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1. Introduction

1.1 Setting of the problem

The Trudinger–Moser type inequalities have a long history beginning with the works of
Pohozaev [23] and Trudinger [30]. Letting � ⊂ R

n be a bounded domain with n ≥ 2, the
authors looked at these pioneering works for the maximal growth function g : R → R+
such that

sup
u∈W 1,n

0 (�), ‖∇u‖Ln≤1

∫
�

g(u) dx < +∞ ,

and they proved independently that the maximal growth is of exponential type. Thereafter,
Moser improved these works by establishing a sharp result known as the Trudinger–Moser
inequality (see [22]) and since then, this subject has continued to interest researchers
and Trudinger–Moser inequality has been extended in various directions [1,2,21,25,26]
generating several applications. Among the results obtained concerning Trudinger–Moser
type inequalities, we recall the so-called Adams’ inequality in R

2N .

PROPOSITION 1.1 [18,26]

There exists a finite constant κ > 0 such that

sup
u∈HN (R2N ), ‖u‖HN (R2N )

≤1

∫
R2N

(eβN |u(x)|2 − 1) dx := κ , (1.1)
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where βN = N ! πN22N , and for any β > βN ,

sup
u∈HN (R2N ),‖u‖HN (R2N )

≤1

∫
R2N

(eβ|u(x)|2 − 1) dx = +∞ . (1.2)

Remark 1.2. In the above proposition, the norm ‖ . ‖HN designates the following Sobolev
norm

‖u‖2
HN (R2N )

:= ‖u‖2
L2(R2N )

+
N∑
j=1

‖∇ j u‖2
L2(R2N )

,

where ∇ j u denotes the j-th order gradient of u, namely

∇ j u =
{

�
j
2 u if j is even,

∇�
j−1
2 u if j is odd.

The proof of Proposition 1.1, treated firstly in the radial case and then generalized by
symmetrization arguments, is based on the following Trudinger–Moser inequality in a
bounded domain.

PROPOSITION 1.3 ([2], Theorem 1)

Let � be a bounded domain in R2N . There exists a positive constant CN such that

sup
u∈HN

0 (�), ‖∇N u‖L2 ≤1

∫
�

eβN |u(x)|2 dx ≤ CN |�| ,

where |�| denotes the Lebesgue measure of �. Furthermore, this inequality is sharp.

As emphasized above, Proposition 1.1 has been at the origin of numerous applications.
Among others, one can mention the description of the lack of compactness of Sobolev
embedding involving Orlicz spaces in [8–12], the analysis of some elliptic and bihar-
monic equations in [27–29] and the study of global well-posedness and the asymptotic
completeness for evolution equations with exponential nonlinearity in dimension two in
[3,4,7,8,13,16,17].

Sobolev embedding inferred by Proposition 1.1 states as follows:

HN (R2N ) ↪→ L(R2N ) , (1.3)

whereL is the so-called Orlicz space associated to the function φ(s) := es
2 −1 and defined

as follows (for a complete presentation and more details, we refer the reader to [24] and
references therein).

DEFINITION 1.4

We say that a measurable function u : Rd → C belongs to L(Rd) if there exists λ > 0
such that
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∫
Rd

(
e

|u(x)|2
λ2 − 1

)
dx < ∞ .

We then denote as follows:

‖u‖L(Rd ) = inf

{
λ > 0,

∫
Rd

(
e

|u(x)|2
λ2 − 1

)
dx ≤ 1

}
. (1.4)

Remark 1.5.

• It is easy to check that ‖ . ‖L is a norm on the C-vector space L which is invariant under
translations and oscillations.
• One can also verify that the number 1 in (1.4) may be replaced by any positive constant.
This changes the norm ‖ . ‖L to an equivalent one.
• In the sequel, we shall endow the space L(R2N ) with the norm ‖ · ‖L(R2N ) where the
number 1 is replaced by the constant κ involved in Identity (1.1). The Sobolev embedding
(1.3) then states as follows:

‖u‖L(R2N ) ≤ 1√
βN

‖u‖HN (R2N )
, (1.5)

where the Sobolev constant 1/
√

βN is sharp.

• Denoting by Lφp the Orlicz space associated to φp(s) := es2 −
∑p−1

k=0

s2k

k! , with p an

integer larger than 1, we deduce from Proposition 1.1 the more general Sobolev imbedding

HN (R2N ) ↪→ Lφp (R2N ) . (1.6)

• Let us finally observe that L ↪→ L p for every 2 ≤ p < ∞ .

In this article, our goal is two-fold. Firstly, we obtain an analogue of Proposition 1.1 in
the radial framework of a functional space H(R2N ) closely related to Hardy inequalities,
which will easily lead to the following Sobolev imbedding:

Hrad(R
2N ) ↪→ L(R2N ) . (1.7)

Secondly, we describe the lack of compactness of (1.7), which could be at the origin
of several applications as it has been the case by previous characterizations of defect of
compactness of various Sobolev embeddings.

More precisely, for any integer N ≥ 2, the space we will consider in this paper is defined
as follows:

H(R2N ) :=
{
u ∈ H1(R2N ); ∇u

| . |N−1 ∈ L2(R2N )

}
· (1.8)
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In view of the well-known Hardy inequalities (see for instance [5,6,14,15]),

∥∥∥∥ u

| . |s
∥∥∥∥
L2(Rd )

≤ Cd,s‖u‖Ḣ s (Rd ) , ∀ s ∈
[
0,

d

2

[
, (1.9)

the Sobolev space HN (R2N ) continuously embeds in the functional space H(R2N )

endowed with the norm

‖u‖2
H(R2N )

= ‖u‖2
H1(R2N )

+
∥∥∥∥ ∇u

| . |N−1

∥∥∥∥
2

L2(R2N )

·

Actually, as shown by the example of function

x �−→ log(1 − log |x |) 1B1(0)(x) ,

with B1(0) the unit ball of R2N , the embedding of HN (R2N ) into H(R2N ) is strict for
every N ≥ 2.
For the convenience of the reader, the following diagram recapitulates the different embed-
dings including the spaces involved in this work.

HN (R2N ) L(R2N )

H1(R2N )

N=1

H(R2N )

radial case

The interest we take towards the space H is motivated by the importance of Hardy inequal-
ities in analysis (among others, we can mention blow-up methods or the study of pseudo-
differential operators with singular coefficients).

1.2 Main results

The result we obtained concerning the sharp Trudinger–Moser type inequality in the frame-
work of the space H(R2N ) takes the following form:

Theorem 1.6. For any integer N greater than 2, there exists a finite constant κ ′ > 0 such
that

sup
u∈Hrad (R2N ), ‖u‖H(R2N )

≤1

∫
R2N

(eγN |u(x)|2 − 1) dx := κ ′ , (1.10)

where γN := 4πN N

(N − 1)! , and for any γ > γN ,

sup
u∈Hrad (R2N ), ‖u‖H(R2N )

≤1

∫
R2N

(eγ |u(x)|2 − 1) dx = +∞ . (1.11)
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Remark 1.7.

• Usually, the proofs of Trudinger–Moser inequalities reduce to the radial framework under
symmetrization arguments. In particular, in dimension two this question is achieved by
means of Schwarz symmetrization (see [1]). The key point in that process is the preservation
of Lebesgue norms and the minimization of energy.

Unfortunately, the quantity
∥∥∥ ∇u

| . |N−1

∥∥∥
L2(R2N )

cannot be minimized under Schwarz sym-

metrization as shown by the example uk(x) := ϕ(|x | + k), where ϕ �= 0 is a smooth com-

pactly supported function. The fact that u∗
k = ϕ shows that the control of

∥∥∥ ∇u∗
k

| . |N−1

∥∥∥
L2(R2N )

by
∥∥∥ ∇uk

| . |N−1

∥∥∥
L2(R2N )

fails.

• It is clear that, when the constant 1 in (1.4) is replaced by κ ′, Theorem 1.6 implies the
following radial continuous embedding:

‖u‖L(R2N ) ≤ 1√
γN

‖u‖Hrad(R2N )
,

where the Sobolev constant
1√
γN

is optimal.

• Observe that due to the continuous embedding

HN (R2N ) ↪→ H(R2N ) ,

Theorem 1.6 can be viewed as a generalization of Proposition 1.1 in the radial framework.

As mentioned above, our second aim in this paper is to describe the lack of compactness
of the Sobolev embedding (1.7). Actually, this embedding is non compact. This is due to
the following example derived by Lions [19,20]:

fk(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if |x | ≥ 1 ,

−
√

2N
k γN

log |x | if e−k ≤ |x | < 1 ,

√
2Nk
γN

if |x | < e−k .

(1.12)

Indeed, we have the following proposition, the proof of which is given in §4 for the
convenience of the reader.

PROPOSITION 1.8

The sequence ( fk)k≥0 defined above converges weakly to 0 inH(R2N ) and satisfies

‖ fk‖L(R2N )

k→∞−→ 1√
γN

·

It will be useful later on to emphasize that fk can be recast under the following form:

fk(x) =
√

2Nk

γN
L
(

− log |x |
k

)
, (1.13)
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where

L(t) =
⎧⎨
⎩

1 if t ≥ 1 ,

t if 0 ≤ t < 1 ,

0 if t < 0 ,

and that

‖ fk‖H1(R2N )

k→∞−→ 0 and
∥∥∥ ∇ fk
| . |N−1

∥∥∥
L2(R2N )

= ∥∥L′∥∥
L2(R)

= 1 . (1.14)

In order to state our second result in a clear way, let us introduce some objects as in [8].

DEFINITION 1.9

We shall designate by a scale any sequence α := (αn)n≥0 of positive real numbers going
to infinity and by a profile any function ψ belonging to the set

P := {ψ ∈ L2(R, e−2Nsds); ψ ′ ∈ L2(R), ψ|]−∞,0] = 0} .

Two scales α, β are said to be orthogonal if

∣∣∣ log

(
βn

αn

) ∣∣∣ n→∞−→ ∞ .

Remark 1.10. Recall that each profile ψ ∈ P belongs to the Hölder space C
1
2 (R), and

satisfies

ψ(s)√
s

→ 0 as s → 0 . (1.15)

Indeed taking advantage of the fact that ψ ′ ∈ L2(R), we get for any s2 > s1,

|ψ(s2) − ψ(s1)| =
∣∣∣
∫ s2

s1

ψ ′(τ ) dτ

∣∣∣ ≤ √
s2 − s1

(∫ s2

s1

ψ ′2(τ ) dτ

)1/2

,

which ensures that ψ ∈ C
1
2 (R) and implies (1.15) by taking s1 = 0.

The result we establish in this paper highlights the fact that the lack of compactness of
the Sobolev embedding (1.7) can be described in terms of generalizations of the example
by Moser (1.12) as follows:

Theorem 1.11. Let (un)n≥0 be a bounded sequence inHrad(R
2N ) such that

un ⇀ 0 , (1.16)

lim sup
n→∞

‖un‖L(R2N ) = A0 > 0 and (1.17)

lim
R→∞ lim sup

n→∞

∫
|x |≥R

|un(x)|2 dx = 0 . (1.18)
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Then, there exist a sequence of pairwise orthogonal scales (α( j)) j≥1 and a sequence of
profiles (ψ( j)) j≥1 such that up to a subsequence extraction, we have for all � ≥ 1,

un(x) =
�∑

j=1

√
2Nα

( j)
n

γN
ψ( j)

(
− log |x |

α
( j)
n

)
+ r (�)

n (x) , (1.19)

with lim supn→∞ ‖r (�)
n ‖L(R2N )

�→∞−→ 0 .Moreover,wehave the following stability estimate

∥∥∥ ∇un
| . |N−1

∥∥∥2

L2(R2N )
=

�∑
j=1

∥∥ψ( j)′∥∥2
L2(R)

+
∥∥∥ ∇r (�)

n

| . |N−1

∥∥∥2

L2(R2N )
+ ◦(1) , n → ∞ .

Remark 1.12.

• The hypothesis of compactness at infinity (1.18) is crucial: it allows to avoid the loss of
Orlicz norm at infinity.
• Note that the elementary concentrations

g( j)
n (x) :=

√
2Nα

( j)
n

γN
ψ( j)

(
− log |x |

α
( j)
n

)
, (1.20)

involved in Decomposition (1.19) are in Hrad(R
2N ) whereas a priori, they do not belong

to HN (R2N ).
• Actually, the lack of compactness of HN (R2N ) ↪→ L(R2N ) was characterized in [10]
by means of the following type of elementary concentrations:

fn(x) := CN√
αn

∫
|ξ |≥1

ei (x−xn)·ξ

|ξ |2N ϕ
( log |ξ |

αn

)
dξ , (1.21)

with (αn)n≥0 a scale in the sense of Definition 1.9, (xn)n≥0 a sequence of points in R
2N

and ϕ a function in L2(R+). Note that (see Proposition 1.7 in [10])

fn(x) = C̃N
√

αn ψ
(− log |x |

αn

)
+ tn(x) ,

with ψ(y) =
∫ y

0
ϕ(t) dt and ‖tn‖L(R2N )

n→∞−→ 0.

• Arguing as in [8], we have Proposition 1.13 below.
• Arguing as in Proposition 1.18 in [8], we get

∥∥∥
�∑

j=1

g( j)
n

∥∥∥L(R2N )

n→∞−→ sup
1≤ j≤�

(
lim
n→∞

∥∥g( j)
n
∥∥L(R2N )

)
, (1.22)

where g( j)
n is defined by (1.20).
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PROPOSITION 1.13

Let us consider

gn(x) :=
√

2Nαn

γN
ψ

(− log |x |
αn

)
,

with ψ a profile and (αn)n≥0 a scale. Then

‖gn‖L(R2N )

n→∞−→ 1√
γN

max
s>0

|ψ(s)|√
s

· (1.23)

Proof. Setting L = lim infn→∞ ‖gn‖L(R2N ), we have for any fixed ε > 0 and any n
sufficiently large (up to a subsequence extraction)

∫
R2N

(
e
∣∣ gn (x)

L+ε

∣∣2

− 1
)

dx ≤ κ ′ .

Therefore, there exists a positive constant C such that

αn

∫ +∞

0
e

2Nαns

[
1

γN (L+ε)2

∣∣ψ(s)√
s

∣∣2−1

]
ds ≤ C .

Using the fact that ψ is a continuous function, we deduce that

L + ε ≥ 1√
γN

max
s>0

|ψ(s)|√
s

,

which ensures that

L ≥ 1√
γN

max
s>0

|ψ(s)|√
s

·

To end the proof of (1.23), it suffices to show that for any positive real number δ, the
following estimate holds

∫
R2N

(
e
∣∣ gn (x)

λ

∣∣2

− 1
)

dx
n→∞−→ 0 ,

where λ := 1 + δ√
γN

max
s>0

|ψ(s)|√
s

·
Performing the change of variable r = e−αns , we easily get

∫
R2N

(
e
∣∣ gn (x)

λ

∣∣2

− 1
)

dx = 2πNαn

(N − 1)!
∫ ∞

0
e
−2Nαns

(
1− 1

γN λ2

∣∣ψ(s)√
s

∣∣2)
ds

− 2πNαn

(N − 1)!
∫ ∞

0
e−2Nαns ds . (1.24)



Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:13 Page 9 of 22 13

Recalling that

ψ(s)√
s

→ 0 as s → 0 ,

we infer that for any ε > 0, there exists η > 0 such that

1

γNλ2

∣∣∣ψ(s)√
s

∣∣∣
2

< ε for any 0 ≤ s < η .

According to (1.24), this gives rise to

2πNαn

(N − 1)!
∫ η

0
e
−2Nαns

(
1− 1

γN λ2

∣∣ψ(s)√
s

∣∣2)
ds − 2πNαn

(N − 1)!
∫ η

0
e−2Nαns ds

≤ πN ε

N !(1 − ε)
+ ◦(1) , n → ∞ ,

which ensures the desired result. �

1.3 Layout

The paper is organized as follows: Section 2 is devoted to the proof of the sharp Trudinger–
Moser type inequality in the framework of the space Hrad(R

2N ), namely Theorem 1.6. In
§3, we establish Theorem 1.11 by describing the algorithm construction of the decompo-
sition of a bounded sequence (un)n≥0 in Hrad(R

2N ), up to a subsequence extraction, in
terms of asymptotically orthogonal profiles in the spirit of the example by Moser. The last
section is devoted to the proof of Proposition 1.8.

Finally, we mention that C will be used to denote a constant which may vary from line
to line. We also use A � B to denote an estimate of the form A ≤ CB for some absolute
constant C . For simplicity, we shall still denote by (un) any subsequence of (un).

2. Proof of the Theorem 1.6

To establish Estimate (1.10), we shall follow the 2D approach adopted in [25] by setting
for a fixed r0 > 0 (to be chosen later on),

I1 :=
∫
B(r0)

(eγN |u(x)|2 − 1) dx and I2 :=
∫
R2N \B(r0)

(eγN |u(x)|2 − 1) dx ,

where B(r0) denotes the ball centered at the origin and of radius r0.
The idea consists in showing that it is possible to choose a suitable r0 > 0 independently

of u such that I1 and I2 are bounded by a constant only depending on r0 and N .
Let us start by studying the part I2. Using the power series expansion of the exponential,

we can write

I2 =
∞∑
k=1

γ k
N

k! I2,k , where I2,k :=
∫
R2N \B(r0)

|u(x)|2k dx .
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In order to estimate I2,k , we take advantage of the following radial estimate available for
any function u in H1

rad(R
2N ) (for further details, see [26]):

|u(x)| ≤
√

(N − 1)!
πN

‖u‖H1(R2N )

|x |N− 1
2

for a.e. x ∈ R
2N , (2.1)

which for any integer k ≥ 2, implies that

I2,k ≤
(

(N − 1)!
πN

)k

‖u‖2k
H1(R2N )

2πN

(N − 1)!
∫ ∞

r0

dr

r (k−1)(2N−1)

≤ 2πN

(N − 1)!
(

(N − 1)!
πN

)k

‖u‖2k
H1(R2N )

rk(1−2N )+2N
0

(2N − 1)k − 2N

≤ 2πN

(N − 1)!
r2N

0

2(N − 1)

(
(N − 1)!

πN

)k

‖u‖2k
H1(R2N )

1

r (2N−1)k
0

·
This gives rise to

I2 ≤ γN‖u‖2
L2(R2N )

+ 2πN

(N − 1)!
r2N

0

2(N − 1)

∞∑
k=2

1

k!

(
γN (N − 1)!

πN

‖u‖2
H1(R2N )

r (2N−1)
0

)k

≤ γN + 2πN

(N − 1)!
r2N

0

2(N − 1)

∞∑
k=2

1

k!

(
γN

(N − 1)!
πN

1

r (2N−1)
0

)k

,

under the fact that ‖u‖H(R2N ) ≤ 1, which ensures that I2 is bounded by a constant only
dependent of r0 and N .

In order to estimate I1, we shall make use of the following Trudinger–Moser type
inequality, the proof of which is postponed at the end of the section.

PROPOSITION 2.1

There exists a constant CN > 0 such that for any positive real number R, we have

sup
u∈
(
Hrad∩H1

0

)
(B(R)),

∥∥ ∇u
| . |N−1

∥∥
L2 ≤1

∫
B(R)

eγN |u(x)|2 dx ≤ CN R2N ,

and this inequality is sharp.

Let us admit this proposition for the time being, and continue the proof of the theorem.
The key point consists in associating to a function u in Hrad(B(r0)) with ‖u‖H(R2N ) ≤ 1,
an auxiliary function w ∈ (Hrad ∩ H1

0

)
(B(r0)) such that∥∥∥∥ ∇w

| . |N−1

∥∥∥∥
L2(B(r0))

≤ 1 and u2 ≤ w2 + d(r0) ,

where the function d(r0) > 0 depends only on r0. To this end, let us first emphasize that
if u belongs to Hrad(B(r0)) and satisfies ‖u‖H(R2N ) ≤ 1, then u is continuous far away
from the origin. Indeed, for any real numbers r2 > r1 > 0, writing

u(r2) − u(r1) =
∫ r2

r1

u′(s) ds ,
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we get by Cauchy–Schwarz inequality

|u(r2) − u(r1)| ≤
( ∫ r2

r1

|u′(s)|2s2N−1 ds
) 1

2
( ∫ r2

r1

s−(2N−1) ds
) 1

2

≤ C‖∇u‖L2(R2N )

( ∫ r2

r1

s−(2N−1) ds
) 1

2
,

which leads to the result. Thus, for any 0 < r < r0, we can define the function

v(r) := u(r) − u(r0) ,

which clearly belongs to
(Hrad ∩ H1

0

)
(B(r0)) . In light of the radial estimate (2.1), this

implies that

u2(r) ≤ v2(r) + v2(r)u2(r0) + 1 + u2(r0)

≤ v2(r) + v2(r)
(N − 1)!

πN

‖u‖2
H1(R2N )

r2N−1
0

+ 1 + (N − 1)!
πN

‖u‖2
H1(R2N )

r2N−1
0

≤ v2(r)

(
1 + (N − 1)!

πN

‖u‖2
H1(R2N )

r2N−1
0

)
+ d(r0) ,

where d(r0) := 1 + (N − 1)!
πN

‖u‖2
H1(R2N )

r2N−1
0

·
Now by construction, the function

w(r) := v(r)

√√√√1 + (N − 1)!
πN

‖u‖2
H1(R2N )

r2N−1
0

,

belongs to
(Hrad ∩ H1

0

)
(B(r0)), and easily satisfies

∫
B(r0)

|∇w(x)|2
|x |2(N−1)

dx =
(

1 + (N − 1)!
πN

‖u‖2
H1(R2N )

r2N−1
0

)∫
B(r0)

|∇u(x)|2
|x |2(N−1)

dx

≤
(

1 + (N − 1)!
πN

‖u‖2
H1(R2N )

r2N−1
0

)(
1 − ‖u‖2

H1(R2N )

)
≤ 1 ,

provided that
πN

(N − 1)! r
2N−1
0 ≥ 1.

Applying Proposition 2.1 with r0 fixed so that
πN

(N − 1)! r
2N−1
0 ≥ 1, we deduce that

I1 ≤ eγN d(r0)

∫
B(r0)

eγN |w(x)|2 dx ≤ CN eγN d(r0) r2N
0 ,

which ensures the desired estimate, up to the proof of Proposition 2.1.
To achieve the proof of Identity (1.10), let us then establish Proposition 2.1. To this end,

for a function u in
(Hrad ∩ H1

0

)
(B(R)) satisfying

∥∥∥ ∇u
| . |N−1

∥∥∥
L2(R2N )

≤ 1, let us denote by

I (R) :=
∫
B(R)

eγN |u(x)|2 dx .
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Our aim is to show that

I (R) ≤ CN R2N whenever
2πN

(N − 1)!
∫ R

0
|v′(r)|2r dr ≤ 1 .

For that purpose, let us perform the change of variable s = r N , and introduce the function

w(s) =
√

NπN−1

(N − 1)! v
(
s

1
N
)
. Recalling that γN = 4πN N

(N − 1)! , we infer that

I (R) = 2πN

(N − 1)!
∫ R

0
eγN |v(r)|2r2N−1 dr = 2πN

N !
∫ RN

0
e4π |w(s)|2s ds

and

2πN

(N − 1)!
∫ R

0
|v′(r)|2r dr = 2π

∫ RN

0
|w′(s)|2s ds .

The conclusion then stems from the 2D radial framework of Proposition 1.3.
Now in order to prove the sharpness of the exponent γN , let us consider the sequence

( fk) defined by (1.12). Since according to (1.14), we have

‖ fk‖H(R2N ) = 1 + ◦(1) , as k → ∞ ,

we get for any γ > γN ,

∫
R2N

(
e
γ

∣∣ fk (x)
‖ fk‖H(R2N )

∣∣2

− 1
)

dx ≥ 2πN

(N − 1)!
∫ e−k

0

(
e

2Nkγ
γN (1+◦(1)) − 1

)
r2N−1 dr

≥ πN

N !
(

e
2Nk

γ−γN (1+◦(1))

γN (1+◦(1)) − e−2Nk
)

k→∞−→ ∞ ,

which ends the proof of the theorem.

3. Proof of Theorem 1.11

3.1 Scheme of the proof

The proof of Theorem 1.11 relies on a diagonal subsequence extraction and uses in a
crucial way the radial setting and particularly the fact that we deal with bounded functions
far away from the origin. The heart of the matter is reduced to the proof of the following
lemma:

Lemma 3.1. Let (un)n≥0 be a bounded sequence in Hrad(R
2N ) satisfying Assumptions

(1.16), (1.17) and (1.18). Then there exist a scale (αn)n≥0 and a profile ψ in the sense of
Definition 1.9, such that

‖ψ ′‖L2(R) ≥ CN A0 , (3.1)

where CN is a constant depending only on N.

Inspired by the strategy developed in [8], the proof is done in three steps. In the first
step, according to Lemma 3.1, we extract the first scale and the first profile satisfying
inequality (3.1). This reduces the problem to the study of the remainder term. If the limit
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of its Orlicz norm is null, we stop the process. If not, we prove that this remainder term
satisfies the same properties as the sequence starts which allow us to extract a second scale
and a second profile which verifies the above key property (3.1), by following the lines of
reasoning of the first step. Thereafter, we establish the property of orthogonality between
the two first scales. Finally, we prove that this process converges.

3.2 Extraction of the first scale and the first profile

Let us consider a bounded sequence (un)n≥0 in Hrad(R
2N ) satisfying the assumptions of

Theorem 1.11, and let us set vn(s) := un(e−s). Then, we have the following lemma:

Lemma 3.2. Under the above assumptions, the sequence (un)n≥0 converges strongly to 0
in L2(R2N ), and we have for any real number M ,

lim
n→∞ ‖vn‖L∞(]−∞,M]) = 0 . (3.2)

Proof. Let us first observe that for any positive real number R, we have

‖un‖L2(R2N ) = ‖un‖L2(|x |≤R) + ‖un‖L2(|x |>R) .

Now, invoking Rellich’s theorem and the Sobolev embedding of H(R2N ) into H1(R2N ),
we infer that the space H(|x | < R) is compactly embedded in L2(|x | < R). Therefore,

lim sup
n→∞

‖un‖L2(|x |<R)

n→∞−→ 0 .

Taking advantage of the hypothesis of the compactness at infinity (1.18), we deduce the
strong convergence of the sequence (un)n≥0 to 0 in L2(R2N ).

Finally, (3.2) stems from the strong convergence to zero of (un)n≥0 in L2(R2N ) and the
following well-known radial estimate available for any function u in H1

rad(R
2N ) is

|u(x)| ≤
√

(N − 1)!
πN

‖u‖
1
2
L2(R2N )

‖∇u‖
1
2
L2(R2N )

|x |N− 1
2

, for a.e. x ∈ R
2N .

�

Now, arguing as in the proof of Proposition 2.3 in [8], we deduce the following result:

PROPOSITION 3.3

For any δ > 0, we have

sup
s≥0

(∣∣∣ vn(s)

A0 − δ

∣∣∣2 − (2N − 1)s

)
→ ∞ , n → ∞ . (3.3)

A by-product of the previous proposition is the following corollary:
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COROLLARY 3.4

Under the above notations, there exists a sequence (α
(1)
n )n≥0 inR+ tending to infinity such

that

4
∣∣∣
vn

(
α

(1)
n

)

A0

∣∣∣2 − (2N − 1) α(1)
n

n→∞−→ ∞ , (3.4)

and for n sufficiently large, there exists a positive constant C such that

A0

2

√
(2N − 1)α

(1)
n ≤ |vn(α(1)

n )| ≤ C

√
α

(1)
n + ◦(1) , (3.5)

where C =
√

(N−1)!
2πN lim sup

n→∞

∥∥∥ ∇un
| . |N−1

∥∥∥
L2(R2N )

.

Proof. In order to establish (3.4), let us consider the sequences

Wn(s) := 4
∣∣∣vn(s)

A0

∣∣∣2 − (2N − 1)s and an := sup
s≥0

Wn(s) .

By definition, there exists a positive sequence (α
(1)
n )n≥0 such that

Wn(α
(1)
n ) ≥ an − 1

n
·

Now, in view of (3.3), an
n→∞−→ ∞ and then Wn(α

(1)
n )

n→∞−→ ∞. It remains to prove that

α
(1)
n

n→∞−→ ∞. If not, up to a subsequence extraction, the sequence (α
(1)
n )n≥0 is bounded

and so is (Wn(α
(1)
n ))n≥0 by (3.2), which yields a contradiction.

Concerning estimate (3.5), the left-hand side follows directly from (3.4). Besides, for
any positive real number s, we have

|vn(s)| ≤
∣∣∣vn(0) +

∫ s

0
v′
n(τ ) dτ

∣∣∣ ≤ |vn(0)| + s
1
2 ‖v′

n‖L2(R) ,

which according to (3.2) implies that vn(0)
n→∞−→ 0, and the following straightforward

equality

‖v′
n‖L2(R) =

√
(N − 1)!

2πN

∥∥∥ ∇un
| . |N−1

∥∥∥
L2(R2N )

,

gives the right-hand side of inequality (3.5), and thus ends the proof of the result. �

Corollary 3.4 allows to extract the first scale, it remains to extract the first profile. To do
so, let us set

ψn(y) =
√

γN

2Nα
(1)
n

vn

(
α(1)
n y

)
·
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It will be useful later on to point out that, in view of Property (3.2), ψn(0)
n→∞−→ 0. The

following result summarizes the main properties of the sequence (ψn)n≥0:

Lemma 3.5. Under notations of Corollary 3.4, there exists a profile ψ(1) ∈ P such that,
up to a subsequence extraction

ψ ′
n ⇀ ψ(1)′ in L2(R) and

∥∥ψ(1)′∥∥
L2 ≥ A0

2

√
2N − 1

2N
γN ·

Proof. Noticing that ‖ψ ′
n‖L2(R) =

∥∥∥ ∇un
| . |N−1

∥∥∥
L2(R2N )

, we infer that the sequence (ψ ′
n)n≥0

is bounded in L2(R). Thus, up to a subsequence extraction, (ψ ′
n)n≥0 converges weakly in

L2(R) to some function g. Let us now introduce the function

ψ(1)(s) :=
∫ s

0
g(τ ) dτ .

Our aim is then to prove that ψ(1) is a profile and that
∥∥ψ(1)′∥∥

L2 ≥ A0

2

√
2N − 1

2N
γN ·

On the one hand, applying Cauchy–Schwarz inequality, we get

∣∣ψ(1)(s)
∣∣ =

∣∣∣
∫ s

0
g(τ ) dτ

∣∣∣ ≤ √
s‖g‖L2(R) ,

which ensures that ψ(1) ∈ L2(R+, e−2Nsds) .

On the other hand, we have ψ(1)(s) = 0 for all s ≤ 0. Indeed, using the fact that

‖un‖2
L2(R2N )

= (
α(1)
n

)2
∫
R

|ψn(s)|2e−2Nα
(1)
n s ds ,

we obtain

∫ 0

−∞
|ψn(s)|2 ds ≤

∫ 0

−∞
|ψn(s)|2e−2Nα

(1)
n s ds ≤ 1(

α
(1)
n
)2 ‖un‖2

L2(R2N )
,

which implies that (ψn)n≥0 converges strongly to zero in L2(] − ∞, 0[), and thus for
almost all s ≤ 0 (still up to the extraction of a subsequence).

But, we have

ψn(s) − ψn(0) =
∫ s

0
ψ ′
n(τ ) dτ −→

n→∞

∫ s

0
g(τ ) dτ = ψ(1)(s) ,

which, according to the fact that ψn(0)
n→∞−→ 0, implies that

ψn(s)
n→∞−→ ψ(1)(s) , ∀ s ∈ R . (3.6)

We deduce that ψ(1)|]−∞,0] = 0 , which completes the proof of the fact that ψ(1) ∈ P .
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Finally in light of (3.5), we have

∣∣ψ(1)(1)
∣∣ ≥ A0

2

√
2N − 1

2N
γN ·

Since

∥∥ψ(1)′∥∥
L2(R)

≥
∫ 1

0

∣∣ψ(1)′(τ )
∣∣ dτ = ∣∣ψ(1)(1)

∣∣ ,

this gives rise to

∥∥ψ(1)′∥∥
L2 ≥ A0

2

√
2N − 1

2N
γN ,

which ends the proof of the key lemma 3.1. �

3.3 Study of the remainder term and iteration

The last step of the proof consists in iteratating the previous process and to prove that the
algorithmic construction converges. For this purpose, let us first consider the remainder
term

r(1)
n (x) = un(x) − g(1)

n (x) , (3.7)

where

g(1)
n (x) =

√
2Nα

(1)
n

γN
ψ(1)

(
− log |x |

α
(1)
n

)
·

It can be easily proved that (r(1)
n )n≥0 is a bounded sequence inHrad(R

2N ) satisfying (1.16),
(1.18) and the following property:

lim
n→∞

∥∥∥ ∇r(1)
n

| . |N−1

∥∥∥2

L2(R2N )
= lim

n→∞
∥∥∥ ∇un
| . |N−1

∥∥∥2

L2(R2N )
− ∥∥ψ(1)′∥∥2

L2(R)
· (3.8)

Let us now define A1 = lim sup
n→∞

‖r(1)
n ‖L(R2N ) . If A1 = 0 , we stop the process. If not,

arguing as above, we prove that there exists a constant C such that

A1

2

√
(2N − 1) α

(2)
n ≤ ∣∣r̃(1)

n

(
α(2)
n

)∣∣ ≤ C

√
α

(2)
n + o(1) , (3.9)

where r̃(1)
n (s) = r(1)

n (e−s) and that there exist a scale (α
(2)
n ) satisfying the statement of

Corollary 3.4 with A1 instead of A0 and a profile ψ(2) in P such that

r(1)
n (x) =

√
2Nα

(2)
n

γN
ψ(2)

(
− log |x |

α
(2)
n

)
+ r(2)

n (x) ,
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with
∥∥ψ(2)′∥∥

L2 ≥ A1

2

√
2N − 1

2N
γN and

lim
n→∞

∥∥∥ ∇r(2)
n

| . |N−1

∥∥∥2

L2(R2N )
= lim

n→∞
∥∥∥ ∇r(1)

n

| . |N−1

∥∥∥2

L2(R2N )
− ∥∥ψ(2)′∥∥2

L2(R)
.

Moreover, we claim that (α
(1)
n ) and (α

(2)
n ) are orthogonal in the sense of Definition 1.9.

Otherwise, there exists a constant C such that

1

C
≤
∣∣∣∣∣
α

(2)
n

α
(1)
n

∣∣∣∣∣ ≤ C .

Making use of equality (3.7), we get

r̃(1)
n

(
α(2)
n

) =
√

2Nα
(1)
n

γN

(
ψn

(
α

(2)
n

α
(1)
n

)
− ψ(1)

(
α

(2)
n

α
(1)
n

))
·

This implies that, up to a subsequence extraction,

lim
n→∞

√
γN

2Nα
(1)
n

r̃(1)
n

(
α(2)
n

) = lim
n→∞

(
ψn

(
α

(2)
n

α
(1)
n

)
− ψ(1)

(
α

(2)
n

α
(1)
n

))
= 0 ,

which is in contradiction with the left-hand side of inequality (3.9). Finally, iterating the
process, we get at step �,

un(x) =
�∑

j=1

√
2Nα

( j)
n

γN
ψ( j)

(
− log |x |

α
( j)
n

)
+ r(�)n (x) ,

with

lim sup
n→∞

‖r(�)n ‖2
H(R2N )

� 1 − A2
0 − A2

1 − · · · − A2
�−1 .

This implies that A� → 0 as � → ∞ and this ends the proof of the theorem.

4. Proof of Proposition 1.8

This section is devoted to the proof of Proposition 1.8. Actually, the fact that the sequence
( fk)k≥0 converges weakly to 0 in Hrad(R

2N ) stems from straightforward computations,
and the heart of the matter consists in showing that

‖ fk‖L(R2N )

k→∞−→ 1√
γN

· (4.1)

Firstly, let us prove that lim infk→∞ ‖ fk‖L(R2N ) ≥ 1√
γN

· For this purpose, let us consider

λ > 0 such that∫
R2N

(
e
∣∣ fk (x)

λ

∣∣2

− 1
)

dx ≤ κ ′ .
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By definition, this gives rise to
∫

|x |≤e−k

(
e
∣∣ fk (x)

λ

∣∣2

− 1
)

dx ≤ κ ′ ,

and thus consequently

πN

N !
(

e
2Nk

γN λ2 − 1
)

e−2Nk ≤ κ ′ .

We deduce that

λ2 ≥ 2Nk

γN log(1 + N !
πN κ ′ e2Nk)

−→
k→∞

1

γN
,

which ensures that

lim inf
k→∞ ‖ fk‖L(R2N ) ≥ 1√

γN
·

Now the fact that lim supk→∞ ‖ fk‖L(R2N ) ≤ 1√
γN

derives from the following proposition

the proof of which is postponed at the end of this section:

PROPOSITION 4.1

Let γ ∈ ]0, γN [. A positive constant Cγ,N exists such that

∫
R2N

(eγ |u(x)|2 − 1) dx ≤ Cγ,N‖u‖2
L2(R2N )

, (4.2)

for any non-negative function u belonging toHrad(R
2N ), compactly supported and satis-

fying u(|x |) : [0,∞[→ R is decreasing and
∥∥∥ ∇u

| . |N−1

∥∥∥
L2(R2N )

≤ 1. Besides, inequality

(4.2) is sharp.

Assume indeed for the time being that the above proposition is true. Then, for any fixed
ε > 0, there exists Cε > 0 such that∫

R2N
(e(γN−ε)| fk (x)|2 − 1) dx ≤ Cε,N‖ fk‖2

L2(R2N )
,

which leads to the desired result, by virtue of the convergence of ( fk) to zero in L2(R2N ).
To end the proof of Proposition 1.8, it remains to establish Proposition 4.1 the proof of

which is inspired from Theorem 0.1 in [1].

Proof. Let u satisfy the assumptions of Proposition 4.1. Then there exists a function
v : R+ → R+ such that

u(x) = v(r) , |x | = r ,

v′(r) ≤ 0 , ∀ r ≥ 0 , and

∃ r0 > 0 such that v(r) = 0 ∀ r ≥ r0 .
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Setting w(t) = √
γN v

(
e− t

2
)
, we can notice that w satisfies the following properties:

w(t) ≥ 0 , ∀ t ∈ R , (4.3)

w′(t) ≥ 0 , ∀ t ∈ R , and (4.4)

∃ t0 ∈ R such that w(t) = 0 ∀ t ≤ t0 . (4.5)

Besides, we obtain by straightforward computations that

‖w′‖L2(R) = √
N
∥∥∥ ∇u

| . |N−1

∥∥∥
L2(R2N )

≤ √
N , (4.6)

∫
R

|w(t)|2 e−Nt dt = 4N‖u‖2
L2(R2N )

, (4.7)

and

∫
R

(
e

γ
γN

|w(t)|2 − 1
)

e−Nt dt = (N − 1)!
πN

∫
R2N

(
eγ |u(x)|2 − 1

)
dx . (4.8)

Thus to prove (4.2), it suffices to show that for any β belonging to ]0, 1[, there exists a
positive constant Cβ such that

∫
R

(eβ|w(t)|2 − 1) e−Nt dt ≤ Cβ

∫
R

|w(t)|2 e−Nt dt , (4.9)

where w satisfies (4.3), (4.4), (4.5) and (4.6). For that purpose, let us set

T0 := sup{t ∈ R; w(t) ≤ 1} ∈ ] − ∞,+∞]

and write

∫
R

(eβ|w(t)|2 − 1) e−Nt dt = I1 + I2 ,

where

I1 :=
∫ T0

−∞
(eβ|w(t)|2 − 1) e−Nt dt and I2 :=

∫ +∞

T0

(eβ|w(t)|2 − 1) e−Nt dt .

In order to estimate I1, let us notice that for any t ≤ T0, w(t) belongs to [0, 1]. Using the
fact that there exists a positive constant M such that

ex − 1 ≤ Mx , ∀ x ∈ [0, 1] ,

we deduce that

I1 ≤ M β

∫ T0

−∞
|w(t)|2e−Nt dt .
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Let us now estimate I2. By virtue of Cauchy–Schwarz inequality, we get for any t ≥ T0,

w(t) = w(T0) +
∫ t

T0

w′(τ ) dτ

≤ 1 + √
t − T0 ‖w′‖L2(R) .

This implies, in view of (4.6), that

w(t) ≤ 1 + √
(t − T0)N .

In addition, using the fact that for any ε > 0 there exists Cε > 0 such that

1 + √
s ≤ √

(1 + ε)s + Cε .

We deduce that for any t ≥ T0,

w(t)2 ≤ (1 + ε)(t − T0)N + Cε .

As β ∈]0, 1[, we can choose ε such that β(1 + ε) − 1 < 0 . Hence

I2 ≤
∫ +∞

T0

eβ(1+ε)(t−T0)N+βCε−Nt dt

≤ eβCε−NT0

∫ +∞

T0

e(t−T0)N [β(1+ε)−1] dt

≤ eβCε−NT0

N [1 − β(1 + ε)] ·

Since
∫ +∞

T0

|w(t)|2 e−Nt dt ≥
∫ +∞

T0

e−Nt dt = e−NT0

N
,

we infer that

I2 ≤ eβCε

1 − β(1 + ε)

∫ +∞

T0

|w(t)|2 e−Nt dt .

Now, settingCβ = max
{
Mβ,

eβCε

1 − β(1 + ε)

}
, we get (4.9). This ends the proof of inequal-

ity (4.2).
Finally, note that the example by Moser fk defined by (1.12) illustrates the sharpness

of inequality (4.2), since ‖ fk‖L2(R2N )

k→∞−→ 0 and

∫
R2N

(eγN | fk (x)|2 − 1) dx ≥
∫

|x |<e−k
(eγN | fk (x)|2 − 1) dx

= πN

N !
(
1 − e−2Nk) −→

k→∞
πN

N ! ·

�
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