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How depth estimation in light fields can
benefit from super-resolution?

Mandan Zhao1, Gaochang Wu2, Yebin Liu3 and Xiangyang Hao1

Abstract
With the development of consumer light field cameras, the light field imaging has become an extensively used method for
capturing the three-dimensional appearance of a scene. The depth estimation often requires a dense sampled light field in the
angular domain or a high resolution in the spatial domain. However, there is an inherent trade-off between the angular and
spatial resolutions of the light field. Recently, some studies for super-resolving the trade-off light field have been introduced.
Rather than the conventional approaches that optimize the depth maps, these approaches focus on maximizing the quality of
the super-resolved light field. In this article, we investigate how the depth estimation can benefit from these super-resolution
methods. Specifically, we compare the qualities of the estimated depth using (a) the original sparse sampled light fields and the
reconstructed dense sampled light fields, and (b) the original low-resolution light fields and the high-resolution light fields.
Experiment results evaluate the enhanced depth maps using different super-resolution approaches.
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Introduction

Light field imaging1,2 has emerged as a technology

allowing to capture richer information from our world.

One of the earliest implementations of a light field

camera is presented in the work of Lippmann.3 Rather

than a limited collection of two-dimensional (2-D) image,

the light field camera is able to collect not only the

accumulated intensity at each pixel but light rays from

different directions. Recently, with the introduction of

commercial and industrial light field cameras such as

Lytro4 and RayTrix,5 light field imaging has become one

of the most extensively used methods to capture 3-D

information of a scene.

However, due to restricted sensor resolution, light

field cameras suffer from a trade-off between spatial

and angular resolutions. To mitigate this problem, research-

ers have focused on novel view synthesis or angular

super-resolution using a small set of views6–10 with high

spatial resolution. Typical view synthesis or angular

super-resolution approaches first estimate the depth infor-

mation, and then warp the existing images to the novel

view based on the depth.10,11 However, the depth-based
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view synthesis approaches rely heavily on the estimated

depth which can be sensitive to textureless and occluded

regions and noise. In recent years, some studies based on

convolutional neural network (CNN) aiming at maxi-

mizing the quality of the synthetic views have been

presented.12,13

In this article, we investigate how the depth estimation

can benefit from these angular super-resolution methods.

Specifically, we compare the qualities of the estimated

depth using the original sparse sampled light fields and the

reconstructed dense sampled light fields. Experiment

results evaluate the enhanced depth maps using different

light field super-resolution approaches.

Depth estimation using super-resolved
light fields

In this section, we describe the idea that uses super-

resolved light fields in angular and spatial domains for

depth estimation. We first investigate several angular

super-resolution and view synthesis approaches, and then

consider the spatial super-resolution. Finally several depth

estimation approaches are introduced using the super-

resolved light field.

Angular super-resolution for light fields

Two angular super-resolution (view synthesis) approaches

are investigated in the article, which were proposed by

Kalantari et al.12 and Wu et al.13 Kalantari et al.12 pro-

posed a learning-based approach to synthesize novel

views using a sparse set of input views. Specifically, they

break down the process of view synthesis into disparity

and color estimation and used two sequential CNNs to

model them. In the disparity CNN (see Figure 1), all the

input views are first warped (backwarped) to the novel

view with disparity range of ½�21; 21� and level of 100.

Then the mean and standard deviation of all the warped

input images are computed at each disparity level to form

a feature vector of 200 channels.

In the color CNN, the feature vector is consisted of

warped images, the estimated disparity, and the position

of the novel view, where the disparity is applied to occlu-

sion boundaries detection and information collection from

the adjacent regions, and the position of the novel view is

used to assign the warped images with appropriate weights.

The networks contain four convolutional layers with kernel

sizes decreased from 7� 7 to 1� 1, where each layer is

followed by a rectified linear unit (ReLU); the networks

were trained simultaneously by minimizing the error

between synthetic and ground truth views.

CNN architecture. Unlike Kalantari et al.12 who super-

resolve light fields directly using images, Wu et al.13

super-resolve light fields using epipolar plane images

(EPIs). They indicated that the sparse sampled light field

super-resolution involves information asymmetry

between the spatial and angular dimensions, in which

the high frequencies in angular dimensions are damaged

by undersampling. Therefore, they model the light field

super-resolution as a learning-based angular high-

frequency restoration on EPI.

Specifically, they first balance the information

between the spatial and angular dimensions by extract-

ing the spatial low-frequency information. This is

implemented by convolving the EPI with a Gaussian

kernel. It should be noted that the kernel is defined in

1-D space because only the low-frequency information

in the spatial dimension are needed to be extracted. The

EPI is then upsampled to the desired resolution using

bicubic interpolation in the angular dimension. Then a

residual CNN is employed, which they called “detail

restoration network” (see Figure 2), to restore the high

frequencies in the angular dimension. Different from

the CNN proposed by Kalantari et al.,12 the detail

restoration network is trained specifically to restore the

high-frequency portion in the angular dimension, rather

than the entire information. Finally, a nonblind deblur is

applied to recover the high frequencies depressed by

EPI blur.

The architecture of the detail restoration network of Wu

et al. is outlined in Figure 2. Consider an EPI that is con-

volved with the blur kernel and upsampled to the desired

Figure 1. The disparity CNN consists of four convolutional
layers with decreasing kernel sizes. All the layers are followed by a
ReLU. The color CNN has a similar architecture with different
number of input and output channels. CNN: convolutional neural
network; ReLU: rectified linear unit.

Figure 2. Detail restoration network proposed by Wu et al.13 is
composed of three layers. The first and the second layers are
followed by a ReLU. The final output of the network is the sum of
the predicted residual (detail) and the input. ReLU: rectified linear
unit.
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angular resolution, denoted as E0L for short, the desired

output EPI f ðE0LÞ is then the sum of the input E0L and the

predicted residual RðE0LÞ:

f ðE0LÞ ¼ E0L þRðE0LÞ ð1Þ

The network for the residual prediction comprises three

convolution layers. The first layer contains 64 filters of

size 1� 9� 9, where each filter operates on 9� 9 spa-

tial region across 64 channels (feature maps) and is used

for feature extraction. The second layer contains 32 fil-

ters of size 64� 5� 5 and is used for nonlinear map-

ping. The last layer contains 1 filter of size 32� 5� 5

and is used for detail reconstruction. Both the first and

the second layers are followed by a ReLU. Due to the

limited angular information of the light field used as the

training data set, we pad the data with zeros before

every convolution operations to maintain the input and

output at the same size.

This CNN adopts the residual learning method for

the following reasons. First, the undersampling in the

angular domain damages the high-frequency portion

(detail) of the EPIs; thus, only that detail needs to be

restored. Second, extracting this detail prevents the

network from considering the low-frequency part,

which would be a waste of time and result in less

accuracy.

Training detail. The Stanford Light Field Archive14

(captured using a gantry system) is used as the training

data. The blurred ground truth EPIs are decomposed to

sub-EPIs of size 17� 17, denoted as e0. To avoid over-

fitting, data augmentation techniques15,16 are adopted that

include flipping, downsampling the spatial resolution of

the light field, and adding Gaussian noise. To avoid the

limitations of a fixed angular upsampling factor, we use a

scale augmentation technique. Specifically, the algorithm

downsamples some EPIs with a small angular extent by

factor 4 and the desired output EPIs by factor 2, then

upsamples them to the original resolution. The network

is trained by using the data sets downsampled by both

factors 2 and 4. The cascade of the network is used for

the EPIs that are required to be upsampled by factor 4. The

algorithm transforms the EPIs into YCbCr space: only

the Y channel (i.e. the luminance channel) is applied to

the network. This is because the other two channels are

blurrier than the Y channel and, thus, have less usefulness

in the restoration.17

The desired residuals are r ¼ e0 � e0L, where e0L are the

blurred and interpolated low angular resolution sub-EPIs.

Our goal is to minimize the mean squared error
1
2
jje0 � f ðe0LÞjj2. However, due to the residual network

we use, the loss function is now formulated as follows:

L ¼ 1

n

Xn

i¼1

jjrðiÞ � Rðe0ðiÞL Þjj
2 ð2Þ

where n is the number of training sub-EPIs. The output of

the network Rðe0LÞ represents the restored detail, which

must be added back to the input sub-EPI e0L to obtain the

final high angular resolution sub-EPI f ðe0LÞ.
To improve the convergence speed, the learning rate

is adjusted with the increasing of the training iteration.

The number of training iterations is 8� 105 times. The

learning rate is set to 0.01 initially and decreased by a

factor of 10 at every 0:25� 105 iterations. When the

training iterations are 5:0� 105, the learning rate is

decreased to 0.0001 in two reduction steps. The filter

weight of each layer is initialized using a Gaussian dis-

tribution with zero mean and standard deviation 1e�3.

The momentum parameter is set to 0.9. The training

EPIs are divided into 17� 17 sub-EPIs with stride 14,

and every 64 sub-EPIs is used as a mini-batch for sto-

chastic gradient descent. The mini-batches are selected

as a trade-off between speed and convergence. Training

takes approximately 12 h on GPU GTX 960 (Intel CPU

E3-1231 running at 3.40 GHz with 32 GB of memory).

The training model is implemented using the Caffe

package.18

Compared with the approach by Kalantari et al., Wu

et al.’s approach has more flexible super-resolution fac-

tor; moreover, because of the depth-free framework, their

approach achieves higher performance especially in

occluded and transparent regions and non-Lambertian

surfaces.19

Spatial super-resolution for light fields

As for spatial super-resolution of the light field, we mainly

focus on two classical approaches,20,21 whose input are

hybrid imaging system. Unlike traditional methods,11,22,23

the increase of the light field resolution is extremely limited

(usually less than �4). Meanwhile, the super-resolved spa-

tial results may have many artifacts because it is very dif-

ficult to reconstruct the high-frequency details from the

completely unknown information for most super-

resolution algorithms. Therefore, we need the auxiliary

information to help us better reconstruct the spatial light

field in the larger scaling factor (usually more than �4).

So introducing a high-resolution image as a reference is

a more practical method. These approaches, including the

PatchMatch-based super-resolution (denoted as PaSR)

method proposed by Boominathan et al.20 and the iterative

Patch- And Depth-based Synthesis (iPADS) method pro-

posed by Wang et al.,21 reconstruct the light field by a

hybrid camera setup for which the scaling factor of cross-

resolution input is more than �4. Their methods combine

two imaging system advantages, respectively, that can pro-

duce a light field with the spatial resolution of a traditional

digital single lens reflex (DSLR) camera and the angular

resolution of the Lytro.

Zhao et al. 3



PaSR method proposed by Boominathan et al.20 synthe-

size a high-resolution light field from a high-quality 2-D

camera and a low-quality light fields. This method relies on

the similarity between the input high-resolution image and

low-spatial resolution light field. The method first builds a

dictionary from the given high-spatial resolution image

patches and then uses first- and second-order derivative

filters to extract the feature of each high-spatial resolu-

tion patch.

iPADS method proposed by Wang et al.21 utilize the

same parameter settings applied in Boominathan et al.20

The patch sizes of the low- and high-resolution patches are

8� 8 and 64� 64, respectively, and the search range is 15

pixels. During the first iteration, they use the same diction-

ary for each side view, which is constructed from the

center-view DSLR image. During subsequent iterations,

we build different dictionaries for different side-view

images using the center-view DSLR image and the corre-

sponding synthesized super-resolution side-view images.

These synthesized side-view images feature a similar visual

quality as the central input image, but with improved par-

allax information corresponding to the desired side views.

They also used optical flow to compensate for high-

frequency details.

Compared with the approach by Boominathan et al.,20

Wang et al.’s21 approach has more flexible super-resolution

factor, moreover, because of the iPADS framework to

achieve the light field super-resolution. The proposed

method iterates between patch-based synthesis for super-

resolution and depth-based synthesis for providing better

patch candidates to achieve light field reconstruction with

high spatial resolution. The quality of the recovered light

field images by Boominathan et al.20 is not as good as that

of the input high-resolution image. The high-frequency

spatial details are lost in the recovered super-resolution

images and Wang et al.’s approach achieves higher perfor-

mance especially in occluded surfaces.

Depth estimation for light fields

In this subsection, we investigate several depth estimation

approaches for light field data.

Tao et al.24 proposed a depth estimation approach that

combines depth cues from both defocus and correspon-

dence using EPIs extracted from a light field. Since the

slope of a line in an EPI is equivalent to a depth of a point

in the scene,11 the EPIs are sheared to several possible

depth values for computing defocus and correspondence

cues responses. For a shear value �, a contrast-based mea-

surement �L� is performed at each pixel by averaging the

intensity values in the angular dimension of the EPI. Then

the defocus response D� is measured by weighting the

contrast-based measurements in a window in spatial

dimension of the EPI. For the correspondence cue of a

shear value �, the variance of each pixel in spatial dimen-

sion s� is computed, then the correspondence response C�

is the average of the variance values in a patch. After the

computations of defocus and correspondence cue, an Mar-

kov random field (MRF) global optimization is performed

to obtain the final depth map.

Wang et al.25 developed a depth estimation approach

that treats occlusion explicitly. Their key insight is that the

edge separating occluder and correct depth in the angular

patch correspond to the same edge of occluder in the spatial

domain. With this indication, the edges in the spatial image

can be used to predict the edge orientations in the angular

domain. First, the edges on the central pinhole image are

detected using Canny operation. Based on the work by Tao

et al.24 and the occlusion theory described above, the initial

local depth estimation is performed on the two regions in

the angular patch of the sheared light field. In addition, a

color consistency constraint is applied to prevent obtaining

a reversed patch which will lead to incorrect depth estima-

tion. Finally, the initial depth is refined with global

regularization.

Experimental results

In this section, the proposed idea is evaluated both on syn-

thetic scenes and real-world scenes. We first super-resolve

the light field in the angular domain, and then in the spatial

domain. Finally, we super-resolve the light field both in

the spatial and angular domains, simultaneously. We eval-

uate the quality of super-resolved light fields by measur-

ing the peak signal to noise ratio (PSNR) values of

synthetic views against ground truth images. The quality

of estimated depth maps using super-resolved light fields

is compared with those using low-resolution light fields.

The max disparity value of the light field is 6 pixels, and

we set the depth map into 100 levels. Thus the disparity

resolution is 0.06 pixel. Meanwhile, since the working

distance of the Lytro is at least 20 cm, the depth resolution

is better than 1 mm. For synthetic scenes, ground truth

depth maps are further applied for numerical evaluations

by root-mean-square error (RMSE) value.

Angular super-resolution results

Synthetic scenes. The synthetic light fields in HCI data sets26

are used for the evaluations. The input light fields have

3� 3 views, where each view has a resolution of

Table 1. Quantitative results (PSNR) of reconstructed light fields
on the synthetic scenes of the HCI data sets.a

Buddha Mona Papillon

Kalantari et al.12 34.0516 32.5334 28.2683
Wu et al.13 43.2043 44.3764 48.5519

aThe angular resolutions of input light fields are set to 3� 3 and the
output angular resolutions are 9� 9. Results with best performance are
marked by boldface.
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768� 768 (same as the original data set), and the output

angular resolution is 9� 9 for comparison with the ground

truth images.

Table 1 shows a quantitative evaluation of the super-

resolution approaches on synthetic scenes. The approach

by Wu et al.13 produces light fields of higher quality

than those yielded by Kalantari et al.,12 because the

CNNs in the latter approach are specifically trained on

real-world scenes. Figure 3 shows the synthetic images

in a certain viewpoint. We take the Buddha and Mona

cases as examples. The results show the ground truth

images, error map of the synthetic results in the

Y channel, close-up versions of the image portions in

the blue and yellow boxes, and the EPIs located at the

red line shown in the ground truth view. We note that

the continuity of the EPIs is very important to evaluate

the reconstruction results. The approach by Wu et al.13

has a better performance especially in the occluded

regions, for example, the board in the Buddha case and

the leaves in the Mona case.

Figure 3. Comparison of synthetic views produced by Kalentari et al.’s approach12 and Wu et al.’s approach13 on synthetic scenes. The
results show the ground truth images, error map of the synthetic results in the Y channel, close-up versions of the image portions in the
blue and yellow boxes, and the EPIs located at the red line shown in the ground truth view. The EPIs are upsampled to an appropriate
scale in the angular domain for better viewing. The lowest image in each block shows a close-up of the portion of the EPIs in the red box.

Table 2. RMSE values of the estimated depth using the
approaches by Tao et al.24/Wang et al.25 on synthetic scenes of
HCI data sets.

Buddha Mona Papillon

Input views 0.2642/0.2926 0.2115/0.2541 0.1871/0.1533

Kalantari et al.12 0.1721/0.1576 0.0876/0.0829 0.1665/0.1430

Wu et al.13 0.0550/0.0401 0.0678/0.0517 0.0610/0.0532

GT Light Fields 0.0543/0.0393 0.0652/0.0529 0.0583/0.0455

RMSE: root-mean-square error; GT: ground truth.
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The numerical results of depth maps using the

approaches by Tao et al.24 and Wang et al.25 are tabu-

lated in Table 2. And Figure 4 demonstrates the depth

maps estimated by Wang et al.’s approach25 on the Bud-

dha using input low angular resolution (3� 3) light

field, ground truth (GT) high-resolution (9� 9) light

field and super-resolved light fields (9� 9) by Kalantari

et al.12 and Wu et al.,13 respectively. The depth estima-

tion using super-resolved light fields shows prominent

improvement when compared with the results using

input low-resolution light fields. In addition, due to the

better quality of synthetic views produced by Wu et al.’s

approach,13 especially in the occluded regions, the esti-

mated depth maps are more accurate than those using

super-resolved light fields by Kalantari et al.’s

approach.12

Real-world scenes. The Stanford Lytro Light Field

Archive27 is used for the evaluation on real-world

scenes. The data set is divided into several categories

including occlusions, and refractive and reflective sur-

faces, which are challenge cases to test the robustness of

the approaches. We use 3� 3 views to reconstruct 7� 7

light fields.

Table 3 lists the numerical results of the super-

resolution approaches on the real-world scenes. The

approach by Wu et al.13 shows better performance in

terms of PSNR. Figure 5 shows some representative cases

that contain complex occlusions or darkened scene. The

networks proposed by Kalantari et al.12 were specifically

trained for Lambertian regions, and thus tend to fail in the

reflective surfaces, such as lamplight in the Plants 12

case. In addition, due to the depth estimation-based

framework, the synthetic views have ghosting and tearing

artifacts in the occlusion boundaries, such as the red

flower in the IMG 1328 case and the twig located in

Figure 4. Comparison of depth maps estimated by Wang et al.’s approach25 using light fields of different angular resolutions on the
Buddha.

Table 3. Quantitative results of reconstructed light fields in
angular domain on the real-world scenes.

Kalantari et al.12 Wu et al.13

Occlusions 2 28.9032 38.1215

Occlusions 16 32.2483 38.8654

Flowers & plants 7 26.7009 38.7054

Flowers & plants 12 34.9738 42.2751

Reflective surfaces 17 28.8429 42.2840

Reflective surfaces 29 37.7048 46.1052
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yellow box in the Flowers 6 case. The error map also

reflects the reconstruct method performance, especially

in some special regions.

Figure 6 shows the depth maps estimated by Tao et al.’s

approach24 and Wang et al.’s approach25 using input low angu-

lar resolution (3� 3) light field, super-resolved light fields

(7� 7) by Wu et al.,13 and ground truth high-resolution

(7� 7) light field. The quality of estimated depth maps

are significantly improved using super-resolved light fields.

Spatial super-resolution results

In this section, we mainly evaluate two spatial super-

resolution methods as mentioned previously on several

data sets including synthetic and real-world scenes. For

the light field data sets, we evaluate these methods in the

scaling factor of �4. We keep the central image of the

light field unchanged and the rest of the low resolution

(LR) source images IL
s are obtained by downsampling the

Figure 5. Comparison of synthetic views produced by Kalentari et al.’s approach12 and Wu et al.’s approach13 on real-world scenes.
The results show the ground truth images, error maps of the synthetic results in the Y channel, close-up versions of the image portions
in the blue and yellow boxes, and the EPIs located at the red line shown in the ground view. The EPIs are upsampled to an appropriate
scale in the angular domain for better viewing. The lowest image in each block shows a close-up of the portion of the EPIs in the red box.

Zhao et al. 7



high resolution (HR) images which act as the ground truth

for computing PSNR value. The HR image located in the

center is regarded as the reference image, that is, IH
r . We

utilize the bicubic interpolation, PaSR, and iPADS meth-

ods on the different data sets.

Synthetic scenes. We test the synthetic light field data from

the HCI data sets.26 The super-resolution scaling factor is

�4, which evaluates the performance of the proposed

framework. The spatial resolution of the original light field

image is 768� 768, and the angular resolution is 9� 9.

The spatial resolution of the input light fields is down-

sampled by a factor of 4. Through these methods, we

super-resolve the spatial resolution for a factor of �4.

Figure 7 shows several super-resolution patches cropped

from the six simulations. Because of the iterative operation,

it is obvious that the patches generated by iPADS method

contain better high-frequency details than those generated

by bicubic interpolation and PaSR method, especially, for

patches with large depth variations. Table 4 shows a quan-

titative evaluation (PSNR) of the super-resolution

approaches on synthetic scenes. The results of iPADS

method produce the highest quality of all the methods. The

bicubic interpolation is a simple upsampling method. We

get these results as the reference.

Table 5 shows the numerical results of depth maps. We

calculate RMSE value with the ground truth depth map. We

can conclude that the smaller the value is, the more accu-

rate will be the depth map. The spatial super-resolution

method does improve the accuracy of estimated depth map,

when comparing with the method of bicubic upsampling.

Figure 8 provides a further verification. The noisy point in

the background decreases as the RMSE value goes down.

Real-world scenes. The Stanford Lytro Light Field Archive27

is also used for the evaluation on real-world scenes. We

first downsample the light field by a factor of 4 in the

spatial domain, and then utilize the mentioned PaSR

method to reconstruct the light field. Table 6 lists the

numerical results of the super-resolution methods on the

real-world scenes. Each PSNR value is obtained by aver-

aging over the PSNRs of all side views. The PSNR values

are obtained using both iPADS and PaSR method. The

PSNRs for iPADS method are higher than those for PaSR

method in each data set. The direct interpolation method,

such as bicubic interpolation, has the lowest values among

all the methods.

Figure 9 shows some representative cases.27 The Flower

3 scene contains complex occlusions, and the Reflective 29

scene contains metallic pans, which have non-Lambertian

surfaces. The results of bicubic interpolation have serious

blur and the iPADS method can restore the high-frequency

details.

For a more intuitive understanding of what Table 6

means, we provide the depth estimation results of the case,

Reflective 29, as shown in Figure 10. The figure shows the

depth maps estimated by Wang et al.’s approach25 using

input bicubic directly interpolation light field, super-

resolved light fields by iPADS method21 and ground truth

original resolution light field, respectively. The quality of

estimated depth maps is also significantly improved using

super-resolved light fields.

Spatio-angular super-resolution results

In this section, we super-resolved the light field both in

angular and spatial domains, simultaneously. We hope that

Figure 6. Comparison of depth maps estimated by Tao et al.24 and Wang et al.25 using light fields of different angular resolutions on the
Reflective surfaces 29.
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Figure 7. Comparison of spatial super-resolution results produced by PaSR method12 and iPADS method13 on synthetic scenes.

Table 4. Quantitative results of reconstructed light fields on the
synthetic scenes of the HCI data sets.a

Buddha Papillon StillLife

Bicubic 29.8126 32.1981 21.9496
PaSR20 32.0326 36.4879 25.4685
iPADS21 33.7775 38.4358 25.8911

PaSR: PatchMatch-based super-resolution; iPADS: Patch- And Depth-
based Synthesis.
aThe spatial super-resolutions scaling factor is �4.

Table 5. RMSE values of the estimated depth using the
approaches by Wang et al.25 on synthetic scenes of HCI data sets.

Buddha Papillon StillLife

Bicubic 0.3186 0.2039 0.3718
PaSR20 0.2968 0.1549 0.3049
iPADS21 0.2021 0.0685 0.2902
GT Light Fields 0.0854 0.0490 0.0998

RMSE: root-mean-square error; PaSR: PatchMatch-based super-
resolution; iPADS: Patch- And Depth-based Synthesis; GT: ground truth.

Zhao et al. 9



we can get a better depth estimation result. Because the

spatial super-resolution algorithm can tolerate the larger

parallax, usually reach up to 15 pixels in the reference

image level, we first carry on super-resolution in the spatial

domain. Once we obtain the super-resolved spatial light

field, we synthesize angular views through reconstructed

high-resolution spatial images.

We utilize the MonasRoom from HCI data set as an

example, the input light field of the whole precess is

3� 3 views in the angular resolution, and 192� 192

pixels in the spatial resolution. The output is 9� 9

views in the angular resolution and 768� 768 pixels

in the spatial resolution. The pipleline of spatio-

angular super-resolution is shown in Figure 11. To

obtain the final spatio-angular super-resolution result

(as shown in Figure 11 (d)), we first handle it in spatial

domain (Figure 11 (c)), and then take super-resolution in

angular domain (Figure 11 (b)).

Figure 12 shows the depth maps estimated by Wang

et al.25 The input light field has different resolutions. The

subfigures (a), (b), (c), and (d) of Figure 12 are depth

maps, and their inputs are Figure 11 (a), (b), (c) and (d),

respectively. We notice that the depth map using spatio-

angular super-resolution result (Figure 12 (d)) is similar

Figure 8. Comparison of depth maps estimated by Wang et al.’s approach25 using light fields of different spatial resolutions on the
Horses. Spatial super-resolution results produced by PaSR method12 and iPADS method13 on synthetic scenes. The spatial super-
resolutions scaling factor is �4. PaSR: PatchMatch-based super-resolution; iPADS: iterative Patch- And Depth-based Synthesis.

Table 6. Quantitative results of reconstructed light fields in
spatial domain on the real-world scenes.

Bicubic PaSR11 iPADS12

Occlusions 2 25.9651 31.4563 32.0949
Occlusions 16 26.0196 30.9683 31.7601
Flowers & plants 7 26.3130 30.6409 32.0742
Flowers & plants 12 27.5439 31.0064 33.0185
Reflective surfaces 17 27.0124 32.7958 33.1532
Reflective surfaces 29 27.4583 30.2019 32.9482

PaSR: PatchMatch-based super-resolution; iPADS: Patch- And Depth-
based Synthesis.
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to the depth map using ground truth light field. What’s

more, the depth map using spatio-angular super-

resolution result should be very close to the ground truth

depth map. So our strategy of estimating depth map is

very advisable. Table 7 further proves the effectiveness

of this strategy, and the super-resolution of the light field

can indeed improve the accuracy of the depth map

significantly.

Conclusions

We have presented an idea that uses an super-resolved light

field (including angular and spatial domains) to improve

the quality of depth estimation. A straightforward way is to

estimate a depth map using input low-resolution light field,

and render novel views or interpolate images in spatial

domain using depth image based rendering (DIBR) tech-

niques. However, this approach always leads to error accu-

mulation when we recompute depth maps. We therefore

investigate approaches that directly minimize the quality

of super-resolved light fields rather than depth maps. We

evaluate this idea on synthetic scenes as well as real-world

scenes which contain non-Lambertian and reflective sur-

faces. The experimental results demonstrate that the quality

of depth map is significantly improved using the super-

resolved light field.

Figure 9. Comparison of spatial super-resolution results produced by bicubic interpolation, PaSR method,12 and iPADS method13

on real-world scenes. PaSR: PatchMatch-based super-resolution; iPADS: iterative Patch- And Depth-based Synthesis.

Figure 10. Comparison of depth maps estimated by Wang et al.25 using light fields of different spatial resolutions on the Reflective
surfaces 29.

Zhao et al. 11



Figure 11. The pipeline of the spatio-angular super-resolution process. (a) is the input light field with sparse view in angular domain and
low-resolution in spatial domain. (c) is the super-resolved light field in spatial domain. And then we carry on super-resolution in angular
domain (b) to obtain the final spatio-angular super-resolution result (d).

Figure 12. Comparison of depth maps estimated by Wang et al.25 using light fields of different resolutions on the Monas Room.

Table 7. RMSE values of the estimated depth using LR light field, SR result in the angular domain, SR in the spatial domain, and GT light
field.

LR light field SR in angular domain SR in spatial domain Spatio-angular SR GT light field

MonasRoom 0.3316 0.1103 0.1429 0.0856 0.0649

RMSE: root-mean-square error; PaSR: PatchMatch-based super-resolution; iPADS: Patch- And Depth-based Synthesis; GT: ground truth.
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