))T, and the time delay is
given by τ(t) = 0.3et/(1 + et ). So it is easy to obtain
that li = 0.5, τ = 0.3 and ρ = 0.0750. Setting D =
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Figure 11. Norm evolutions of error vectors for (41) without
control input.
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Figure 12. Norm evolutions of output vectors for (41) with-
out control input.

diag{0.4, 0.3}, C = diag{1.2, 0.4}, J = (0, 0)T and
c = 0.6, the other coefficient matrices and coupling
matrix are given as

A =
(

0.2 −0.6
0.5 0.3

)
, B =

(
0.3 −0.3

−0.2 −0.5

)
,

G =

⎛
⎜⎜⎜⎜⎜⎝

−3.5 1.5 0 1 0 1
1.5 −2 0.5 0 0 0
0 0.5 −3 1 1.5 0
1 0 1 −4 1 1
0 0 1.5 1 −4 1.5
1 0 0 1 1.5 −3.5

⎞
⎟⎟⎟⎟⎟⎠

.
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Moreover, we take δk = 0.2, tk − tk−1 = 0.2. Choose

F =
(

0.3 0
0 0.6

)
, H =

(
0.7 0
0 0.8

)
.

By means of MATLAB, the feasible solutions of (32)
and (33) can be obtained by γ = 0.4 and Q =
diag{2.0683, 1.9883}. According to Theorem 3, sys-
tem (3) derived from (41) is strictly input passive under
output (6).

On the other hand, we can also find that when γ = 0.7
and Q = diag{2.0911, 1.9670}, inequalities (38) and
(39) hold. So, based on Theorem 4, this coupled network
is strictly output passive.

For the numerical simulations, take the control input
as those in Example 1, select the initial values ran-
domly within interval [−1.8, 1.8], then the simulation
results for this undirected network are depicted in
figures 7–9. The simulation results without control input
are also depicted in figures 10–12 for comparison. From
these simulations, it is read that the conclusions of The-
orems 3 and 4 hold.

6. Conclusions

This paper has formulated and investigated the passivity
issues for impulsive inertial delayed NNs with different
coupled structures, namely directed topology and undi-
rected topology. The normalised left eigenvector for a
coupling matrix with respect to the eigenvalue 0 plays
a critical role for the achievement of passivities for the
directed network, while the combination of the proper-
ties for the undirected coupled matrix and the characters
of the network helps to derive some more condensed
conditions for the passivities of an undirected coupled
network. Two numerical examples have been furnished
to validate the correctness and merits of the theoretical
findings.
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