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An improved nonlocal sparse
regularization-based image deblurring
via novel similarity criteria

Nannan Wang1, Wenxuan Shi2,3 , Ci’en Fan1 and Lian Zou1

Abstract
Image deblurring is a challenging problem in image processing, which aims to reconstruct an original high-quality
image from its blurred measurement caused by various factors, for example, imperfect focusing caused by the
imaging system or different depths of scene appearing commonly in our daily photos. Recently, sparse represen-
tation whose basic idea is to code an image patch as a linear combination of a few atoms chosen out from an over-
complete dictionary has shown uplifting results in image deblurring. Based on this and another heart-stirring
property called nonlocal self-similarity, some researchers have developed nonlocal sparse regularization models
to unify the local sparsity and the nonlocal self-similarity into a variational framework for image deblurring. In such
models, the similarity evaluation for searching similar image patches is indispensable and influential in deblurring
performance. Though the traditional Euclidean distance is generally a choice as a similarity metric, its application
might give rise to inferior performance since it fails to capture the intrinsic structure of image patches. Conse-
quently, in this article, based on structural similarity index and principal component analysis, we propose the
nonlocal sparse regularization-based image deblurring with novel similarity criteria called structural similarity dis-
tance and principal component analysis-subspace Euclidean distance to improve the accuracy of deblurring. The
structural similarity index is commonly used for assessing perceptual image quality, and principal component analysis
is pervasively used in pattern recognition and dimensionality reduction. In our comprehensive experiments, the
nonlocal sparse regularization-based image deblurring with our novel similarity criteria has achieved higher peak
signal-to-noise and favorable consistency with subjective vision perception compared with state-of-the-art deblur-
ring algorithms.
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Introduction

Image deblurring has many applications from astronomical

imaging and remote sensing imaging to medical imaging. It

has drawn attention around the world for decades and has

been regarded as a worthy research topic in image process-

ing so far. If we can acquire the degraded image Yim of sizeffiffiffiffi
N
p
�

ffiffiffiffi
N
p

pixels, then the task of image deblurring is to
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recover the unknown clean image Xim based on the fol-

lowing degradation model

y ¼ Hxþ n ð1Þ

where x 2 RN and y 2 RN are column stacked vector

versions of Xim and Yim, respectively, that is, x ¼
½xð1Þ; xð2Þ; . . . ; xðNÞ�T and y ¼ ½yð1Þ; yð2Þ; . . . ; yðNÞ�T ; n is the

additive Gaussian noise, that is, n*Nð0; s2Þ; and H is an

irreversible blur matrix involved with a point spread func-

tion (PSF) kernel. Whether H is known or not, image

deblurring can be divided into two types, non-blind and

blind deblurring. As for blind deblurring, when the blur

matrix H is estimated by using some method,1,2 the strate-

gies used in non-blind deblurring are appropriate for blind

deblurring. For a compact expression hereinafter, we use

column vectors x and y to refer to the clean image and the

blurred image, respectively.

Obviously, image deblurring is an ill-posed linear

inverse problem3; in other words, with the degraded

image y and the known blur matrix H, there can be more

than one clean image x that satisfies equation (1). Hence,

traditional deblurring approaches in terms of deconvolu-

tion4,5 by inversing the blur matrix H straightforwardly

often introduce severe ringing artifacts controlled by the

additive noise n.

To alleviate this situation, the regularization models,

which try to incorporate both the observation model and

the prior knowledge of the clean image as a regularization

term into a variational formulation, have been widely

investigated and adopted for image deblurring. The regu-

larization models are generally formulated as the following

minimization problem

arg min
x
fk y�Hx k2

2 þlRðxÞg ð2Þ

where k y�Hx k2
2 is a quadratic data-fidelity term, RðxÞ is

called regularization term modeling the prior knowledge,

and constant l named the regularization parameter can bal-

ance between k y�Hx k2
2 and RðxÞ with a proper value.

Because the design of effective regularization terms is at

the core of image deblurring, some classical regularization

terms have been designed, for example, quadratic Tikho-

nov regularization,6 Mumford–Shah regularization,7 wave-

let regularization,8 or total variation (TV) regularization.9

Even though various deblurring methods are rising and

developed, the regularization models still show their

extraordinary charm in image deblurring. This has moti-

vated many outstanding investigators to start a long process

of exploration to find excellent image priors as regulariza-

tion terms.

In the exploration process, sparsity as one of the most

significant properties of natural images has gradually come

into researchers’ sight in image deblurring. As a result,

sparse representation-based regularization models10–12

have been promoted rapidly and have achieved great

success in image deblurring. These models follow an

assumption that each patch of an image can be precisely

represented by a few elements from a basis set called a

dictionary. Instead of traditional analytically designed dic-

tionaries13 based on transform bases, such as discrete cosine

transform, wavelet, or curvelet, the dictionaries learned from

example image patches10,14 adapt better to local image struc-

tures and achieve better deblurring performance.

Mathematically, for a given dictionary D, a signal

x 2 RN can be sparsely represented as x � Da by

solving an l0-minimization problem, showed as

arg minakak0; s :t : kx� Dak2< d, where d is a small

constant controlling the approximation error. For efficient

convex optimization,15 the NP-hard l0-minimization is

often relaxed to its counterpart l1-minimization and we

formulate this l1-minimization as the following regulariza-

tion form

ax ¼ arg min
a
fkx� Dak2

2 þlkak1g ð3Þ

However, in equation (3), only the local sparsity is con-

sidered; in other words, each exemplar patch is usually

regarded to be independent in dictionary learning and

sparse coding. Considering this problem, lately, when non-

local self-similarity which describes the repetitiveness

existed in textures and structures among nonlocal image

patches is well-known, a series of models regularized by

nonlocal self-similarity16–18 are emerging.

More recently, the so-called nonlocal sparse regulariza-

tion models19–22 which combine the local sparsity and the

nonlocal self-similarity into a unified framework are

becoming more and more popular in image deblurring.

Among these models, a nonlocally centralized sparse rep-

resentation (NCSR) model20 proposed by Dong et al. is

superior to others. In this article, our nonlocal sparse

regularization-based image deblurring via novel similarity

criteria is realized under the NCSR framework.

In the NCSR model, first, many overlapped image

patches with similar structures are included in the same

cluster using a k-means clustering algorithm.23,24 Then,

Zhang et al. exploit the principal component analysis

(PCA) technique25 and view each cluster as the basic unit

to learn a series of compact subdictionaries. Next, during

the sparse coding phase, the best subdictionary that is most

fitted to code a given patch is selected to obtain the sparse

coding coefficients. Last, the sparse coding noise (SCN),

defined as the deviation between sparse coding coefficients

of the blurred image and a good estimation of sparse coding

coefficients of the clean image based on a nonlocal means

(NLM) method,26 is suppressed to improve the perfor-

mance of image deblurring.

Analyzing the entire process in the NCSR modeling, we

can discover that the similarity evaluation for searching

similar image patches is involved not only in k-means clus-

tering for dictionary learning and subdictionary selection

for each patch but also in estimation of the sparse coding
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coefficients by the principle of NLM. On this account, the

accuracy of evaluating the similarity of image patch pairs is

a vital factor for satisfactory deblurring quality. The Eucli-

dean distance as a similarity metric is a usual choice; how-

ever, the Euclidean distance is too simple to evaluate the

similarity among image patches precisely without capturing

the intrinsic structure of patches, which has limited the

performance of deblurring. To suppress this problem, in

this article, we propose to adopt structural similarity

(SSIM)27 index and the Euclidean distance in a lower

dimensional space made by PCA as new similarity cri-

teria. Extensive experiments are conducted on image

deblurring, which demonstrate that our nonlocal sparse

regularization-based image deblurring via novel similar-

ity criteria under the NCSR framework can outperform

significantly the original NCSR model and other state-

of-the-art methods both in visual effect and quantitative

evaluation via peak signal-to-noise (PSNR), SSIM, and

feature similarity (FSIM).28

With the rapid rise of big data and deep learning in last

few years, more and more scholars attempt to utilize deep

learning in image deblurring and many worthy works29–32

have been done. Though this kind of deblurring methods

can deblur images to a certain degree, they are more likely

to ignore high frequency information in images and the fine

image structures.

Therefore, the following sections are presented to put

forward our solutions. “Ideas on our novel similarity

criteria” section develops the ideas in our proposed SSIM

distance and PCA-subspace Euclidean distance. “Image

deblurring via our proposed novel similarity criteria under

the NCSR framework” section introduces image deblurring

via our proposed novel similarity criteria under the NCSR

framework in detail. “Experimental results” section pre-

sents extensive experimental results and “Conclusion and

future work” section summarizes this article.

Ideas on our novel similarity criteria

For an image Xim of size
ffiffiffiffi
N
p
�

ffiffiffiffi
N
p

pixels and an image patch

ximi
of size

ffiffiffi
n
p � ffiffiffi

n
p

pixels extracted from Xim at location i,

let x 2 RN ; xi 2 Rn denote column vectors obtained by

stacking the columns of Xim and ximi
, respectively, that is,

x ¼ ½xð1Þ; xð2Þ; . . . ; xðNÞ�T , xi ¼ ½xið1Þ; xið2Þ; . . . ; xiðnÞ�T , and

fxig 2 Rm�n denote a set of xi, where i ¼ 1; 2; 3; . . . . . . m

and m is the number of patches extracted from the image.

Generally, the Euclidean distance is chosen as a simi-

larity criterion. Given two image patches xi and xk , the

similarity of them is formulated as

jjxi � xk jj22 ¼
Xn

p¼1

½xið pÞ � xk ð pÞ�2 ð4Þ

Hence, using the Euclidean distance, the computational

complexity of evaluating the similarity for any two patches

of fxig is OðmnÞ that is fairly high when the value of
ffiffiffi
n
p

is

6 or 8. So we try to find a feasible way called PCA-

subspace Euclidean distance to measure the similarity in

a lower domain.

Furthermore, the Euclidean distance is so simple that it

fails to capture the intrinsic structure of image patches. For

this drawback, we replace the Euclidean distance with

SSIM distance to make full use of image structure

information.

SSIM index as a similarity criterion

The idea of SSIM index can be traced back by Wang et al.27

In that article, the author pointed out that natural image

signals are highly structured, that is, their pixels exhibit

strong dependencies, especially when they are spatially

proximate, and these dependencies carry important infor-

mation about the structure of the objects in the visual scene.

And then SSIM is developed as a well-known quality

metric used to measure the similarity between two images.

Given a reference image x 2 RN and a test image

y 2 RN , the SSIM between them is defined as

SSIMðx; yÞ ¼ ½‘ðx; yÞ�a � ½cðx; yÞ�b � ½sðx; yÞ�g ð5Þ

where

‘ðx; yÞ ¼ 2�x�y þ C1

�2
x þ �2

y þ C1

cðx; yÞ ¼ 2sxsy þ C2

s2
x þ s2

y þ C2

sðx; yÞ ¼ sxy þ C3

sxsy þ C3

ð6Þ

The first formula in equation (6) is a function ‘ðx; yÞ
which gives luminance comparison. The second and the

third formulas in equation (6) are two functions cðx; yÞ and

sðx; yÞ which give contrast comparison and structure com-

parison, respectively. a > 0, b > 0, and g > 0 in equation

(5) are parameters to acquire a proper weightage of the

three functions. �x and �y are the mean luminance of

images x and y, respectively. sx and sy stand for the stan-

dard deviations of the pixel distribution of images x and y,

respectively. The covariance between x and y is denoted by

sxy. And the positive constants C1, C2, and C3 are used

to avoid a null denominator. In general, we set

a ¼ b ¼ g ¼ 1 and C3 ¼ C2=2 to obtain a simplified form

of the SSIM

SSIMðx; yÞ ¼ ð2�x�y þ C1Þð2sxy þ C2Þ
ð�2

x þ �2
y þ C1Þðs2

x þ s2
y þ C2Þ

ð7Þ

The value of SSIM ranges from 0 to 1, and the closer

that the value is to 1, the higher the similarity between x
and y is.

To reveal SSIMs merit that it can assess perceptual

image quality better by making full use of structural

Wang et al. 3



information of images than the Euclidean distance, a moti-

vating example is given by Wang et al.,27 where the orig-

inal “Boat” image is altered with different distortions

which can be seen to have drastically different percep-

tual quality. Surprisingly, the distorted images yield

nearly identical mean square error (MSE) relative to the

original image. According to the same MSE value, the

distorted images with drastically different perceptual

quality tend to be considered with the same quality

level. This unreasonable phenomenon further illustrates

the defect of using the Euclidean distance to measure

the similarity. By contrast, the SSIM values of the four

distorted images are different from each other and can

assess perceptual image quality.

This example inspires us to extend SSIM as a similarity

measure to search similar image patches in an image.

Consequently, for two image patches xi 2 Rn and

xk 2 Rn, the SSIM distance of them is expressed as

dis SSIMðxi; xkÞ ¼
ð2�xi

�xk
þ C1Þð2sxixk

þ C2Þ
ðxi þ �xk

2 þ C1Þðsxi
2 þ sxk

2 þ C2Þ
ð8Þ

The comparison of the Euclidean distance-based and the

SSIM distance-based criteria for searching similar image

patches to a given exemplar patch is shown in Figure 1. As

shown in the left subfigure of Figure 1(a), the first 18

similar patches (small blue squares) searched by the Eucli-

dean distance-based criterion are mainly distributed in the

lower left of the exemplar patch (small red square). How-

ever, the first 18 similar patches (small yellow squares)

searched by the SSIM distance-based criterion are more

likely to be distributed in the upper right of the exemplar

Figure 1. Comparison of searching similar image patches with the Euclidean distance-based and the SSIM distance-based criteria for the
same exemplar patch. (a) Left: The first 18 similar patches searched in a search window by the Euclidean distance criteria. Right: The first
18 similar patches searched in a search window by the SSIM distance criteria. (b) Top: the first five similar patches extracted from the
patches (in the searching window of the left image of (a)). Bottom: the first five similar patches extracted from the patches (in the
searching window of the right image of (a)). SSIM: structural similarity.
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patch (small red square), as shown in the right subfigure of

Figure 1(a). Figure 1(b) represents the first five similar

patches extracted from the 18 similar patches showed in

the left and right subfigures of Figure 1(a), respectively.

We can observe that based on the Euclidean distance

metric, a good few configurations of the patch intensity

on the corresponding positions of each patch are mis-

matched. In contrast, with the SSIM distance metric, most

of the configurations of the patch intensities on the corre-

sponding positions are the same or similar. Therefore, the

patch searching method based on the SSIM distance can

differentiate the patches more precisely than the one based

on the Euclidean distance.

PCA-subspace Euclidean distance

What inspires us to propose this criterion is the assumption

that image patch vectors focus on a lower dimensional

manifold rather than the full space. This assumption stems

from the researches done by Huang and Mumford33 and

Lee et al.34 who found the distribution of data is extremely

“sparse” with the majority of data points concentrated on

clusters and nonlinear low-dimensional manifolds.

Meanwhile, PCA has been widely used in numerous image

processing applications. When applied in image denoising,35

PCA is computed as a proper local basis set for acquiring the

noisy signal projection on it, and denoising is achieved by

safely setting the small high-frequency coefficients to zero.

This further encourages us to think whether PCA can be used

to dramatically reduce the dimensionality of image patch

vectors before evaluating their similarity. Based on the above

consideration, some works36,37 have been done.

With all the above worthy work done by predecessor, we

propose to replace the Euclidean distance as a similarity metric

defined in equation (4) with a PCA-subspace Euclidean dis-

tance computed from projections ofxi onto a low-dimensional

subspace determined by PCA. The details of PCA-subspace

Euclidean distance will be introduced in the following.

Let a matrix X 2 Rm�n describe fxig 2 Rm�n as follows

X ¼

x11 x12 . . . x1j . . . x1n

x21 x22 . . . x2j . . . x2n

..

. ..
. ..

. ..
. ..

. ..
.

xi1 xi2 . . . xij . . . xin

..

. ..
. ..

. ..
. ..

. ..
.

xm1 xm2 . . . xmj . . . xmn

2
666666666664

3
777777777775

ð9Þ

where each row of X corresponds to an image patch xi in

fxig, each column stands for a specific dimension, m is the

number of image patches, and n is the dimensionality of

image patch vectors.

First, we calculate the mean value of dimensions one by

one and get a vector �d ¼ ½ �d1; �d2; . . . ; �dj; . . . ; �dn�, where �dj

is the mean value of jth dimension. Then, we subtract the

mean value of dimensions from each corresponding col-

umn of X and X updates to

�X ¼

x11 � �d1 x12 � �d2 . . . x1j � �dj . . . x1n � �dn

x21 � �d1 x22 � �d2 . . . x2j � �dj . . . x2n � �dn

..

. ..
. ..

. ..
. ..

. ..
.

xi1 � �d1 xi2 � �d2 . . . xij � �dj . . . xin � �dn

..

. ..
. ..

. ..
. ..

. ..
.

xm1 � �d1 xm2 � �d2 . . . xmj � �dj . . . xmn � �dn

2
666666666664

3
777777777775

ð10Þ

Next, we can estimate its covariance matrix

W 2 Rn�n as

W ¼ 1

m� 1
�X

T �X ð11Þ

Last, we compute the singular value decomposition38 of

W as

W ¼ UΣVT ¼

u11 u12 . . . u1n

u21 u22 . . . u2n

..

. ..
. ..

. ..
.

ui1 ui2 . . . uin

..

. ..
. ..

. ..
.

un1 un2 . . . unn

2
66666666664

3
77777777775

s1 0 . . . 0

0 s2 . . . 0

..

. ..
. ..

. ..
.

0 0 . . . 0

..

. ..
.

sn�1
..
.

0 0 . . . sn

2
66666666664

3
77777777775

v11 v12 . . . v1n

v21 v22 . . . v2n

..

. ..
. ..

. ..
.

vi1 vi2 . . . vin

..

. ..
. ..

. ..
.

vn1 vn2 . . . vnn

2
66666666664

3
77777777775

ð12Þ

where the matrix Σ 2 Rn�n is a diagonal matrix with diag-

onal elements fs1; s2; . . . ; sng called singular values, and

the values fskgn
k¼1 are always in decreasing order, that is,

s1 �s2 � . . . � sn�1 � sn � 0. The matrix U 2 Rn�n can

be another simple form U ¼ ½uð1Þ; uð2Þ; . . . ; uðnÞ� and the

vectors fuðkÞgn

k¼1 consist of all the eigenvectors of the cov-

ariance matrix W.

We can find a proper threshold d to set the

singular values fskgn
k¼dþ1 which satisfy sk < d to zero,

thus we get the low-dimensional PCA subspace

Wang et al. 5



decided by UðdÞ ¼ ½uð1Þ; uð2Þ; . . . ; uðdÞ� selected from

U ¼ ½uð1Þ; uð2Þ; . . . ; uðnÞ�, 0 < d � n. And the projection

of the image patch matrix X onto this PCA subspace is

given by

Xl ¼ XUðdÞ ¼

xl
1ð1Þ

xl
1ð2Þ

. . . xl
1ðjÞ

. . . xl
1ðdÞ

xl
2ð1Þ

xl
2ð2Þ

. . . xl
2ðjÞ

. . . xl
2ðdÞ

..

. ..
. ..

. ..
. ..

. ..
.

xl
ið1Þ

xl
ið2Þ

. . . xl
iðjÞ

. . . xl
iðdÞ

..

. ..
. ..

. ..
. ..

. ..
.

xl
mð1Þ

xl
mð2Þ

. . . xl
mðjÞ

. . . xl
mðdÞ

2
6666666666664

3
7777777777775
ð13Þ

Now, given two image patches xi and xk , the PCA-

subspace Euclidean distance as a similarity metric can be

defined as

dis PCAðxi; xkÞ ¼ jjxl
i � xl

k jj22 ¼
Xd

p¼1

½xl
iðpÞ � xl

k ðpÞ�2

ð14Þ

Figure 3 shows the top six eigenvectors of

U ¼ ½uð1Þ; uð2Þ; . . . ; uð36Þ� computed from 6� 6 image

patches for the images “House,” “Hill,” “Boats,”

“Peppers,” and “Barbara” (see Figure 2). The first eigen-

vector (the left-most column in Figure 3) corresponding to

the largest eigenvalue s1 is usually approximately flat. This

flat eigenvector represents the average intensity in the

6� 6 patch. The next two eigenvectors (columns 2–3 in

Figure 3) almost always represent two orthogonal gradient

directions which are necessary for representing edges. Gen-

erally, the front few eigenvectors of U (columns 2–6 in

Figure 3) represent edge and ridge patterns; however, in

the case of strongly texture images, they can also represent

the dominant texture patterns. For example, the image

“Barbara” in Figure 2 owns abundant stripe patterns, so its

3th–6th eigenvectors (columns 3–6 in the last row in Figure

3) show specific texture of the image. Based on the above

analysis that the front few PCA eigenvectors represent

some edges and texture information of images, our experi-

ments for deblurring conducted in “Experimental results”

section demonstrate that the similarity evaluation in a low-

dimensional subspace determined by PCA can capture the

intrinsic structure of image patches more precisely than that

in a full space.

Image deblurring via our proposed novel
similarity criteria under the NCSR
framework

The deblurring model under the NCSR framework

For an image Xim of size
ffiffiffiffi
N
p
�

ffiffiffiffi
N
p

pixels and an image

patch ximi
of size

ffiffiffi
n
p � ffiffiffi

n
p

pixels extracted from Xim at

location i, using an extraction matrix Ei, that is,

Figure 2. The original images used in Figure 3.
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ximi
¼ EiXim. Let x ¼ ½xð1Þ; xð2Þ; . . . ; xðNÞ�T 2 RN ,

xi ¼ ½xið1Þ; xið2Þ; . . . ; xiðnÞ�T 2 Rn denotes column vectors

obtained by stacking the columns of Xim and ximi
, respec-

tively. According to equation (3), given a learned dictionary

D 2 Rn�M (n � M , M is the number of contained atoms in

D), each patch can be represented sparsely as xi � Daxi
by

solving the l1-minimization-based regularization form

axi
¼ arg min

ai

fjjxi �Daijj22 þ ljjaijj1g ð15Þ

Then, the entire image x can be reconstructed though a

straightforward least-square solution

x � D 	 ax ¼
XN

i¼1

ET
i Ei

 !�1XN

i¼1

ðET
i Daxi

Þ ð16Þ

where ax denotes the concatenation of all axi
2 RM and

the notation 	 is used to simplify the operation ofPN
i¼1ET

i Ei

� ��1 PN
i¼1

ET
i Daxi

� �
. Equation (16) shows that

we can reconstruct the whole image x by averaging each

recovery patch of xi.

In the process of image deblurring, however, what we

have is just the degraded observation y ¼ Hxþ n. To

reconstruct the unknown clean image x based on y, we first

code y sparsely, that is, y � D 	 ay, and the sparse coding

coefficient ay is cast as

ay ¼ arg min
a

jjy�HD 	 ajj22 þ l
X

i

jjaijj1

( )
ð17Þ

Then the image x is reconstructed as x � D 	 ay.

It’s obvious that if we want to obtain a higher quality

image reconstruction, we must make the sparse coding

coefficients ay as close to ax as possible. Consequently,

another constraint to suppress the deviation between ay and

ax is needed urgently. Considering this, a concept of SCN

is proposed and defined as

Va ¼ ay � ax ð18Þ

Some experiments performed by Dong et al.20 show that

the SCN Va can be well characterized by Laplacian func-

tions, which motivate us to model Va with a Laplacian prior.

Now, another problem is that ax is unavailable. None-

theless, we can find a way to acquire a good estimation of

ax, denoted by âx. Then, V̂a ¼ ay � âx can be a good

estimation of Va. Combining Va as a constraint to equation

(17), the more accurate sparse coding model is

ay ¼ arg min
a

jjy�HD 	 ajj22 þ l
X

i

jjaijj1 þ g
X

i

jjai � âxi
jj1

( )
ð19Þ

In addition, in this article, considering that the contents can

vary significantly across different images or different patches

in a single image, we adopt an adaptive subdictionary selec-

tion strategy that learn a series of PCA subdictionaries from

pre-collected k clusters of image patches and then, for a given

patch to be processed, select one subdictionary adaptively to

characterize the local sparse domain. Consequently, the spar-

sity of ay can be ensured and the local sparse regularization

Figure 3. The top six eigenvectors for 6� 6 image patches.
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term
P

ijjaijj1 can be removed. The final nonlocal sparse

regularization-based deblurring model is shown as

ay ¼ arg min
a

jjy�HD 	 ajj22 þ g
X

i

jjai � âxi
jj1

( )

ð20Þ

Let’s define fi ¼ ayi
� âxi

; fiðjÞ is the jth element of

fi, and siðjÞ is the standard deviation of fiðjÞ. In a max-

imum a posteriori estimator perspective (refer to the study

by Zhang et al.25 for more details), the sparse codes ay can

be represented as

ay ¼ arg min
a

jjy�HD 	 ajj22 þ 2
ffiffiffi
2
p

s2
n �

X
i

X
j

1

siðjÞ
jaiðjÞ � biðjÞ j

( )
ð21Þ

Compared equation (20) with equation (21), we have

gi ¼ ½gið1Þ
; gið2Þ

; . . . ; giðjÞ
; . . . ; giðMÞ

�

¼ 2
ffiffiffi
2
p

s2
n

sið1Þ

;
2
ffiffiffi
2
p

s2
n

sið2Þ

; . . . ;
2
ffiffiffi
2
p

s2
n

siðjÞ

; . . . ;
2
ffiffiffi
2
p

s2
n

siðMÞ

" #

ð22Þ
The deblurring model solving via our novel
similarity criteria

The deblurring model can be solved in an iterative way, and

the main procedures can be generalized in algorithm 1,

which is corresponding to Figure 4.

Experimental results

In this section, extensive experimental results are showed

in detail to verify the performance of nonlocal sparse

regularization-based image deblurring via novel similarity

criteria. The parameter setting is as follows: the image

patch size is
ffiffiffi
n
p � ffiffiffi

n
p ¼ 6� 6, the width of overlapping

between adjacent patches is 2 pixels, the number of clusters

is K ¼ 64, the number of similar patches best matched a

given patch in a searching window is set to be Q ¼ 13, the

threshold that defined in “PCA-subspace Euclidean dis-

tance” section is set to be d ¼ 100 to get the low-

dimensional PCA subspace, and the outer and inner loop

numbers are L ¼ 6 and J ¼ 120, respectively. Besides,

the regularization parameter g can be automatically deter-

mined by equation (22). All the experiments are conducted

in MATLAB 2016b on a PC with Intel(R) Core(TM) i7-

4790 CPU processor (3.60 GHz), 32.00G memory, and

Windows 7 operating system.

To evaluate the quality of deblurred images, in addition

to the PSNR generally used to evaluate the objective image

quality, two more powerful perceptual quality metrics

SSIM and FSIM are adopted to evaluate the visual quality.

For color images, image deblurring operations are only

applied to the luminance component. All the experimental

test images are listed in Figure 5.They are selected from an

image database (available at http://decsai.ugr.es/cvg/dbi-

magenes/index.php). Due to the limit of space, only parts

of the experimental results are shown in this article. Our

MATLAB code can be downloaded at the website: https://

github.com/wangnannanying/INSR_Deblur-SR.

Deblurring experiments for the simulated
blurred images

In this subsection, we conduct two sets of experiments to

demonstrate the performance of our proposed method for

image deblurring. In the first set, two commonly used blur

kernels, that is, a 9� 9 uniform kernel and a two-

dimensional Gaussian blur kernel with standard deviation

of 1.6 are exploited for simulating. Then, the blurred

images are further corrupted by additive Gaussian noise

with standard deviation of sn ¼
ffiffiffi
2
p

. In the second set,

we consider six typical deblurring scenarios used as the

benchmarks in many publications.39,40 The blur PSF and

the variance of the noise s2
n for each scenario are summar-

ized in Table 1. Each of the scenarios was tested with the

four standard images, that is, Cameraman, House, Lena,

and Barbara.

We compare our deblurring method with four state-of-

the-art deblurring methods, including fast iterative shrink-

age/thresholding algorithm (FISTA),41 iterative decoupled

deblurring block-matching and 3D filtering algorithm

(IDD-BM3D),40 NCSR,20 and group-based sparse repre-

sentation (GSR).21 FISTA introduced new gradient-based

schemes for the constrained TV-based image deblurring.

IDD-BM3D is an improved version of BM3D.42 NCSR

proposed a centralized sparse constraint, which exploits

the image nonlocal redundancy to reduce the SCN.20 GSR

sparsely represented natural images in the domain of

group and characterized the intrinsic local sparsity and

nonlocal self-similarity of natural images simultaneously

in a unified manner.

The subjective image visual comparisons of our pro-

posed method and other four deblurring methods on images

“House” and “Starfish” are shown in Figures 6 and 7, from

which several conclusions can be drawn: (1) FISTA fails to

suppress the noise and there exists noticeable ringing

effects surround strong edges (see the House contour in

Figure 6(b) and the latticed texture in Starfish’s surface

8 International Journal of Advanced Robotic Systems
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Algorithm 1: An improved nonlocal sparse regularization-based image deblurring

Input
Input the observed image y and the degraded operator H.

Initialization
Set the initial estimate as x̂ ¼ y;
Set the initial regularization parameter g;

Outer loop (iterate on ‘ ¼ 1; 2; � � � ; L)
(a) Extracting image patches

With a step size 1, divide the blurred image x into m0 overlapped patches xi
0 2 Rn , i ¼ 1; 2; � � � ;m0. Using these patches, we

obtain a PCA dictionary D0 2 Rn�d which equals to UðdÞ in equation (13).
(b) Clustering

For each image patch xi
0, obtain its projection onto PCA subspace by computing xi

0‘¼D0xi
0. Then, choose K image patches

randomly in PCA subspace as the initial mean of the clusters, i.e. �xc
0; c ¼ 1; 2; � � � ;K.

Cluster the m0 overlapped patches into K clusters by using the k-means clustering method. More exactly, for a given patch xi
0,

calculate the PCA-subspace Euclidean distance between xi
0 and each mean of the clusters �xc

0; c ¼ 1; 2; � � � ;K, based on equation (14).
Then, the cluster that xi

0 falls into is the one with the minimum of the PCA-subspace Euclidean distances.
(c) Learning the PCA dictionary

For each cluster acquired in Step 2, learn a dictionary D ¼ fDkgKk¼1 of PCA bases called PCA subdictionaries. Since the patches in a
cluster is similar to each other, so we learn a compact PCA dictionary rather than an over-complete dictionary.
(d) Select the PCA subdictionary for each patch

For each patch xi in mðm ¼ m0=4Þ overlapped patches extracted from the image x with a step size 2, select a PCA subdictionary
learned in Step 3 to code it. The way to subdictionary selection is first computing the SSIM distance between xi and each mean of the
clusters �xc; c ¼ 1; 2; � � � ;K, based on equation (8), and then choosing the PCA subdictionary learned from the cluster whose mean
corresponds to the smallest SSIM distance.
(e) Inner loop (iterate on j ¼ 1; 2; � � � ; J )

(1) Block matching
Search the Q nonlocal similar patches to each image patch xi in a large S� S window centered at location i to obtain the similar

patches set fxi;qgQ�1
q¼ 0 which includes the image patch xi itself, i.e., xi ¼ xi;0. The search method for similar patches in fxi;qgQ�1

q¼ 0 is
similar to the way used in Step 2 for clustering. To be specific, choose Q patches whose PCA-subspace Euclidean distance to xi is the
first-Q smallest compared with all patches in the searching window.

(2) Sparse coding
Use the selected subdictionaries to code all patches in fxi;qgQ�1

q¼ 0 and the corresponding sparse coding coefficients can be
calculated as:

ai;q ¼ Di;q
Txi;q

T ;ai;q 2 faxi;0
gQ�1

q¼ 0 ð23Þ

(3) Estimation for sparse coding coefficients faxi
g

Similar to the nonlocal means approach in image denoising, we estimate axi
as the weighted average of ai;q:

âxi
¼

X
ai;q2fai;qg

wi;q ai;q ð24Þ

and set the weights to be inversely proportional to the distance between patches xi and xiq:

wi;q ¼
1

W
e
�jjxi�xi;q jj22

h ð25Þ

where W is a normalization factor, h is a predetermined scalar to control the decay of the exponential expression.
For all the m overlapped patches, we can get a sparse coding coefficients estimation set fâxi

g.
(4) Solve the model by iterative shrinkage algorithm
In the jth iteration, the shrinkage operator for the ay

ðjÞ is:

ay
ðjÞ ¼ fayi

gðjÞ ¼ St
�
vyi

ðjÞ � âxi
ðjÞ
�
þ âxi

ðjÞ
n o

ð26Þ

where Stð�Þ is the classic soft-thresholding operator, t ¼ gi=c and vðjÞ ¼ ðHDÞT
�
y� ðHDÞ 	 ay

ðj�1Þ
�
=c þ ay

ðj�1Þ, where c is an

auxiliary parameter to guarantee the surrogate function convergent. The interesting readers can refer to19 for more details about the
shrinkage operator.

(5) Patch to image transformation
The entire image can be reconstructed by xðjÞ � D 	 ay

ðjÞ.
End for

End for
Output

The reconstructed image xðkÞ.

Wang et al. 9



in Figure 7(b)). The deblurring performance is unsatisfac-

tory. (2) IDD-BM3D, NCSR, and GSR achieve deblurred

images with similar quality (all noticeably better than

FISTA), of which NCSR works quite well in clearly restor-

ing large edges without any noticeable ringing artifacts and

exhibits powerful ability in removing noise in smooth and

low-activity regions. However, the price is paid in loss of

some image details, leading to blurs in texture regions.

Moreover, there still remains some noticeable noise around

edges (see the contour of eaves in Figure 6(d) and the

contour of latticed texture in Figure 7(d)). (3) As expected,

our proposed method generates near-perfect deblurring

results that most of the image edges and textures are

restored very well, while the noise existing in image has

been effectively suppressed. Compared to NCSR, our

method recovers much cleaner and sharper image edges

and textures (see Figures 6(f) and 7(f)). Such experimental

findings clearly suggest that our proposed model is a stron-

ger prior for the class of photographic images containing

strong edges/textures.

The PSNR, SSIM, and FSIM comparison results on 10

test images (see Figure 5) in the first set of experiments

among five competing methods are reported in Table 2 for

the uniform blur and Table 3 for the Gaussian blur, respec-

tively. From Tables 2 and 3, it can be observed that our

method (Ours) clearly outperforms all other four for most

of 10 test images. The gains are mostly impressive for

“Butterfly” and “Leaves” images which contain abundant

strong edges or textures. One possible explanation is that

our method is capable of striking a better trade-off between

exploiting local and nonlocal dependencies within those

images. The proposed method achieves superior perfor-

mance to other competing methods, and our method out-

performs FISTA by 2.56 and 2.13 dB for the uniform blur

and Gaussian blur, respectively. It’s obvious that

IDDBM3D, NCSR, and GSR produce very similar results

and the performance measured by PSNR, SSIM, and FSIM

is improved significantly, compared with FISTA. What is

exciting is that our model outperforms all these competitive

methods, and our model outperforms IDDBM3D, NCSR,

and GSR by (0.71 dB, 0.43 dB), (0.41 dB, 0.26 dB), and

(0.51 dB, 0.47 dB) for uniform blur and Gaussian blur,

respectively, which is consistent with the subjective visual

comparisons shown in Figures 6 and 7.

In Table 4, we present the comparison of improvement

of signal-to-noise ratio (ISNR) values achieved by each

Figure 4. The flowchart of nonlocal sparse regularization-based image deblurring via novel similarity criteria.

10 International Journal of Advanced Robotic Systems



deblurring method for four test images. The ISNR of the

image is another common measurement in image restora-

tion and is defined as

ISNR ¼ 10 log10

XN

i¼1

�
xðiÞ � yðiÞ

�2

XN

i¼1

�
xðiÞ � x̂ðiÞ

�2
ð27Þ

From Table 4, it is clear to observe that our method

achieves the highest ISNR results in all the six scenarios

when deblurring the blurred images “Cameraman” and

“Lena” and obtains the highest ISNR values in the four

scenarios when deblurring the blurred image House. How-

ever, the inferior ISNR results appear when deblurring the

blurred image “Barbara,” which we guess is because our

method has a possibly high sensitivity to the type of PSF for

images with rich textures, which is needed to be amelio-

rated in our future works.

Ablation studies of SSIM distance and PCA-subspace
Euclidean distance

In this article, our method adopts both SSIM distance and

PCA-subspace Euclidean distance to attain better perfor-

mance of deblurring. In order to study further the effects of

these two similarity criteria on the deblurring results sepa-

rately, two experiments, of which one is deblurring only

with SSIM distance (called Ours-SSIM) and another is

deblurring only with PCA-subspace Euclidean distance

(called Ours-PCA), were conducted and compared to our

method (see Table 5). As described in “Image deblurring

via our proposed novel similarity criteria under the NCSR

framework” section, in this article, we merely conduct

image deblurring via our proposed similarity criteria under

Figure 5. All experimental test images (256 � 256).

Table 1. Various blur PSFs and noise variances used in six typical
non-blind deblurring experiments in the second set.

Scenario PSF s2
n

1 1=ð1þ z2
1 þ z2

2Þ; z1; z2 ¼ �7; :::; 7 2

2 1=ð1þ z2
1 þ z2

2Þ; z1; z2 ¼ �7; :::; 7 8

3 ½1 4 6 4 1�T ½1 4 6 4 1�=256 49

4 9 � 9 uniform �0.3

5 Gaussian with std ¼ 1.6 4

6 Gaussian with std ¼ 0.4 64

PSF: point spread function.
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the superior NCSR framework. To highlight the superior

performance of our method, we also list the result of NCSR

in Table 5. Besides, we simply show the PSNR values for a

concise comparison in Table 5. From Table 5, we can con-

clude that whether using only SSIM distance (Ours-SSIM)

or using only PCA-subspace Euclidean distance (Ours-

PCA), better performance than NCSR can be achieved,

while even better results can be achieved by using both

similarity criteria (Ours). This indicates that SSIM distance

or PCA-subspace Euclidean distance we have proposed in

this article is solely for improving the deblurring perfor-

mance. In addition, the result using both similarity criteria

(Ours) acquired the superior performance shows that the

two similarity criteria can promote each other.

Algorithm stability

Here, we provide empirical evidence to illustrate the stabi-

lity of the proposed method. Take the cases of image

deblurring for two blur types in the first sets of experiments

as examples. Figure 8(a) and (b) plots the evolutions of

PSNR versus outer loop iteration numbers for five test

images in the cases of image deblurring for uniform blur

and Gaussian blur, respectively.

It is observed that with the growth of outer loop iteration

numbers, all the PSNR curves of five test images increase

monotonically when the outer loop iteration numbers

increase from one to six and ultimately become flat and

stable when the outer loop iteration numbers are greater

than six for both the uniform blur and the Gaussian blur,

exhibiting good stability of the proposed method. Based on

the above results, the outer loop iteration numbers are set to

be six in our experiments described in “Experimental

results” section.

Effect of number of clusters and number of best
matched patches

This subsection will give some discussion about the deblur

performance affected by K and Q which are the number of

clusters and the number of best matched patches,

respectively.

To investigate the sensitivity of K and Q, experiments

with reference to various K and Q in the case of image

deblurring for three test images “Barbara,” “House,”

“Parrot” are conducted. The performance comparisons with

various K and Q in the case of image deblurring with 9� 9

Figure 6. Visual quality comparison of image deblurring on the gray image House (256 � 256). (a) The noisy and blurred image (9 � 9
uniform blur, sn ¼

ffiffiffi
2
p

). (b) The deblurred image by FISTA (PSNR¼ 31.99 dB; SSIM¼ 0.8490; FSIM¼ 0.9017). (c) The deblurred image
by IDD-BM3D (PSNR ¼ 34.44 dB; SSIM ¼ 0.8786; FSIM ¼ 0.9369). (d) The deblurred image by NCSR (PSNR ¼ 34.31 dB; SSIM ¼
0.8755; FSIM¼ 0.9415). (e) The deblurred image by GSR (PSNR¼ 34.48 dB; SSIM¼ 0.8782; FSIM¼ 0.9403). (f) The deblurred image by
our method (PSNR ¼ 34.61 dB; SSIM ¼ 0.8806; FSIM ¼ 0.9369). FISTA: fast iterative shrinkage/thresholding algorithm; PSNR: peak
signal-to-noise; SSIM: structural similarity; FSIM: feature similarity; IDD-BM3D: iterative decoupled deblurring block-matching and 3D;
NCSR: nonlocally centralized sparse representation; GSR: group-based sparse representation.
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Figure 7. Visual quality comparison of image deblurring on the color image Starfish (256 � 256). (a) The noisy and blurred image
(Gaussian blur, sn ¼

ffiffiffi
2
p

). (b) The deblurred image by FISTA (PSNR ¼ 29.42 dB; SSIM ¼ 0.8349; FSIM ¼ 0.9256). (c) The deblurred
image by IDD-BM3D (PSNR¼ 31.66 dB; SSIM¼ 0.9156; FSIM¼ 0.9496). (d) The deblurred image by NCSR (PSNR¼ 32.27 dB; SSIM¼
0.9229; FSIM¼ 0.9551). (e) The deblurred image by GSR (PSNR¼ 31.61 dB; SSIM¼ 0.9165; FSIM¼ 0.9471). (f) The deblurred image by
our method (PSNR ¼ 32.50 dB; SSIM ¼ 0.9270; FSIM ¼ 0.9564). FISTA: fast iterative shrinkage/thresholding algorithm; PSNR: peak
signal-to-noise; SSIM: structural similarity; FSIM: feature similarity; IDD-BM3D: iterative decoupled deblurring block-matching and 3D;
NCSR: nonlocally centralized sparse representation; GSR: group-based sparse representation.

Table 2. PSNR (dB), SSIM, and FSIM comparisons by different deblurring methods for the uniform blur in the first set.

9 � 9 Uniform blur with Gaussian noise sn ¼
ffiffiffi
2
p

Images Butterfly Boats C. Man House Parrot Lena Barbara Starfish Peppers Leave Avg.

FISTA41 PSNR 28.37 29.04 26.82 31.99 29.11 28.33 25.75 27.75 28.43 26.49 28.21
SSIM 0.9058 0.8355 0.8278 0.8490 0.8750 0.8274 0.7440 0.8200 0.8134 0.9023 0.8400
FSIM 0.9119 0.8858 0.8627 0.9017 0.9002 0.8798 0.8375 0.8775 0.8813 0.8958 0.8834

IDD-BM3D40 PSNR 29.21 31.20 28.56 34.44 31.06 29.70 27.98 29.48 29.62 29.38 30.06
SSIM 0.9216 0.8820 0.8580 0.8786 0.9041 0.8654 0.8225 0.8640 0.8422 0.9418 0.8780
FSIM 0.9287 0.9304 0.9007 0.9369 0.9364 0.9197 0.9014 0.9167 0.9200 0.9295 0.9220

NCSR20 PSNR 29.68 31.08 28.62 34.31 31.95 29.96 28.10 30.28 29.66 29.98 30.36
SSIM 0.9273 0.8810 0.8574 0.8755 0.9103 0.8676 0.8255 0.8807 0.8402 0.9485 0.8814
FSIM 0.9271 0.9294 0.9026 0.9415 0.9411 0.9254 0.9117 0.9293 0.9220 0.9341 0.9263

GSR21 PSNR 28.94 31.34 28.28 34.48 31.60 30.10 28.95 29.90 29.66 29.36 30.26
SSIM 0.9210 0.8860 0.8538 0.8782 0.9083 0.8771 0.8487 0.8744 0.8484 0.9424 0.8838
FSIM 0.9151 0.9326 0.8937 0.9403 0.9418 0.9281 0.9227 0.9217 0.9231 0.9259 0.9245

Ours PSNR 30.60 31.40 28.71 34.61 32.57 30.21 27.96 30.85 29.94 30.86 30.77
SSIM 0.9363 0.8906 0.8646 0.8806 0.9157 0.8808 0.8270 0.8927 0.8527 0.9546 0.8896
FSIM 0.9383 0.9328 0.9044 0.9369 0.9446 0.9267 0.9250 0.9355 0.9241 0.9432 0.9312

The bold values mean the largest ones. FISTA: fast iterative shrinkage/thresholding algorithm; PSNR: peak signal-to-noise; SSIM: structural similarity;
FSIM: feature similarity; IDD-BM3D: iterative decoupled deblurring block-matching and 3D; NCSR: nonlocally centralized sparse representation; GSR:
group-based sparse representation.
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Table 3. PSNR (dB), SSIM, and FSIM comparisons by different deblurring methods for the Gaussian blur in the first set.

Gaussian blur 1.6 with Gaussian noise sn ¼
ffiffiffi
2
p

Images Butterfly Boats C. Man House Parrot Lena Barbara Starfish Peppers Leaves Avg.

FISTA41 PSNR 30.36 29.36 26.80 31.50 31.23 29.47 25.03 29.42 28.43 29.33 29.22
SSIM 0.9374 0.8509 0.8241 0.8254 0.9066 0.8537 0.7377 0.8349 0.8134 0.9480 0.8532
FSIM 0.9452 0.9024 0.8845 0.8968 0.9290 0.9011 0.8415 0.9256 0.9057 0.9393 0.9071

IDD-BM3D40 PSNR 30.73 31.68 28.17 34.08 32.89 31.45 27.19 31.66 29.99 31.40 30.92
SSIM 0.9469 0.9036 0.8705 0.8820 0.9319 0.9103 0.8231 0.9156 0.8806 0.9639 0.9028
FSIM 0.9442 0.9426 0.9136 0.9359 0.9561 0.9430 0.8986 0.9496 0.9373 0.9512 0.9372

NCSR20 PSNR 30.84 31.49 28.34 33.63 33.39 31.26 27.91 32.27 30.16 31.57 31.09
SSIM 0.9476 0.8968 0.8591 0.8696 0.9354 0.9009 0.8304 0.9229 0.8704 0.9648 0.8998
FSIM 0.9381 0.9371 0.9078 0.9333 0.9587 0.9389 0.9088 0.9551 0.9331 0.9508 0.9362

GSR21 PSNR 29.88 31.69 27.78 34.45 32.83 31.47 28.26 31.61 30.19 30.59 30.88
SSIM 0.9410 0.9046 0.8666 0.8826 0.9333 0.9135 0.8436 0.9165 0.8793 0.9575 0.9039
FSIM 0.9218 0.9411 0.9006 0.9420 0.9574 0.9463 0.9155 0.9471 0.9349 0.9382 0.9345

Ours PSNR 31.42 31.84 28.50 34.13 33.62 31.63 27.42 32.50 30.36 32.12 31.35
SSIM 0.9525 0.9090 0.8770 0.8852 0.9373 0.9149 0.8244 0.9270 0.8811 0.9692 0.9078
FSIM 0.9456 0.9442 0.9167 0.9368 0.9606 0.9465 0.9004 0.9564 0.9380 0.9580 0.9403

The bold values mean the largest ones. FISTA: fast iterative shrinkage/thresholding algorithm; PSNR: peak signal-to-noise; SSIM: structural similarity;
FSIM: feature similarity; IDD-BM3D: iterative decoupled deblurring block-matching and 3D; NCSR: nonlocally centralized sparse representation; GSR:
group-based sparse representation.

Table 4. Comparison of the ISNR (dB) results of the deblurring methods in the second set.

Scenario Scenario

1 2 3 4 5 6 1 2 3 4 5 6

Method Cameraman (256 � 256) House (256 � 256)

Input PSNR 22.23 22.16 20.76 24.62 23.36 29.82 25.61 25.46 24.11 28.06 27.81 29.98
IDD-BM3D40 8.85 7.12 10.45 3.98 4.31 4.89 9.95 8.55 12.89 5.79 5.74 7.13
NCSR20 8.78 6.69 10.33 3.78 4.60 4.50 9.96 8.48 13.12 5.81 5.67 6.94
GSR21 8.39 6.39 10.08 3.33 3.94 4.76 10.02 8.56 13.44 6.00 5.95 7.18
Ours 9.01 7.68 11.39 4.07 4.64 5.16 10.07 8.31 13.58 5.85 5.98 7.24

Method Lena (512 � 512) Barbara (512 � 512)

Input PSNR 27.25 27.04 25.84 28.81 29.16 30.03 23.34 23.25 22.49 24.22 23.77 29.78
IDD-BM3D40 7.97 6.61 8.91 4.97 4.85 6.34 7.64 3.96 6.05 1.88 1.16 5.45
NCSR20 8.03 6.54 9.25 4.93 4.86 6.19 7.76 3.64 5.92 2.06 1.43 5.50
GSR21 8.24 6.76 9.43 5.17 4.96 6.57 8.98 4.80 7.15 2.19 1.58 6.20
Ours 8.32 6.89 9.56 5.30 5.02 6.69 9.21 3.60 5.83 1.93 1.55 6.10

The bold values mean the largest ones. ISNR: improvement of signal-to-noise ratio; PSNR: peak signal-to-noise; IDD-BM3D: iterative decoupled
deblurring block-matching and 3D; NCSR: nonlocally centralized sparse representation; GSR: group-based sparse representation.

Table 5. Comparison of the PSNR (dB) results of the deblurring methods with different similarity criteria.

9 � 9 Uniform blur with Gaussian noise sn ¼
ffiffiffi
2
p

Images Butterfly Boats C. Man House Parrot Lena Barbara Starfish Peppers Leave Avg.

NCSR20 29.68 31.08 28.62 34.31 31.95 29.96 28.10 30.28 29.66 29.98 30.36
Ours 30.60 31.40 28.71 34.61 32.57 30.21 27.96 30.85 29.94 30.86 30.77
Ours-SSIM 30.48 31.40 28.64 34.57 32.40 30.08 27.90 30.62 29.81 30.59 30.65
Ours-PCA 30.49 31.34 28.63 34.59 32.43 30.18 27.89 30.76 29.90 30.81 30.70

Gaussian blur 1.6 with Gaussian noise sn ¼
ffiffiffi
2
p

NCSR20 30.84 31.49 28.34 33.63 33.39 31.26 27.91 32.27 30.16 31.57 31.09
Ours 31.42 31.84 28.50 34.13 33.62 31.63 27.42 32.50 30.36 32.12 31.35
Ours-SSIM 31.23 31.74 28.42 34.09 33.43 31.50 27.34 32.36 30.24 31.89 31.22
Ours-PCA 31.30 31.82 28.50 34.10 33.47 31.53 27.36 32.37 30.21 31.98 31.26

The bold values mean the largest ones. PSNR: peak signal-to-noise; NCSR: nonlocally centralized sparse representation; SSIM: structural similarity; PCA:
principal component analysis.
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uniform blur kernels are shown in Figure 9. From Figure 9,

it is concluded that the performance of our proposed model

is not quite sensitive to K and Q because all the curves are

almost flat. The highest performance for each image is

usually achieved with K and Q in the range (60, 70) and

(10, 20), respectively. Therefore, in this article, K and Q are

empirically set to be 64 and 13, respectively.

Extensional experiments

In the previous section of this article, we conduct merely

image deblurring via our proposed novel similarity criteria

under the superior NCSR framework. To demonstrate the

universality and extensibility of our novel similarity criteria,

(a)

(b)

Figure 8. (a) The changing PSNR (dB) values of five test images as
functions of iteration numbers for the uniform blur in the first set.
(b) The changing PSNR (dB) values of five test images as functions
of iteration numbers for the Gaussian blur in the first set. PSNR:
peak signal-to-noise.

(a)

(b)

Figure 9. (a) Performance comparison with various K for three
test images. (b) Performance comparison with various Q for three
test images.

Table 6. The PSNR (dB) results of image super-resolution via our
novel similarity criteria under the same NCSR framework.

9 � 9 Uniform blur with Gaussian noise sn ¼
ffiffiffi
2
p

Images Barbara Boats House C. Man Peppers Lena Avg.

GSR21 28.95 31.34 34.48 28.28 29.66 30.10 30.47
Ours-GSR 29.10 31.30 34.65 28.49 29.78 30.34 30.61

Gaussian blur 1.6 with Gaussian noise sn ¼
ffiffiffi
2
p

GSR21 28.26 31.69 34.45 27.78 30.19 31.47 30.64
Ours-GSR 28.42 31.64 34.60 27.82 30.27 31.61 30.73

The bold values mean the largest ones. PSNR: peak signal-to-noise; NCSR:
nonlocally centralized sparse representation; GSR: group-based sparse
representation.
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we apply our novel similarity criteria in image super-reso-

lution43 under the same NCSR framework and image deblur-

ring under another GSR framework,21 respectively.

The corresponding results are shown in Tables 6 and 7,

respectively, which forcefully prove that our similarity cri-

teria have advantageous influence on both NCSR super-

resolution and GSR deblurring.

Application in real-time video deblurring

Though deblurring methods, for example, NCSR or GSR,

which using nonlocal sparse regularization models, have

achieved higher metrics objectively and favorable visual

effects subjectively, they are all failed to be real time.

By analyzing the process of this kind of approach, we

discover that the clustering and block matching pro-

cesses introduced in algorithm 1 are so time-

consuming that deblurring methods including the two

processes can’t deblur a single image in real time. How-

ever, considering frame-to-frame correlation of a video

which consists of L frames in all, we can perform clus-

tering and block matching processes for every T frames

and try to apply our single image deblurring method to

video deblurring. Because this is not our main content of

research in this article, we introduce this idea simply in

Table 8.

For a vivid illustration, we show the process in Figure

10. Note that if you expect a better performance of real-

Table 7. The PSNR (dB) results of image deblurring via our novel similarity criteria under the GSR framework.

Noiseless

Images Butterfly Flower Girl Pathenon Parrot Raccon Bike Hat Plants Avg.

NCSR20 28.10 29.50 33.65 27.19 30.50 29.28 24.74 31.27 34.00 29.80
Ours-SR 28.49 29.65 33.68 27.32 30.44 29.25 24.88 31.38 34.16 29.92

Noisy, Gaussian noise of standard deviation is 5

NCSR20 26.86 28.08 32.03 26.38 29.51 28.03 23.80 29.94 31.73 28.48
Ours-SR 27.39 28.23 32.03 26.60 29.51 28.00 24.00 30.15 31.92 28.65

The bold values mean the largest ones. PSNR: peak signal-to-noise; NCSR: nonlocally centralized sparse representation; GSR: group-based sparse
representation.

Table 8. The concise procedure of video deblurring in real time.

Step 1 Decompose the input video into L frames and divide the L frames into two parts, of which one is called key frames that consist of
the frames n � t þ1 and the other is called secondary frames that consist of the frames between key frames. We represent the (n þ
1)th key frames as KF(n þ 1), where n ¼ 0, 1, 2, . . . and n � L�1

t
Step 2 Deblur each of the key frames KF(n þ 1) by our proposed algorithm (algorithm 1) and save certain information, that is,

dictionaries of cluster D ¼ fDkgKk¼1 and the index of location and weights of matched patches for each image patch
Step 3 Simplify algorithm 1 in consideration of frame-to-frame correlation of a video: for each patch extracted from one secondary

frame, we choose its subdictionary from subdictionaries of its nearest two key frames saved in step 2 by the way similar to the one
described in algorithm 1 (Step (d)), and we can estimate its sparse coding coefficients using directly the index of location and weights
of its front key frame

Step 4 Deblur the secondary frames by simplified algorithm 1
Step 5 Compose deblurred L frames into an output video

Figure 10. The process of video deblurring by our method.

16 International Journal of Advanced Robotic Systems



time video deblurring, a further research is needed because

of the complicated correlation among frames.

Conclusion and future work

This article presents a nonlocal sparse regularization model

with novel similarity criteria called SSIM distance and

PCA-subspace Euclidean distance for deblurring. The

deblurring model we proposed is realized under the NCSR

framework. The results of experiment on image deblurring

have shown that the proposed method achieves significant

performance improvements over many current state-of-the-

art schemes. Extensional experiments forcefully prove the

universality and extensibility of our similarity criteria in

other deblurring framework and other image processing

applications such as image super-resolution.
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