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controller design for uncertain
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Abstract
A sliding mode adaptive fractional fuzzy control is provided in this article to achieve the trajectory tracking control of
uncertain robotic manipulators. By adaptive fractional fuzzy control, we mean that fuzzy parameters are updated through
fractional-order adaptation laws. The main idea of this work consists in using fractional input to control complex integer-
order nonlinear systems. An adaptive fractional fuzzy control that guarantees tracking errors tend to an arbitrary small
region is established. To facilitate the stability analysis, fractional-order integral Lyapunov functions are proposed, and the
integer-order Lyapunov stability criterion is used. Finally, simulation results are presented to show the effectiveness of the
proposed method.
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Introduction

During the past few years, the fractional-order calculus

has been extensively studied, which has some special

properties, for example, hereditary and memory.1–6 These

properties can be well used to describe real-word systems.

It should be mentioned that the integer-order one has none

of these abilities. Thus, the fractional-order calculus plays

a great role in modeling many actual systems, for exam-

ple, stochastic diffusion, molecular spectroscopy, control

theory, viscoelastic dynamics, quantum mechanics, and

many research results can be seen in the previous stud-

ies7–16 and the references therein. As a result, the

fractional-order controller (FOC) for nonlinear systems

attracted enough attention.17–20 Compared with the

integer-order controller, the FOC has one more degree,

and consequently, it is meaningful to use FOC in control

engineering. In the study by Pan and Das,18 using the

particle swarm optimization algorithm, an FOC for power

systems was considered. Delghavi et al.19 studied an FOC

of distributed energy resource systems using a new type

of sliding surface. Zamani et al.20 designed a Proportion

Integration Differentiation (PID) FOC for systems with

smart base-isolated structures using a multi-objective

searching method. It has been shown that stability analysis

of FOC for systems with the same order is easily checked

using the fractional Lyapunov method.21–23 However,

when the order of the fractional systems is not equal to

the FOC’s, the controller design becomes very difficult,

and only very few results have been reported up to now.
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It has been shown that the fuzzy logic systems (FLSs)

have captured more and more attention in controlling

domain because it can make full use of human’s expert

knowledge and it does not need to know the exact model

of the system. The stability analysis of the underlying sys-

tem under adaptive fuzzy control (AFC) is usually dis-

cussed using Lyapunov approaches. To lessen the fuzzy

approximation errors and tackle system uncertainties, an

AFC can work together with some robust control tool, for

example, the sliding mode control (SMC)24–26 and the H1

control.27 Recently, the adaptive fractional fuzzy control

(AFFC) method has been developed for controlling non-

linear systems (fractional-order or integer-order).28–31 In

the AFFC method, fuzzy parameters were updated by frac-

tional differential equations. For fractional-order system,

the AFFC with the same order has been studied exten-

sively.1,16 On the other hand, it has also been demonstrated

that the AFFC can control integer-order systems, and some

prior works have been done.32–35 In earlier studies,32,33 an

AFFC approach was given for controlling integer-order

uncertain nonlinear systems, where the control perfor-

mance was discussed using different fuzzy rules. An AFFC

PID controller was given in the study by Mishra et al.34 A

fuzzy fractional PID controller with time-varying orders

was proposed by Liu et al.35

Recently, the control of spatial robots has captured

much attention, and trajectory tracking control of robots

has been extensively investigated. Spatial robotics are

highly nonlinear, highly complex, and highly coupled.36,37

To achieve the robotic control, the accurate system model

and parameters are usually required, and some control

approaches, such as inverse dynamic control and active

tracking control, can achieve a well-controlled perfor-

mance based on the accurate model. However, in practice,

robotic systems usually suffer from system uncertainties,

for example, sensor errors, external disturbances,

parameter uncertainties, which cause unstable perfor-

mance.38–45 That is to say, it is meaningful to investigate

the control of manipulators with system uncertainties. A

large range of AFC approaches were proposed. These pre-

vious works contained two types. In the first method, one

has no idea about the system model. In previous stud-

ies,46,47 FLSs have been used as approximation tools. How-

ever, there is a shortcoming in this approach, that is, in the

control process, very large computation burden is needed.

In the second approach, one needs to know some prior

knowledge of the robotic manipulator.

To the best of my knowledge, the AFFC approach for

robotic manipulators has been slightly investigated up to

now. Two AFFC approaches were designed for uncertain

manipulators by Kumar and Rana48 and Sharma et al.,49

respectively, where the control performance was studied

only by simulation results. It has been proven in Efe50 that

the fuzzy parameters can be updated by fractional differ-

ential equations; however, a complicated boundary condi-

tion about the boundedness of the fractional derivative of a

compound function should be satisfied. The aforemen-

tioned work indicated that the AFFC method provided a

remarkable performance over AFC for set point tracking,

disturbance rejection, and under uncertain environment.

From the above discussion, we know that the strict theore-

tical derivation and stability analysis of robotic manipula-

tors under AFFC is not well solved and need further

investigation.

Motivated by the above discussion, in the present work,

an AFFC is proposed for robotic manipulators. FLSs are

utilized to estimate the system’s unknown part. Fuzzy para-

meters are updated by fractional-order adaptation laws. Our

work is summarized as follows.

An AFFC method together with fractional-order adapta-

tion law is implemented. The proposed method has the

self-tuning ability. Noting that the AFFC method was also

proposed for nonlinear systems in the study by Efe,50 how-

ever, in their ability analysis, a complicated boundary con-

dition that is hard to be proven should be satisfied (see

remark 2 for more details). In this work, a new Lyapunov

function is proposed, and the stability is proven by integer-

order Lyapunov stability criteria and FOC properties.

Compared with the conventional integer-order fuzzy

control method, our approach has one more degree. That

is to say, the integer-order AFC methods1,51,52 can be seen

as special cases of this article, that is, let a ¼ 1 in our

approach. In addition, according to the theoretical deriva-

tion, the proposed method has good robustness.

It should be mentioned that as the number of member-

ship functions increases, the proposed AFFC may be more

complicated. Thus, more computation burden will be added

to the control systems.

The structure of this work is as follows. The second

section gives some basic results of fractional calculus and

FLS. Problem description is represented in the third sec-

tion. AFFC design as well as stability analysis is given in

the fourth section. Effectiveness of the proposed AFFC is

demonstrated by simulation results in the fifth section.

Finally, the sixth section concludes this work.

Preliminaries

Fractional calculus

The fractional-order calculus is an extended concept of the

integer-order one. The fractional-order integral is given by

0Iat f ðtÞ ¼ 1

GðaÞ

ðt

0

f ðtÞ
ðt � tÞ1�a

dt ð1Þ

where G ð�Þ denotes the Euler’s Gamma function. In fact,

there are three commonly used fractional derivative defi-

nitions, that is, the Riemann–Liouville’s, the Caputo’s, and

the Grümwald–Letnikov’s. Because the Caputo’s defini-

tion uses the same initial conditions as the integer-order

derivative, which makes it has significative physical
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meaning, in this article, the Caputo definition will be used.

The Caputo fractional derivative is

0Dat f ðtÞ ¼ 1

Gðn� aÞ

ðt

0

f ðnÞðtÞ
ðt � tÞaþ1�n

dt ð2Þ

with n� 1 � a < n where n 2 N .

Lemma 1. Let xðtÞ 2 C1½0; T �, where T 2 Rþ, 0 < a <
b � 1, and aþ b ¼ 1, then the following equation holds53

0Dbt 0Iat xðtÞ ¼ 0Db�at xðtÞ ð3Þ

Lemma 2. Let xðtÞ 2 Rn. Then it holds for any t > 016

1

2
0Dat xTBx � xTB0Dat x ð4Þ

where B > 0;B 2 Rn�n.

Description of the FLS

An FLS usually contains the knowledge base, the fuzzifier,

the fuzzy inference engine working on fuzzy rules, and the

defuzzifier. It can be expressed as54

f̂ ðxðtÞÞ ¼
P

j2JqjðtÞ�jðxðtÞÞP
j2J�jðxðtÞÞ

ð5Þ

where f̂ is the output, x ¼ ½x1; x2; . . . ; xn�T 2 C1½I ;O � (the

set of all continuous mappings from I ¼ ½0;þ1Þ 2 R to

O that are smooth) denotes the input, J ¼
Qn

i¼1 F i, F i

consists of Ni fuzzy sets, and qj is the centroid of the j th

consequent set (j 2 J ). Let qðtÞ ¼ ½q1ðtÞ; . . . ; qN ðtÞ�T and

JðxðtÞÞ ¼ ½q1ðxðtÞÞ; q2ðxðtÞÞ; . . . ; qN ðxðtÞÞ�T, where qj rep-

resents a smooth function which can be given as

qjðxðtÞÞ ¼
qjðtÞP

s2J�sðxðtÞÞ

As a result, (5) is reformed by

f̂ ðxðtÞÞ ¼ qTðtÞJðxðtÞÞ ð6Þ

The FLS has the following approximation ability

Lemma 3. Let f : O ] R be a smooth function. For any

x 2 C1½I ;O � and e > 0, there exists an FLS as (6) such

that55

sup
t2I
jf ðxðtÞÞ � qTðtÞJðxðtÞÞj � e ð7Þ

Problem description

The mathematical model of the considered robot is given as56

MðxÞ€xþ Cðx; _xÞ _xþ GðxÞ þ Fð _xÞ ¼ u ð8Þ

with x ¼ ½x1; x2; . . . ; xn�T 2 Rn representing the joint posi-

tion, _x and €x denoting the joint velocity and acceleration

vectors, respectively, MðxÞ 2 Rn�n being the positive-

definite inertia matrix, Cðx; _xÞ being the centrifugal and

Coriolis matrix, GðxÞ 2 Rn�n being the gravity force,

Fð _xÞ representing the friction vector, and u 2 Rn being the

control input.

For convenience, denote MðxÞ, Cðx; _xÞ, GðxÞ, and Fð _xÞ
as M, C, G, and F, respectively. In this article, assume that

the above matrix functions are only partly known. That is,

system model (8) has unknown system structure.

Fractional fuzzy controller design
and stability analysis

This section aims to drive the joint position x tracks the

referenced position xd under any initial conditions. The

tracking error is defined as ~x ¼ x � xd . Let s ¼ _~xþ K~x,

where K ¼ diag½k1; k2; . . . ; kn�T 2 Rn�n with ki > 0;
i ¼ 1; 2; . . . ; n. It is known that the control objective will

be guaranteed if u is chosen satisfying _V 1 � �s
ffiffiffiffiffiffi
V 1

p

where V 1 ¼ 1
2
sTs and s is a positive constant. Define

_xr ¼ _x� s ¼ _xd � K~x ð9Þ

and

€xr ¼ €x� _s ¼ €xd � K
_~x ð10Þ

Let ~M ¼ M̂�M, ~C ¼ Ĉ� C, ~G ¼ Ĝ� G, and

~F ¼ F̂� F, where M̂; Ĉ; Ĝ, and F̂ are the estimations

of M;C;G, and F, respectively. The controller is

designed as

u ¼ M̂€xr þ Ĉ _xr þ Ĝþ F̂�Ds� uF ð11Þ

where D 2 Rn�n, uF ¼ ½uF1; uF2; . . . ; uFn�T 2 Rn is a con-

trol term generated by the FLS which will be defined later.

Substituting (11) into (8) yields

M_s ¼ �ðCþDÞsþ Y � uF ð12Þ

where Θ ¼ ~M€xr þ ~C _xr þ ~Gþ ~F ¼ ½Y 1;Y 2; . . . ;Y n�T 2 Rn

is an unknown vector function. Thus, we can use FLS (6) to

approximate Y i by

Ŷ i ¼ qT
i JiðxÞ ð13Þ

q�i is given by

q�i ¼ arg min
qi

½sup
x
jŶ i � Y ij� ð14Þ

Here, q�i is defined only for analysis purpose. Define the

ideal parameter estimation and the approximation error as

~qiðtÞ ¼ qiðtÞ � q�i ð15Þ

and

ei ¼ Ŷ
�
i � Y i ð16Þ

Deng 3



Suppose that

jeij � �ei ð17Þ

where �ei 2 Rþ.

According to the above discussion, one obtains

Ŷ i � Y i ¼ qT
i JiðxÞ � Y i

¼ qT
i JiðxÞ � q�Ti JiðxÞ þ q�Ti JiðxÞ � Y i

¼ ~q
T

i JiðxÞ � ei

ð18Þ

Let qTJðxÞ ¼ ½qT
1J1ðxÞ; qT

2J2ðxÞ; . . . ; qT
nJnðxÞ�T,

~q
T
JðxÞ ¼ ½~qT

1J1ðxÞ; ~q
T

2J2ðxÞ; . . . ; ~q
T

nJnðxÞ�T in which

qðtÞ ¼ ½qT
1 ðtÞ; qT

2 ðtÞ; . . . ; qT
n ðtÞ�

T 2 RN�n and e ¼ ½e1; e2;

. . . ; en�T, then, it follows from equation (18) that

Θ̂ � Θ ¼ ~q
T
JðxÞ � e ð19Þ

Therefore, the control term uF can be designed as

uFi
¼ Θ̂ i þ �̂eisignðsiÞ ð20Þ

where �̂ei is the estimation of �ei.

Fractional-order adaptation laws for qi and �̂ei are

designed as

0Dat qi ¼ l1isiJiðxÞ � l1il2iqi ð21Þ

and

0Dat �̂ei ¼ l3ijsij � l3il4i�̂ei ð22Þ

respectively, where l1i; l2i; l3i, and l4i are positive design

constants.

Remark 1. It should be pointed out that in this article

fractional-order laws are designed. Compared with the con-

versional adaptations laws, our method has one more free-

dom. The integer-order adaptation law is a special

condition of (21) (i.e. a ¼ 1). There are two terms that have

different tasks in (21). The first term is given to facilitate

the stability analysis, while the latter is given for guaran-

teeing the boundedness of fuzzy parameters.

Based on the above discussion, the main results of this

section can be concluded as the following theorem.

Theorem 1. Consider system (8). Control inputs (11) and

(20) with laws (21) and (22) can ensure that the tracking

error tends to an arbitrary small region of zero ultimately.

Proof. To proceed, we will introduce the following

fractional-order integral Lyapunov function

V ¼ 1

2
sTMsþ 1

2G ð1� aÞ
Xn

i¼1

ðt

0

~q
T

i ðtÞ~qiðtÞ
l1iðt � tÞa

dt

þ 1

2G ð1� aÞ
Xn

i¼1

ðt

0

~�e2

i ðtÞ
l3iðt � tÞa

dt

ð23Þ

where ~�ei ¼ �̂ei � �e.
Then it follows from lemmas 1 and 2 that

_V ¼ 1

2
_sTMsþ sT _Msþ sTM_s
� �

þ 0Dat
Xn

i¼1

1

2l1i

~q
T

i
~qi þ 0Dat

Xn

i¼1

1

2l3i

~�e2

i

¼ 1

2
sT _Msþ 2sTM_s
� �

þ
Xn

i¼1

1

2l1i
0Dat ~q

T

i
~qi þ

Xn

i¼1

1

2l3i
0Dat ~�e2

i

¼ sT½M_sþ Cs� þ
Xn

i¼1

1

2l1i
0Dat ~q

T

i
~qi þ

Xn

i¼1

0Dat ~�e2

i

2l3i

¼ sT½�DsþΘ� uF� þ
Xn

i¼1

 
0Dat ~q

T

i
~qi

2l1i

þ 0Dat ~�e2

i

2l3i

!

¼ �sTDsþ
Xn

i¼1

 
0Dat ~q

T

i
~qi

2l1i

þ 0Dat ~�e2

i

2l3i

!
þ sTe� sT~q

T
JðxÞ �

Xn

i¼1

�̂ejsij

� �sTDs�
Xn

i¼1

si
~q

T

i JiðxÞ þ
Xn

i¼1

siei �
Xn

i¼1

�̂ejsij þ
Xn

i¼1

 
~q

T

i 0Dat ~qi

l1i

þ
~�e0Dat ~�ei

l3i

!

� �sTDs�
Xn

i¼1

si
~q

T

i JiðxÞ �
Xn

i¼1

~�ejsij þ
Xn

i¼1

 
~q

T

i 0Dat ~qi

l1i

þ
~�e0Dat ~�ei

l3i

!

ð24Þ
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Substituting (21) and (22) into (24) leads to

V � �sTDs�
Xn

i¼1

l2i
~q

T

i qi �
Xn

i¼1

l4i
~�e�̂e

¼ �sTDs�
Xn

i¼1

l2i
~q

T

i
~q

T

i þ ~q
�T
i

� �
�
Xn

i¼1

l4i
~�eð~�eþ �eÞ

� �sTDs� 1

2

Xn

i¼1

l2i
~q

T

i
~q

T

i �
1

2

Xn

i¼1

l4i
~�e2 þ b0

¼ �a0V þ b0;

ð25Þ

where a0 ¼ min 2gmin

�1
; l1il3i; l2il4i

n o
(gmin is the minimum

eigenvalue of D) and b0 ¼ 1
2

Pn
i¼1 l2iq

�T
i q�i þ 1

2

Pn
i¼1 l4i�e2

are two positive constants.

Thus, (25) implies that V � b0

a0
eventually. If we can

choose proper controller parameters, that is, small l2i; l4i

and large l1i; l3i, then s will be arbitrarily small ulti-

mately. This completes the proof.

Remark 2. It should be pointed out that an AFFC method

was also proposed for nonlinear systems.50 To achieve the

stability of the closed-loop system, the following compli-

cated boundary condition of the fractional of a compound

function should be satisfied�����
X1
k¼1

a
k

� 	
0Da�k

t f ðtÞ0Dk
t gðtÞ

����� � k1 ð26Þ

�����
X1
k¼1

Gð1þ aÞ
Gð1þ kÞGð1� k þ aÞ 0Dk

t ef ðtÞ0Da�k
t ef ðtÞ

����� � k2jef ðtÞj

ð27Þ

with f ðtÞ; gðtÞ, and ef ðtÞ being three sufficient smooth

functions, and k1;k2 2 Rþ. It is easy to know that above

infinite series are very hard to be handled. In the study

Efe,50 these conditions were tested by simulation results.

In fact, the boundary conditions (26) and (27) are rather

strict. It has shown in the study by Efe50 that the tracking

error will converge if these are inequalities. However, put-

ting on these conditions drives the control methods valid

may be only in a very small region. It should be emphasized

that a new type of Lyapunov function, that is, (23), which is

implemented using fractional integral, is proposed to facil-

itate the stability analysis. This Lyapunov function has

three terms, and the second and the third terms are con-

structed by the fractional integral of positive functions. The

proposed Lyapunov function has very good structure and

its integer-order derivative is easy to be obtained. Conse-

quently, using the proposed Lyapunov function, the above

complicated conditions have nothing to do with our stabi-

lity analysis.

Remark 3. Theorem 1 indicates that the sliding surface will

converge to region determined by design parameters as

k s k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

Pn
i¼1 l2iq

�T

i
q
�

i
þ 1

2

Pn
i¼1 l4i�e2

k M k min 2gmin

�1

; l1il3i; l2il4i
n o

vuuut ð28Þ

Noting that k M k; q�Ti q�i ;�e, and gmin are positive con-

stants, to drive the signal s as small as possible, we should

choose sufficiently large l1i; l2i and sufficiently small

l3i; l4i; �1. As a result, the tracking error will be arbitrary

small, either.

Remark 4. There are some other approaches that can also be

utilized to control robots, for example, the PID, the SMC,

and the H1 method. It is well-known that the PID approach

cannot tackle the dynamical uncertainties. With respect to

the SMC, it can only handle some matched uncertainties.

To use the H1 control, one should guarantee that the com-

plicated Riccati equation is satisfied. Whereas, our method

can not only obtain a fast convergence of the tracking error

but also is effective for handling the unmatched external

disturbances in the robotic manipulator.

Simulation results

In this part, we will give the simulation results, and a two-

link robotic manipulator will be considered (see Figure 1).

System parameters are

Fð _xÞ ¼ ½0:4 _x1 ; 0:4 _x2�T; MðxÞ ¼
M 11 M 12

M 12 M 22

" #

Cðx; _xÞ ¼
�1

2
a2l1l2ð2 _x1

_x2 þ _x
2

2Þsinx2

1
2
a2l1l2

_x
2

1sinx2

2
664

3
775

GðxÞ ¼

�
1
2
a1 þ a2

�
gl1cosx2 þ 1

2
a2l2gcosðx1 þ x2Þ

1
2
a2gl2cosðx1 þ x2Þ

2
664

3
775

where M 11 ¼ 1
4
a1 þ a2ð Þl2

1 þ 1
4
a2l2

2 þ a2l1l2cosx2, M 12 ¼
1
4
a2l2

2 þ 1
2
a2l1l2cosx2, and M 22 ¼ 1

4
a2l2

2. Let a1 ¼ 4; a2 ¼
2; l1 ¼ 2l2 ¼ 2.

Figure 1. Two-link robot.
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Let xd ¼ 2p
9

sin 2pt
7


 �
; p

6
cos 2pt

7


 �� �T
. The design parameters

are k1 ¼ k2 ¼ 1:2, l11 ¼ l12 ¼ l31 ¼ l12 ¼ 10, l21 ¼
l22 ¼ l41 ¼ l42 ¼ 0:002, a ¼ 0:9.

We give three Gaussian membership functions distrib-

uted in the interval ½�3; 3� for four inputs (x1; x2; _x1; _x2).

Thus, 3� 3� 3� 3 ¼ 243 fuzzy rules are included in the

FLSs. The initial conditions for qiðtÞ are defined as

q1ð0Þ ¼ q2ð0Þ ¼ 0 2 R243.

Simulation results can be seen in Figures 2 to 8. Track-

ing of joints 1 and 2 and time response of tracking errors are

given in Figures 2, 3, and 5, respectively, from which one

can see that the tracking errors tend to a region nearby zero

in a short time (about 3 s). Time response of sliding sur-

faces is given in Figure 4. The smoothness and continuous-

ness of the control inputs are given in Figure 8. From these

results, we can draw a conclusion that the control perfor-

mance is good.
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Figure 3. Tracking of joint 2.
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time(sec)

-0.5

0

0.5

1

1.5

2

ξ̃1

ξ̃2

0 1 2 3 4 5 6 7 8 9 10

Figure 5. Tracking errors ~x1 and ~x2.

0 1 2 3 4 5 6 7 8 9 10

time(sec)

-1

-0.5

0

0.5

1

1.5

2

ξd1

ξ1

Figure 2. Tracking of joint 1.

0 1 2 3 4 5 6 7 8 9 10

time(sec)

-1.5

-1

-0.5

0

0.5

1

1.5

2

˙̃ξ1

˙̃ξ2

Figure 6. _~x1 and _~x2.

0 1 2 3 4 5 6 7 8 9 10

time(sec)

-40

-20

0

20

40

60

80

100

u1

u2

Figure 7. Control inputs u1 and u2.

6 International Journal of Advanced Robotic Systems



time(sec)

0

1

2

3

T
h
e 

si
li

d
in

g
 s

u
rf

ac
e 

s 
1
(t

)

(a)
α = 0.7
α = 1.1
by AFC

time(sec)

0

0.5

1

T
h
e 

si
li

d
in

g
 s

u
rf

ac
e 

s 
2
(t

)

(b)
α = 0.7
α= 1.1
by AFC

time(sec)

-0.5

0

0.5

1

1.5

2

S
y
n
ch

ro
n
iz

at
io

n
er

ro
r 

ξ̃ 1

(c)
α = 0.7
α = 1.1
by AFC

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

time(sec)

-0.4

-0.2

0

0.2

S
y
n
ch

ro
n
iz

at
io

n
er

ro
r 

ξ̃ 2

(d)
α = 0.7
α = 1.1
by AFC

Figure 8. Control performance under different a in (a) the sliding surface s1ðtÞ, (b) the sliding surface s2ðtÞ, (c) the synchronization
error ~x1ðtÞ, and (d) the synchronization error ~x2ðtÞ.

time(sec)

-1.5

-1

-0.5

0

0.5

C
o
m

p
en

sa
te

d
 e

rr
o
r 

ξ̃ 1

(a)
α = 0.7
α = 1.1
by AFC

time(sec)

-0.5

0

0.5

1

1.5

2

C
o
m

p
en

sa
te

d
 e

rr
o
r 

ξ̃ 2

(b)
α = 0.7
α = 1.1
by AFC

time(sec)

-50

0

50

100

C
o
n
tr

o
l

in
p
u
t 

u 1
 (

t)

(c)
α = 0.7
α = 1.1
by AFC

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

time(sec)

-10

-5

0

5

10

C
o
n
tr

o
l

in
p
u
t 

u 2
 (

t)

(d)
α = 0.7
α = 1.1
by AFC

Figure 9. Control performance under different a in (a) _~x1ðtÞ, (b) _~x2ðtÞ, (c) the control input u1ðtÞ, and (d) the control input u2ðtÞ.

Deng 7



Noting that the proposed AFFC method has one more

degree compared with the conventional AFC approach,

the control performance with different orders, that is,

a ¼ 0:7; 1; 1:1 (when a ¼ 1, the proposed method

becomes the AFC approach), is depicted in Figures 8

and 9. It is shown that the order will impact the con-

vergence speed of the tracking error. The proposed

method can be seen as a good extension of the conven-

tional AFC approach.

Conclusions

In this study, to obtain the trajectory tracking of robotic

manipulators, an AFFC method is introduced by combining

with an SMC algorithm, and the proposed method can

guarantee the uniform ultimately boundedness of tracking

errors. It is proven that the FOC can be used to control

conventional integer-order nonlinear systems based on a

new type of fractional-order integral Lyapunov function.

The simulation test on a two-link robotic manipulator

shows the advantages of the proposed scheme: The pro-

posed controller does not need the prior knowledge of the

system, but the control performance is still good. This work

can be seen as an extension of recent research.50–52 It

should be pointed out that the proposed method can only

guarantee that the tracking errors tend to a small region

eventually. Therefore, future research can be concen-

trated on how to improve the proposed method such that

the tracking errors are asymptotically stable, and how to

improve the control performance in the presence of

input nonlinearities such as saturation, dead zone, and

actuator faults.
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