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Abstract. Collisional absorption of laser light in an under-dense plasma is studied by particle-in-cell (PIC)
simulation with Monte Carlo binary Coulomb collisions between charge particles. For a given plasma thickness
of a few times the wavelength of 800 nm laser, fractional absorption (α) of the laser light due to Coulomb
collisions (mainly between electrons and ions) is calculated at different electron temperature Te with a total velocity
v = (v2

th + v2
0/2)1/2 dependent Coulomb logarithm ln �(v), where vth and v0 are thermal and ponderomotive

velocity of an electron. In the low-temperature regime (Te � 15 eV), it is found that α increases with increasing
laser intensity I0 up to a maximum corresponding to an intensity Ic, and then it drops (approximately) obeying
the conventional scaling of α ∝ I−3/2

0 when I0 > Ic. Such a non-conventional increase of α with I0 in the low-
intensity regime was demonstrated earlier in experiments, and recently explained by classical and quantum models
[Phys. Plasmas 21, 13302 (2014); Phys. Rev. E 91, 043102 (2015)]. Here, for the first time, we report this non-
conventional collisional laser absorption by PIC simulation, thus bridging the gap between models, simulations,
and experimental findings. Moreover, electron energy distributions naturally emanating during the laser interaction
(in PIC simulations) are found to be anisotropic and non-Maxwellian in nature, leading to some deviations from
the earlier analytical predictions.
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1. Introduction

One of the main objectives of the researchers working
in the field of laser–plasma interaction (LPI) is to cou-
ple more laser energy with the plasma (or matter) so
as to obtain more energetic charge particles or intense
radiations. Therefore, it is of prime importance to know
the underlying physical process (collisional and colli-
sionless) by which laser energy is coupled to the plasma
during the interaction. Earlier experiments [1–4] and
theoretical studies [5–9] have reported various absorp-
tion processes, e.g., linear resonance [10], anharmonic
resonance [4,11–17], Brunel heating [18], J×B heating
[19] etc., which often depend on parameters of the laser,
and the plasma. For example, while passing through
under-dense plasma (where plasma frequency ωp is less
than the laser frequency ω), an intense p-polarised short
laser pulse can be absorbed by exciting wake-fields and
instabilities [7–9]. On the other hand, in an overdense

plasma with an under-dense pedestal, linear resonance
absorption (LR) of p-polarised light may occur by meet-
ing the resonance conditionωp = ω in a specific location
of the density gradient. Most often p-polarised light is
used by experimentalists because of its ability to drive
the plasma more efficiently, and relatively less atten-
tion is paid for s-polarised light. However, absorption
of both s- and p-polarised light in plasma may happen
through the electron–ion collision [7,8,20,21] known as
inverse bremsstrahlung (IB) if laser intensity is below
1017 W cm2. In this case, laser energy is initially cou-
pled to electrons and a part of this energy is transferred
to plasma ions, mainly via electron–ion Coulomb colli-
sions in a time scale on the order of the inverse of the
electron–ion collision frequency νei.

In this work, we concentrate on the absorption of an
s-polarised laser light in a homogeneous, under-dense
plasma-slab due to IB, because collisional and colli-
sionless absorption processes are coupled together for
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a p-polarised light where it is difficult to know what
fraction of the collisional absorption contributes to the
total absorption. We are also motivated by earlier exper-
imental results [8,22] of collisional absorption with
s-polarised light which shows that fractional absorption
α of light (i.e., ratio of the absorbed energy to the inci-
dent laser energy) non-conventionally increases initially
with increasing laser intensity I0 up to a maximum value
about an intensity Ic, and then it drops nearly obeying
the conventional scaling [7,8] of α ∝ I−3/2

0 .
Although there are numerous analytical models

[20–42] which directly or indirectly describe conven-
tional (standard) collisional absorption neglecting the
effect of background plasma, less attempts were made
to examine the aforementioned non-conventional col-
lisional absorption (NCA). Recently, NCA has been
explained in the low-temperature regime (Te � 15 eV)
by postulating a total velocity dependent Coulomb loga-
rithm ln �(v) (where v = (v2

th +v2
0/2)1/2, vth and v0 are

the thermal and ponderomotive velocity) in the ballistic
model of electron–ion collision frequency νei [32,43]
and more rigorous kinetic model [44]. However, the
extent of validity of these analytical models are not yet
known which can only be answered numerically with
self-consistent dynamics of plasma background under
the laser irradiation. To achieve this goal, we have devel-
oped a one-dimensional electromagnetic particle-in-cell
code (henceforth we call it EMPIC1D) where variation
of physical quantities (charge density, current density,
electromagnetic fields) depend only on the one spatial
coordinate along the laser propagation direction while
considering all three velocity components of charge
particles. In a PIC simulation, a reduced number of com-
putational particles is used to represent plasma, instead
of the actual number of physical particles [45,46]. This
technique reduces the computational load, and enables
one to study the dynamics of an actual physical sys-
tem of a large number of charge particles. Sizes of these
PIC particles (computational particles) are typically on
the order of a numerical grid, they can pass through
each other during the interaction, and Coulomb colli-
sions do not naturally happen [47–50]. For this reason,
Coulomb collisions are explicitly added in all PIC codes.
To include Coulomb collision in our EMPIC1D code,
a Monte Carlo (MC) technique proposed by Takizuka
and Abe [48] is adopted. Recently, this scheme was used
in the PARASOL electrostatic PIC code [49] to study
kinetic effects in tokamak plasmas. EMPIC1D con-
serves total energy and total linear momentum before
and after a collision event in the velocity space.

With the EMPIC1D code, for the first time, we prove
the aforementioned NCA in an under-dense plasma in
the low-temperature and low-intensity regime similar
to the earlier analytical works [43,44]. However, the

electron energy distributions emanating from the laser
interaction with the plasma (in the current PIC simula-
tions) are found to be anisotropic and non-Maxwellian
which is also a new finding of this work and cannot be
captured by previous theories. Plasma is assumed to be
pre-ionised. Laser intensity is kept below 1018 W cm−2

so that relativistic effects are less important. For con-
venience, atomic units (a.u.) are used unless mentioned
explicitly, i.e., | − e| = m = 4πε0 = h̄ = 1, where |e|
and m are the electronic charge and mass, ε0 is the per-
mittivity of the free space and h̄ is the reduced Planck
constant.

This article is organised in the following manner.
Details of the EMPIC1D code is given in §2. Study of
collisional absorption of s-polarised light in an under-
dense plasma slab showing NCA is reported in §3. A
summary is given in §4.

2. Details of the PIC code

In PIC simulation, a collection of physical particles
is represented by a computational particle so that the
charge to mass ratio q/m of the computational parti-
cle remains the same as that of a physical particle. The
following Maxwell–Lorentz system of equations (in the
normalised form) is solved numerically after the dis-
cretisation in space and time:

∂B̄
∂t

= −c∇ × E, (1)

∂E
∂t

= c∇ × B̄ − 4πJ, (2)

ṗ = q

(
Ep + v × B̄p

c

)
. (3)

Here, E, B̄ are the electric and magnetic parts of the
electromagnetic field, p is the particle momentum cor-
responding to its velocity v and position r at a time t .
J is the current density vector, c is the speed of light in
the free space. The scaling B̄ = cB connects the actual
magnetic field B with the scaled magnetic field B̄. The
other equations, namely, ∇ · B̄ = 0 and the Gauss’s law
∇ · E = 4πρ are not explicitly solved in a standard
multidimensional PIC scheme, thus saving a substan-
tial amount of computer time. However, ∇ · B̄ = 0
is ensured by choosing a staggered grid, called Yee
mesh. The charge and current conservation follows from
∂ρ/∂t+∇ ·J = 0, thus ensuring ∇ ·E = 4πρ. Note that
E, B̄, J, ρ are calculated on the grid points. Therefore,
E, B̄ fields are interpolated to obtain the corresponding
fields Ep, B̄p at the particle (particle charge q and mass
m) position r using the linear weighting scheme, and
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the Lorentz equation (3) is solved using the standard
leap-frog method. The advantage of the scaling B̄ = cB
is that, it reduces eqs (1) and (2) identical in form in the
free space (i.e., when J = 0) and the amplitudes of E, B̄
becomes comparable. From now onwards, for conve-
nience, we shall write B instead of B̄ unless mentioned
explicitly.

2.1 Simplification in one dimension

Let us consider an s-polarised light (propagating in
y-direction) with transverse field components Ez, Bx .
The physical quantities (e.g., charge density, current
density and electromagnetic fields) are assumed to
depend only on the space coordinate y, while retain-
ing all the three velocity components (vx , vy, vz) of the
particles. Components of eqs (1) and (2) reads as

∂Bx

∂t
= −c

∂Ez

∂y
, (4)

∂Ez

∂t
= −c

∂Bx

∂y
− 4π Jz(t, y), (5)

∂Ey

∂t
= −4π Jy(t, y). (6)

Equation (6) gives longitudinal component of the elec-
tric field Ey in our case. It is important to mention that,
the numerical implementation of our PIC code is a lit-
tle different from some of the traditional 1D-PIC codes,
namely, EM1BND [45], LPIC++ [51], but closely fol-
low the implementation in PIC codes PSC [52]. In
EM1BND [45] and LPIC++ [51], by performing addi-
tion and subtraction of eqs (4) and (5), and writing
ψ± = Ez ± Bx one finds (∂t ± c∂y)ψ± = −4π Jz(t, y),
where ψ± can be recognised as the two propagating
solutions of the wave equation. The advantage in this
traditional procedure [45,51] is that the partial derivative
(∂t ± c∂y) can be written in terms of the total derivative
in time with respect to an observer moving at a speed
±c, leading to

dψ±
dt

= −4π Jz(t, y). (7)

For a given Jz , eq. (7) is solved as an ordinary differ-
ential equation (ODE) to obtain transverse fields Ez =
(ψ+ + ψ−)/2, Bx = (ψ+ − ψ−)/2 on the grid. It also
allows larger time step �t = �y/c. The disadvantage
is that, the longitudinal component Ey is obtained by
solving the Poisson’s equation ∂Ey/∂y = 4πρ explic-
itly (not from eq. (6)), and it needs a separate algorithm
to solve the transverse components. Moreover, this tra-
ditional scheme is hard to extend in multidimensional
case. In our EMPIC1D code, we use finite difference in
time domain (FDTD) method for the solution of all field
components (both traverse and longitudinal), instead

of the aforementioned traditional addition–subtraction
method. Thus, we use only one kind of algorithm for
Ez, Bx , Ey which is extendable to PIC simulations in
higher dimensions as in ref. [52]. Using FDTD proce-
dure on the Yee mesh, and assuming t = n�t , y = k�y,
eqs (4)–(6) can be written as

Bn+1
x, k+1/2 − Bn

x, k+1/2

�t
= −c

En+1/2
z, k+1 − En+1/2

z, k

�y
(8)

En+1/2
z, k+1 − En−1/2

z, k+1

�t
= −c

Bn+1
x, k+1/2 − Bn+1

x, k−1/2

�y

−4π Jn+1/2
z, k+1 (9)

En+1/2
y, k+1 − En−1/2

y, k+1

�t
= −4π Jn+1/2

y, k+1 . (10)

To ensure numerical stability we take c�t/�y = 1/2,
which decides the time step �t for a chosen grid size
�y. The dispersion due to the FDTD discretisation
is minimised by choosing sufficient number of spa-
tial grids (minimum 40 is taken) per wavelength of
light. The current density J due to the motion of charge
particles is computed using the ‘explicit current con-
serving scheme’ by Umeda et al [53] which satisfies
∂ρ/∂t + ∇ · J = 0. Thus, we avoid explicit solution of
the Poisson’s equation to obtain Ey . We use ‘perfectly
matched layer’ (PML) absorbing boundary condition
[54] for the electromagnetic fields. For charge particles,
however, depending upon physical situations, absorb-
ing, periodic, and reflecting boundary conditions are
used.

2.2 Binary collision model

In the PIC simulation, as discussed already, parti-
cles may pass through each other during their close
encounter and collision effects are omitted. To imple-
ment binary collision in the EMPIC1D code we have
followed the Monte Carlo scheme given by Takizuka
and Abe [48] and also the work by Ma et al [50]
and Sentoku et al [47]. The main approximation of
binary collision is that at a given instant only two par-
ticles will collide, and the effect of collision arises
due to the cumulative effect of many small-angle
binary collisions. Within a computational cell, particles
are paired randomly (ion–ion, ion–electron, electron–
electron) and then collision is performed between every
pair. The maximum impact parameter in a fully ionised
quasineutral plasma being of the order of the Debye
length, the maximum size of the collision grid is
also restricted to the Debye length. Collision event
takes place in the velocity space, which means that
the velocity components of the particles change but
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the coordinates are not influenced at that time. The
post-collision velocities are obtained by going to the
centre of mass (COM) frame of the respective colli-
sion pairs and then back to the laboratory frame. Due
to collision, during a small time interval �tc (which
is sufficiently small compared to the mean relaxation
time), the direction of velocities of the colliding parti-
cles changes but not their magnitudes. For instance, we
consider a system of two particles from two species α

and β having velocities vα and vβ , masses mα and mβ ,
densities nα and nβ , and charges eα and eβ . At a given
instant t , the effect of collision leads to the rotation of the
relative velocity u = vα − vβ in the COM frame of the
two particles. The relative velocityu′ = v′

α−v′
β after the

collision (prime represents quantities after collisions) in
the COM frame, and the rotation of the velocity vector
u → u′ can be described by the scattering angle 
 and
the azimuth angle � which are chosen randomly for
a given pair (α, β). In order to find 
, a parameter δ

is introduced such that δ = tan(
/2). The variable δ

is chosen randomly from a Gaussian distribution such
that its mean is zero, and the corresponding variance
[48–50] is

〈
δ2

〉 = (e2
αe

2
βnL ln �)�tc/(8πε2

0m
2
αβu

3).

Here nL is the minimum density between nα and nβ ,
mαβ = mαmβ/(mα + mβ) is the reduced mass and
ln � is the Coulomb logarithm. ln � should include the
response of electrons to the laser field strength E0 and
the frequency ω. The necessary modification of ln �

with laser field will be discussed later. The deflection
angle 
 is calculated by using Box–Muller method with
distribution p(δ)dδ = (1/〈δ2〉) exp(−δ2/2〈δ2〉)δdδ as

given in refs [55,56], 
=2 arctan
√

−2
〈
δ2

〉
ln(1 − R1),

where R1 is a uniform random number between 0 and 1.
The azimuth angle � is chosen as � = 2πR2, with R2
being a uniform random number between 0 and 1. The
change in velocity components in the laboratory frame
can be calculated as [48]

�ux = ux
u⊥

uz sin 
 cos � − uy

u⊥
u sin 
 sin �

−ux (1 − cos 
), (11)

�uy = uy

u⊥
uz sin 
 cos � + ux

u⊥
u sin 
 sin �

−uy(1 − cos 
), (12)

�uz = −u⊥ sin 
 cos � − uz(1 − cos 
), (13)

where

u⊥ =
√
u2
x + u2

y . (14)

When u⊥ = 0, we take

�ux = u sin 
 cos �, �uy = u sin 
 sin �,

�uz = −u(1 − cos 
). (15)

The final post-collision velocities in the laboratory
frame reads as

vα(t + �tc) = vα(t) + (mαβ/mα)�u, (16)

vβ(t + �tc) = vβ(t) − (mαβ/mβ)�u. (17)

3. Absorption in an under-dense plasma

The above collision scheme is incorporated in the
EMPIC1D code to study collisional absorption of light
incident normally on an under-dense plasma slab of
uniform density. The simulation domain consists of
Ng = 500 computational cells with the plasma slab
at the centre. Initially, each computational cell contains
equal number of electrons and ions so that plasma is
charge neutral. The temporal profile of the laser pulse
(at the left boundary, yl) is chosen as

Ez(t, yl) = E0

{
sin2(ωt/2nc) cos(ωt); 0 < t < ncT
0; t > ncT,

(18)

where nc is the number of cycles and T = 2π/ω is
the laser period. The pulse is numerically excited at
y = yl , propagates in free space, then strikes the plasma
slab. The intensity, wavelength, number of cycles, the
duration of pulse and the width Lp of the plasma slab
can be varied as desired. Accordingly, the length of
the computational domain and the number of compu-
tational cells Ng are also adjusted. We choose the laser
wavelength λ = 800 nm with nc = 4-cycles and the
total duration ≈ 30 fs. The size of a computational
cell is chosen as � = 200 a.u. which yields the PIC
time step �tPIC = 0.73 a.u. Length of the plasma is
chosen as Lp ≈ 1.32λ with a density ρ/ρc ≈ 0.136.
Temperature of ions is kept fixed in all simulations at
Ti = 5 eV while temperatures of electrons are kept
fixed at Te = 5, 10, ..., 50, 100 eV for a given laser
intensity. The chosen value of Ti, however, is found to
have negligible effect on the overall results of collisional
absorption. These parameters are kept fixed during a
simulation run. To simulate collisional absorption in a
laser field, the Coulomb logarithm should not be the
same as that of ordinary collisions, because it does not
include the laser field parameters. Earlier, Djaoui and
Offenberger [57] have mentioned possible choices of
total velocity, i.e., v2 = v2

th + v2
0/6, v2 = v2

th + v2
0,

v2 = v2
th + v2

0/3 etc. (see also refs [22,23,37,38]) for
different models of νei. In fact, various forms of ln � are
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Figure 1. ln � vs. laser intensity for Te = 5, 10, 50 and
100 eV with total velocity v = (v2

th + v2
0/2)1/2 and charge

density ρ = 0.136ρc.

still debated [34,43,44]. As there is no unique model of
ln � in a laser field, we use a modified form [32,37,43],

ln � = 0.5 ln[1 + (bmax/b⊥)2], (19)

where bmax = v/ max(ω, ωp), b⊥ = 1/v2, with v2 =
v2

th + v2
0/2 as the total velocity. The effect of laser

field is incorporated through the ponderomotive velocity
v0 = E0/ω. The physical mechanism of the depen-
dence of ln � on the laser field strength (or intensity)
can be argued due to the reorientation of the momen-
tum of a colliding electron with an ion not only due to
the thermal component of its velocity (which is conven-
tionally taken) but also due to the momentum imparted
to it through the laser field strength. Figure 1 shows
the non-uniform variation of ln � vs. intensity (19) for
different Te.

From the simulation, we record total kinetic
energy ke gained by the particles, the electric part

ee = ∑Ng
1 E2

j�/8π and the magnetic part me =∑Ng
1 B2

j�/8π of the electromagnetic energy at every
time step, giving the total energy te = ke + ee + me.
Figure 2 shows temporal variation of various energies at
intensity I0 = 5 × 1014 W cm2 for two cases: (a) with-
out collision and (b) with collision between electrons
and ions. In figures 2a and 2b for the initial time upto
t/T ≈ 3, all energies ee,me and te increase sharply as
the laser pulse is entering the simulation domain. For
t/T ≈ 3 − 4 the values of ee,me remain almost con-
stant and te reaches a maximum because the entire pulse
has appeared in the simulation domain. The pulse strikes
the plasma slab about t/T ≈ 4, and only after this time,
for t/T = 4 − 7.5, ke first increases and then drops
with the corresponding drop and increase in ee and me
while te remains conserved at the highest value. After
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Figure 2. Different energy profiles (kinetic energy ke, elec-
tric part ee = ∑

E2
j�/8π , magnetic part me = ∑

B2
j�/8π

of the electromagnetic energy, and the total energy
te = ke + ee + me) vs. normalized time t/T for s-polarised
light interacting with an under-dense plasma of ρ ≈ 0.136ρc.
(a) Without collision, energy is not absorbed finally and (b)
with collision, laser energy is absorbed, and transferred to
the particle kinetic energies (see ke 	= 0) at the end of the
interaction.

t/T ≈ 7.5, values of ee,me and te sharply drop because
the laser pulse is leaving the finite simulation domain,
and gets absorbed (artificially) in the right boundary.
The constant value of total energy, when the entire pulse
is inside the computational box (for t/T = 3 − 7.5),
indicates conservation of energy in the simulation. In
figure 2a, without collision, ke reaches a maximum
value, and finally drops to zero before t/T ≈ 7.5.
This is expected, because particles cannot retain this
energy, and finally gives back to the electromagnetic
fields (which is also evident from the corresponding drop
and rise of ee and me between t/T = 4 − 7.5), result-
ing no net absorption. However, when collision is taken
into account (in figure 2b) ke increases monotonically
in time starting at t/T ≈ 4 (with a corresponding drop
in ee and me, meaning absorption of the pulse), and
reaches a non-zero saturation value around t/T = 6.8
much before the pulse has left the simulation box. ke
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Figure 3. Fractional absorption vs. peak laser intensity for
s-polarised light interacting with an under-dense plasma as in
figure 2 for Te = 5, 10, 15, 50, 100 eV (numerical, solid line)
and Te = 5 eV (analytical, dashed line, using eq. (21)).

does not drop to zero even after the pulse is over which
clearly shows that s-polarised light can be absorbed due
to collisions and the laser energy can be transferred to
the charge particles.

We now find the nature of collisional absorption by
varying the intensity of the laser pulse for a given initial
temperature Te. In reality, Te should also vary during
the interaction. The other parameters, such as plasma
thickness Lp, plasma density ρ and ion temperature
Ti are kept constant as earlier. Figure 3 shows frac-
tional absorption α, defined as the ratio of the final
kinetic energy retained in the particles to the maximum
of te (which is actually the total energy in the laser
pulse), vs. the peak intensity for Te = 5 − 100 eV. It
is seen that, for higher temperatures Te > 20 eV, α

initially remains almost constant (or vary slowly) upto
a certain value Ic ≈ 6 × 1013 W cm−2 of the peak
intensity, and then decreases gradually for intensities
I0 > Ic. This represents the conventional result of colli-
sional absorption reported in earlier works [20,21,58]
with ln � independent of the ponderomotive veloc-
ity v0 = E0/ω. However, when Te < 20 eV, it
is found that α initially increases with the intensity,
reaches a maximum value about an intensity Ic ≈
5 × 1014 W cm−2, then drops similar to the high tem-
perature case. Such a non-conventional variation (initial
increase followed by a drop) of fractional absorption vs.
the laser intensity was reported experimentally with nor-
mally incident s-polarised light (of wavelengths 800 nm
[8] and 268 nm [22]) on an under-dense plasma with
the peak absorption more than 30%. Incorporating a
total velocity-dependent ln � in the EMPIC1D code
for the first time we find similar non-conventional vari-
ation of collisional absorption in the low-temperature

and low-intensity regime. Our results indicate that
absorption due to collisional process can be as high as
40% depending upon plasma and laser parameters.

For the shake of completeness, PIC results are
compared (dashed line in figure 3) using ln � of
eq. (19) in the ballistic model [32,43] of time-dependent
νei, i.e.,

νei(t)=(ω2
p ln �/v3

os(t))

[
erf(u(t))− 2√

π
u(t)e−u(t)2

]
,

(20)

where u(t) = vos(t)/
√

2vth and vos(t) is the oscillation
velocity of the electron in the laser field. Averaging νei(t)
over a laser period leads to average ν̄ei and fractional
absorption

α = 1 − exp(−2κi Lp) (21)

of a continuous light of frequency ω in an under-
dense plasma slab [7,8] at normal incidence. Here
κi = (ρ/ρc)ν̄ei/vg, and vg = c

√
1 − ρ/ρc is the group

velocity of light. Analytical result (dashed line) using
eq. (21) at Te = 5 eV shows good agreement with the
EMPIC1D result for intensities <1014 W cm−2, and
confirms the non-conventional variation of collisional
absorption which was also reported by quantum and
classical kinetic models [43,44]. As α ∝ νei, the non-
conventional increase of absorption can be qualitatively
argued. At a very low temperature Te → 0 (or low inten-
sity I0), electrons do not have enough momentum to
collide with ions, resulting in a vanishingly small νei
and α. As Te and/or I0 moderately increase, more elec-
trons gain enough momentum to collide with ions and
hence νei and α increase with increasing Te and/or I0
which explains the increasing part of the absorption in
figure 3 for Te < 15 eV. After some higher threshold
value of Te and/or I0 (i.e., I0 > Ic), cross-section of
electron–ion collision is gradually reduced (with v−3)
where both νei and α start decreasing. From figure 3, it
is inferred that for Te < 15 eV, α increases with inten-
sity up to I0 ≈ 2 × 1014 W cm−2, and also for a fixed
I0 � 1014 W cm−2, α increases with increasing Te up to
Te ≈ 15 eV. However, there are discrepancies between
PIC and analytical results at higher temperatures and
higher intensities, which may be due to (i) time-varying
field experienced by particles and (ii) movement of ion
background to conserve momenta and energy during
binary collisions in the PIC simulation as opposed to
the analytical model where all particles experience the
same peak laser field E0 and ions remain stationary.

In analytical models of νei (e.g., by Silin [31],
Mulser et al [34] and Bornath et al [21]), distributions
of electrons are assumed to be Maxwellian all the time
during the laser interaction whereas in simulations this
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(a)

(b)

(c)

Figure 4. Distribution of velocity components
(u = vx , vy, vz) of electrons in units of vth corresponding to
the parameters of figure 2b at an intensity of 5×1014 W cm−2

just after the end of the simulation. Solid line is the expected
Maxwellian with Te = 5 eV.

assumption is often violated when electrons are
dynamically driven by short laser pulse. Figure 4 shows
distribution of velocity components (u = vx , vy, vz)
of electrons in units of thermal velocity correspond-
ing to the parameters of figure 2b at an intensity of
5 × 1014 W cm−2 just after the end of the simulation.
Solid line is the Maxwellian distribution corresponding
to Te = 5 eV. It is clearly demonstrated that veloc-
ity components do not strictly satisfy the Maxwellian
distribution. Velocity distributions of electrons are also
not isotropic which originate during the laser pulse driv-
ing. These differences, demonstrated by PIC simulation,
from the idealistic analytical theory may also contribute
to the deviation of the PIC result from the analyti-
cal estimate in figure 3. Nonetheless, non-conventional
increase of collisional absorption is revealed in the
low-temperature and low-intensity regime by the PIC
simulation.

4. Summary

Collisional absorption of s-polarised laser light in a
homogeneous, under-dense plasma is studied by a
new particle-in-cell (PIC) simulation code consider-
ing one-dimensional slab-plasma geometry. To account
Coulomb collisions between charge particles, a Monte
Carlo (MC) binary collision scheme is used in the
PIC code. For a given target thickness of a few times
the wavelength of 800 nm laser, fractional absorption
of light due to Coulomb collisions is calculated at

different electron temperatures using a total velocity
v = (v2

th + v2
0/2)1/2 dependent Coulomb logarithm

ln �(v). In the low-temperature (Te � 15 eV) and low-
intensity (< 5 × 1014 W cm−2) regime it is found that
fractional absorption (α) of light non-conventionally
increases initially with increasing intensity I0 up to a
maximum value corresponding to an intensity Ic, and
then it drops approximately obeying the conventional
scenario, i.e., α ∝ I−3/2

0 when I0 > Ic. Anomalous
increase of α with I0 was demonstrated in some earlier
experiments [8,22], and recently explained by models
[43,44] using total velocity-dependent cut-offs. Here,
for the first time we report non-conventional variation
of laser absorption by self-consistent PIC simulations
assisted by Monte–Carlo collisions, thus bridging the
gap between the models, simulations and experimental
findings.

Acknowledgement

The author would like to thank Anshuman Borthakur
for the initial help in the Monte–Carlo simulations and
Sudip Sengupta for valuable suggestions.

References

[1] D R Bach, D E Casperson, D W Forslund, S J Gito-
mer, P D Goldstone, A Hauer, J F Kephart, J M Kindel,
R Kristal, G A Kyrala, K B Mitchell, D B van Hulsteyn
and A H Williams, Phys. Rev. Lett. 50, 2082 (1983)

[2] U Teubner, J Bergmann, B van Wonterghem, F P Schäfer
and R Sauerbrey, Phys. Rev. Lett. 70, 794 (1993)

[3] D F Price, R M More, R S Walling, G Guethlein,
R L Shepherd, R E Stewart and W E White, Phys. Rev.
Lett. 75, 252 (1995)

[4] M Cerchez, R Jung, J Osterholz, T Toncian, O Willi,
P Mulser and H Ruhl, Phys. Rev. Lett. 100, 245001
(2008)

[5] W Rozmus and V T Tikhonchuk, Phys. Rev. A 46, 7810
(1992)

[6] Q L Dong, J Zhang and H Teng,Phys. Rev. E 64, 026411
(2001)

[7] W L Kruer, The physics of laser plasma interactions
(Addison-Wesley, New York, 1988)

[8] S Eliezer, The interaction of high-power lasers with
plasmas (IOP Publishing, Bristol, 2002)

[9] Peter Mulser and Dieter Bauer,Highpower laser–matter
interaction, STMP 238 (Springer, Berlin, 2010)

[10] K R Manes, V C Rupert, J M Auerbach, P Lee and J E
Swain, Phys. Rev. Lett. 39, 281 (1977)

[11] P Mulser, D Bauer and H Ruhl, Phys. Rev. Lett. 101,
225002 (2008)

[12] P Mulser and M Kanapathipillai, Phys. Rev. A 71,
063201 (2005)



50 Page 8 of 8 Pramana – J. Phys. (2019) 92:50

[13] P Mulser, M Kanapathipillai and D H H Hoffman, Phys.
Rev. Lett. 95, 103401 (2005)

[14] M Kundu and D Bauer, Phys. Rev. Lett. 96, 123401
(2006)

[15] M Kundu and D Bauer, Phys. Rev. A 74, 063202
(2006)

[16] M Kundu, P K Kaw and D Bauer,Phys. Rev. A 85, 23202
(2012)

[17] I Kostyukov and J M Rax, Phys. Rev. E 67, 066405
(2003)

[18] F Brunel, Phys. Rev. Lett. 59, 52 (1987)
[19] H Cai, W Yu, S Zhu and C Zheng, Phys. Plasmas 13,

113105 (2006)
[20] Th Bornath, D Kremp, P Hilse and M Schlanges, J. Phys.

Conf. Ser. 11, 180 (2005)
[21] Th Bornath, M Schlanges, P Hilse and D Kremp, Phys.

Rev. E 64, 26414 (2001)
[22] D Riley, L A Gizzi, A J Mackinnon, S M Viana and

O Willi, Phys. Rev. E 48, 4855 (1993)
[23] L Schlessinger and J Wright, Phys. Rev. A 20, 1934

(1979)
[24] P Hilse, M Schlanges, Th Bornath and D Kremp, Phys.

Rev. E 71, 056408 (2005)
[25] J T Mendonça, R M O Galvão, A Serbeto, S-L Liang

and L K Ang, Phys. Rev. E 87, 063112 (2013)
[26] M Moll, M Schlanges, Th Bornath and V P Krainov,

New J. Phys. 14, 065010 (2012)
[27] G J Pert, J. Phys. A 5, 506 (1972)
[28] G J Pert, J. Phys. B 8, 3069 (1975)
[29] S Rand, Phys. Rev. 136, B231 (1964)
[30] S-M Weng, Z-M Sheng and J Zhang, Phys. Rev. E 80,

56406 (2009)
[31] V P Silin, Sov. Phys. JETP 20, 1510 (1965)
[32] P Mulser and A Saemann, Contrib. Plasma Phys. 37,

211 (1997)
[33] P Mulser and R Schneider, J. Phys. A: Math. Theor. 42,

214058 (2009)
[34] P Mulser, F Cornolti, E Bésuelle and R Schneider, Phys.

Rev. E 63, 16406 (2000)
[35] H-J Kull and L Plagne, Phys. Plasmas 8, 5244 (2001)
[36] J Wesson, Tokamaks (Oxford University Press, Oxford,

2004)
[37] G J Pert, Phys. Rev. E 51, 4778 (1995)
[38] S C Rae and K Burnett, Phys. Rev. A 46, 2077 (1992)
[39] P J Catto and Th Speziale, Phys. Fluids 20, 167

(1977)
[40] D Kremp, Th Bornath, P Hilse, H Haberland, M

Schlanges and M Bonitz,Contrib. Plasma Phys. 41, 259
(2001)

[41] A Brantov, W Rozmus, R Sydora, C E Capjack, V Y
Bychenkov and V T Tikhonchuk, Phys. Plasmas 10,
3385 (2003)

[42] S Skupsky, Phys. Rev. A 36, 5701 (1987)
[43] M Kundu, Phys. Plasmas 21, 13302 (2014)
[44] M Kundu, Phys. Rev. E 91, 043102 (2015)
[45] C K Birdsall and A B Langdon, Plasma physics

via computer simulation (McGraw Hill, New York,
1981)

[46] R W Hockney and J W Eastwood, Computer simula-
tion using particles (IOP Publishing, Adam Hilger, New
York, 1988)

[47] Y Sentoku, K Mima, Y Kishimoto and M Honda,
J. Phys. Soc. Jpn 67, 4084 (1998)
Y Sentoku and A J Kemp, J. Comput. Phys. 227, 6846
(2008)

[48] T Takizuka and H Abe, J. Comput. Phys. 25, 205 (1977)
[49] T Takizuka, Plasma Phys. Control. Fusion 59, 034008

(2017)
T Takizuka, K Shimizu, N Hayashi, M Hosokawa and
M Yagi, Nucl. Fusion 49, 075038 (2009)
T Takizuka, Plasma Sci. Technol. 13, 316 (2011)

[50] S Ma, R D Sydora and J M Dawson, Comput. Phys.
Commun. 77, 190 (1993)

[51] R Lichters, R E W Pfund and J Meyer-ter-vehn, A
parallel one dimensional relativistic electromagnetic
particle-in-cell code for simulating laser plasma inter-
action (Max Planck Institute, Garching, Germany),
http://www.lichters.net/work.html

[52] H Ruhl, Classical particle simulations, in: Introduction
to computational methods in many body physics edited
by M Bonitz, D Semkat (Rinton Press, 2006)
K Germaschewski, W Fox, N Ahmadi, L Wang,
S Abbott, H Ruhl and A Bhattacharjee, The plasma
simulation code: A modern particle-in-cell code with
load-balancing and GPU support, http://arxiv.org/abs/
1310.7866v1

[53] T Umeda, Y Omura, T Tominaga and H Matsumoto,
Comput. Phys. Commun. 156, 73 (2003)

[54] D M Sullivan, Electromagnetic simulation using the
FDTD method, 2nd edn (Wiley-IEEE Press, London,
2013)

[55] G J Pert, J. Phys. B 38, 27 (1999)
[56] B I Cohen, A M Dimits and D J Strozzi, J. Comput.

Phys. 234, 33 (2013)
[57] A Djaoui and A A Offenberger, Phys. Rev. E 50, 4961

(1994)
[58] C D Decker, W B Mori, J M Dawson and T Katsouleas,

Phys. Plasmas 1, 4043 (1994)

http://www.lichters.net/work.html
http://arxiv.org/abs/1310.7866v1
http://arxiv.org/abs/1310.7866v1

	Beyond the conventional collisional absorption of laser light  in under-dense plasma: A particle-in-cell simulation study
	Abstract.
	1. Introduction
	2. Details of the PIC code
	2.1. Simplification in one dimension
	2.2. Binary collision model

	3. Absorption in an under-dense plasma
	4. Summary
	Acknowledgement
	References




