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Studies carried out recently on hydrometeorological extremes report the evidence of non-stationarity
induced by potential long-term climatic fluctuations and anthropogenic factors. A critical examination
of the stationarity assumption has been carried out and a non-stationary generalised extreme value
model with cyclic covariate structure for modelling magnitude and variation of data series with some
degrees of correlation for real-world applications is proposed. Interestingly, the sinusoidal function with
periodicity around 30 yr has been derived as a suitable covariate structure to deal with the ambiguous
nature of temporal trends and this could possibly be linked to ‘Sun cycles’. It has adequately explained
the cyclic patterns recognised in the annual rainfall which are helpful for realistic estimation of quantiles.
Various diagnostic plots and statistics support the usefulness of the proposed covariate structure to tackle
potential non-stationarities in the data characterising extreme events in various fields such as hydrology,
environment, finance, etc.
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1. Introduction

The extreme value theory (EVT) in its simplest
form applies to independent and identically dis-
tributed (IID) random variables while the more
advanced techniques allowing some degrees of cor-
relation for coping with trends are necessary (van
Nooijen and Kolechkina 2012). Only a few stud-
ies have been carried out recently, tackling the
practical problems of moving from stationary to
non-stationary frequency analyses in real-world
applications. A stationary time series has a prob-
ability distribution invariant to temporal transla-
tions (Brillinger 2001). Stationarity implies that

a time series does not exhibit abrupt and slowly
varying changes, periodicities or cyclicity. Sev-
eral studies have examined the validity of the
stationarity assumption for rainfall time series
in the Midwest US (Kunkel et al. 2007; Pryor
et al. 2009). Matalas (1997) and Koutsoyiannis
(2006) gave an extensive discussion about the
stationarity in hydrometeorological records. The
inclusion of non-stationarity in flood studies sig-
nificantly enhances the estimation of the return
period; however, its application is questionable
when the flood variable does not persistently con-
firm the significant non-stationarity. The impor-
tance of a comprehensive trend analysis during
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flood studies has been demonstrated on
unregulated daily streamflow series at the Kanawha
Fall station on Kanawha River, USA, and at the
Baltara station on Kosi River, India (Singh et al.
2015). The validity of the stationarity assumption
is generally assessed by only testing the record for
the presence of slowly varying changes, despite the
fact that the presence of abrupt changes could have
a large impact on the results of the trend analyses
(Villarini et al. 2009). The long-term persistence
could better explain some of the bahaviours exhib-
ited by time series such as statistically significant
trends, even though no trends are present (Hurst
1951; Klemes 1974; Koutsoyiannis and Montanari
2007). We have investigated abrupt changes in the
first two moments of the distribution of annual
rainfall by means of the Pettitt test (Pettitt 1979).
The presence of slowly varying changes has been
examined using the Mann–Kendall test (Helsel and
Hirsch 1993). The presence of ‘deterministic’ trends
and change points in a time series in terms of long-
term persistence has been checked using the Hurst
exponent H by corrected R over S method.

There is a mention about potential non-
stationarity induced by the presence of either
trend or long-term climatic fluctuations in some
hydrometeorological records due to natural climate
variability or anthropogenic climate change (Brath
et al. 1999; Jain and Lall 2001). A comprehen-
sive study of climatic process over central India
indicates a decline in the total rainfall during 1950–
2015 despite the concurrent rise in the magnitude
and frequency of extreme rainfall events (Goswami
et al. 2006; Roxy et al. 2017). A study on changes in
extreme rainfall characteristics over India indicates
the stationary duration of extreme rainfall spells at
most of the locations, and non-stationary associa-
tions between the intensity and frequency, and local
changes in temperature at a large number of loca-
tions (Mondal and Mujumdar 2015). The extent
of urbanisation plays a significant role in introduc-
ing non-stationarity in the characteristics of Indian
Summer Monsoon Rainfall extremes (Singh et al.
2016). A study by Agilan and Umamahesh (2015)
indicates an increasing trend in the intensity and
frequency of daily extreme rainfall during monsoon
and non-monsoon months at Hyderabad city that
is attributed to global processes whereas the non-
stationarity in sub-daily extreme rainfall is mostly
associated with local processes. The assumption
of randomness, independence and stationarity of
data is not fully satisfied in the case of maximum
daily rainfall in Mumbai (Jagtap 2014) wherein

the sample size was of the order of 100, resulting
in varying estimates of extremes and possibility
of non-stationarity in the climatic process. Lim-
ited hydrometeorological records pose a challenge
for reliable assessment of the presence of non-
stationarity. Distinguishing non-stationarity, sam-
ple variability and long-term climatic fluctuations
becomes difficult as different statistical treatment
is needed for coping with various types of vari-
ability. It is hypothesised that all natural systems
are non-stationary, unequivocally and uncondition-
ally. The issue, therefore, is not whether hydrocli-
matic systems are stationary or non-stationary but,
rather, the question is whether the non-stationarity
is substantial enough to require a complex deter-
ministic characterisation of the process, or can a
comparatively simple stationary stochastic model
accurately represent the process (Lins and Cohn
2001; Cohn and Lins 2005)?

Research challenges include the statistical
modelling of complex climatic extreme events
which require increased collaboration between the
climate scientists and the statisticians (Katz 2010).
Researchers proposed abandoning of the stationar-
ity hypothesis and called for innovative methods
to provide estimates of hydrologic indicators that
would be both reliable and useful for water man-
agement (Milly et al. 2008). Recent evidences of
the impact of persistent modes of regional cli-
mate variability, coupled with the intensification
of human activities, have led hydrologists to study
flood regime without applying the hypothesis of
stationarity (Lopez and Frances 2013). The gener-
alised additive models for location, scale and shape
are useful in modelling non-stationarity (Rigby
and Stasinopoulos 2005). Extreme rainfall projec-
tions of Indian summer monsoon using statisti-
cal downscaling by Shashikantha and Prashanthi
(2017) indicate that the future extremes are het-
erogeneous across regions and also highlight the
impact of climate change on local hydrology for the
management of extremes.

We have proposed non-stationary generalised
extreme value (GEV) distribution with temporal
cyclic covariate structure for modelling ambigu-
ous trends in hydrometeorological quantiles, in the
quest for addressing uncertainty issues for assess-
ment of water resources in a better way. The paper
is organised as follows. Section 1 is an introductory,
which explains the necessity of new models; it also
provides a brief literature survey. Section 2 details
about the methodology comprising EVT in brief,
proposed non-stationary GEV model with cyclic
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covariate structure and properties of the estimator.
Sections 3 and 4 give frequency analyses and upper
tail properties of annual rainfall in the Mula–
Mutha–Bhima (MMB) subbasin in India examined
using the proposed model as the rainfall in the
region is characterised by extreme intermittency
typically driven by a very small number of intense
events. In section 5, we summarise our findings.

2. Methodology

2.1 Classical extreme value modelling

The extreme value theorem forms the basis for
estimation of magnitudes of hydrometeorological

sequences for various return periods used for
deciding design criteria of engineering structures
(Maidment 1993; Coles 2001). The extreme value
theorem stated below gives the approximate asym-
ptotic distribution of the sample maximum.

Theorem. Let X1, X2, . . . , Xn be a sequence of
IID random variables from an unknown cumula-
tive distribution function (CDF) F and let X(n)

be a sample maximum. If there exists sequences
of normalising constants {an > 0} and {bn} ∈ R
such that limn→∞ P

(
(X(n) − bn)/an ≤ x

)
= G (x),

where G is a non-degenerating CDF, then G
belongs to one of the three families of distributions
Gumbel, Fréchet and Weibull, which are members
of extreme value distributions.

The EVT can be traced back to the pioneering
work of Fisher and Tippet (1928), wherein the lim-
its for the distributions of maxima of samples of IID
random variables were shown to converge asymp-
totically to one of the three forms of extreme value
distributions, called Type I, II and III (Chow et al.
1987). The three types of extreme value distribu-
tions are unified into the GEV distribution (Von
Mises 1954; Jenkinson 1955) with the CDF given
by
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The location parameter α is related to the
magnitude of the record, β > 0 is the scale param-
eter related to the record variability and γ is
the shape parameter, which provides information
about the heaviness of the tail of the distribu-
tion (El Adlouni et al. 2007). Parameters in the
GEV distribution can be estimated by the princi-
ple of maximum likelihood (ML), where the goal
is to identify the most likely set of parameters
by maximising the likelihood function. The like-
lihood function of a sequence of n IID observations
X = {Xt : t = 1, 2, . . . , n} from the GEV distribu-
tion can be written as:
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To obtain ML estimates of the parameters α, β and
γ, we differentiate the log likelihood function
lnL (α, β, γ|X) with respect to each of the param-
eters and equate to zero to get a system of
simultaneous equations.

Quantile: The return level xT , the magnitude of a
random variable which can be equalled or exceeded
at least once in a span of T years can be computed
by solving the expression F (xT ) = P (X ≤ xT ) =
1−(1/T ) = p, where p being the probability of non-
exceedance. The return level, xT using the GEV
distribution yields

xT =

{
α + β

γ [1 − (1 − ln p)γ ] , γ �= 0,

α − β ln (− ln p) , γ = 0.
(4)

2.2 Non-stationary GEV model with cyclic
covariate structure

Stationary frequency analysis implies that the
realisation X = {Xt : t = 1, 2, . . . , n} of the random
variable X is IID with stationary CDF FX (x, θ),
where θ is a vector valued parameter. Whereas
non-stationary analysis is carried out under the
assumption that the observations are indepen-
dent but not necessarily identically distributed
(I/NID) with a non-stationary CDF FX (x, θ(Z)),
parameters θ are not constant but change as a
function of some covariate Z. The ideal repre-
sentation for the covariate Z could be Z(t), i.e.,
covariate as a function of time t and parame-
ter denoted by θ(Z(t)). In the absence of any
data on covariate, the covariate Z(t) can simply

be taken as time t. In our present work, we
have proposed the analysis when parameters θ
of an extreme value distribution change as a
function of time t, viz., θ(t). We have thus
considered a non-stationary distribution FX (x,
θ(t)) for the extreme value analysis.

The law of variation of the parameters should
reflect reasonable predictable physical mechanisms
to guarantee that the patterns observed in the
period of record are not just an effect of fluc-
tuations of stationary processes whose dynamics
evolve over longer time scales (Serinaldi and Kilsby
2015).

We have considered various functional forms
for parameters θ (t) , viz., θ0+θ1t, θ0+θ1t+θ2t

2,
θ0+θ1 ln t, θ0+θ1(1/t), θ0+θ1 sin (t), θ0+θ1 sin ((t/
15)2π), θ0+θ1 sin ((t/30)2π), θ0+θ1abs [sin ((t/
30)2π)], etc. as given in figure 1 to represent the
non-stationary behaviour through the magnitude
and variation patterns. Different functional rela-
tionships between location and scale parameters
of GEV distribution and covariate (which is time)
have been developed and used in the extreme value
analysis.

Let X = {Xt : t = 1, 2, . . . , n} be a sequence
of n I/NID realisations from a non-stationary
GEV distribution FX (x, θ(t)). Out of the vari-
ous combinations of proposed non-stationarities for
modelling cyclical patterns, a mathematical formu-
lation for one case having the location, α (t) = α0+
α1 sin ((t/30)2π) and scale, β (t) = expβ0+β1t; t =
1, 2, . . . , n, has been derived and presented below.
The ML method has been used to estimate the
parameters of the proposed model. The likelihood
function in this case is given by

L (α0, α1, β0, β1, γ|X) =
n∏

t=1

f (Xt|α0, α1, β0, β1, γ) , (5)
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Figure 1. Various forms of parameter θ (t) of GEV distribution as a function of covariate t.

Take the logarithm of both sides as it is easier to handle, we get
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−n (β0 + β1t) −
(

1
γ

+ 1
) n∑

t=1

ln
[
1 + γ

(
xt − α0 − α1 sin ((t/30)2π)

expβ0+β1t

)]

−
n∑

t=1

[
1 + γ

(
xt − α0 − α1 sin ((t/30)2π)

expβ0+β1t

)]−1/γ

; γ �= 0,

−n (β0 + β1t) −
n∑

t=1

(
xt − α0 − α1 sin ((t/30)2π)

expβ0+β1t

)

−
n∑

t=1

exp
[
−

(
xt − α0 − α1 sin ((t/30)2π)

expβ0+β1t

)]
. γ = 0.

(7)



14 Page 6 of 16 J. Earth Syst. Sci. (2019) 128:14

To obtain MLEs of the parameters α0, α1, β0, β1 and γ, we differentiate the log likelihood function lnL
(α0, α1, β0, β1, γ|X) with respect to each of the parameters and equate to zero to get a system of
simultaneous equations. For γ �= 0, these equations are given below:
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On similar lines, ML equations for the case γ = 0
can also be derived. However, since no closed-form
solution exists for the above system of simulta-
neous equations, the MLEs are obtained by the

direct maximisation of the log likelihood based on
numerical algorithms. Optimisation of log likeli-
hood function has been done by developing codes
using extRemes package in R software.
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2.3 Properties of model parameter estimators

Under certain regularity conditions, the MLEs
will have desirable asymptotic properties viz.,
consistency, asymptotic normality, invariance and
asymptotic efficiency. The log likelihood of the
proposed non-stationary GEV model with cyclic
covariate structure is essentially a likelihood of
the GEV distribution with parameters varying
with time. Since the range of the GEV distribu-
tion depends on unknown parameters α, β and γ,
the regularity conditions for ML estimation are
not necessarily satisfied. Nevertheless, the desirable
asymptotic properties of efficiency and normality of
MLEs hold for the GEV distribution for γ < 0.5
(Smith 1985).

2.4 Estimation of extreme quantiles

After obtaining the parameter estimates of
the non-stationary GEV model described in
section 2.2, estimates of quantile for various return
periods T have been computed as given below:

F
(
xT |α̂0,α̂1, β̂0, β̂1, γ̂

)
= 1 − 1

T
= p, (13)

for γ �= 0, exp

{

−
[
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expβ0+β1t
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}

= p, (14)

for γ = 0, exp
{

−exp
[
−
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)]}
= p. (15)

On simplifying, we get

xT =

⎧
⎪⎨

⎪⎩

α0 + α1 sin ((t/30)2π) +
expβ0+β1t

[
(− ln p)−γ − 1

]

γ
; γ �= 0,

α0 + α1 sin ((t/30)2π) + expβ0+β1t [− ln (− ln p)] ; γ = 0,

t = 1, 2, . . . . (16)

The notion of return period becomes
ambiguous when we move from stationary to the
non-stationary environment; nonetheless, it can
still be defined for operational purposes (Serinaldi
and Kilsby 2015). It may be noted that the quan-
tile estimates will be changing over time t under
the non-stationary GEV model setup.

2.5 Models considered for comparison

We have considered various covariate structures
viz., linear, quadratic, reciprocal, logarithmic, sinu-
soidal (cyclic), as deliberated in section 2.2,

through location, scale and shape parameters θ (t)
under the proposed non-stationary GEV model so
as to appropriately explain the non-stationarity
behaviour in the environmental variable under
study. In the absence of any concrete support
for incorporating non-stationarity in the shape
parameter, it has not been included in the final
shortlisted models. The model performance has
been compared with the stationary GEV distri-
bution. The log likelihood, MLEs and quantile
estimates can be obtained for the non-stationary
GEV models with various covariate structures
on similar lines as deliberated in sections
2.2–2.4.

2.6 Criterion for model selection

The validity or suitability of the model has been
assessed using various graphical diagnostics like
empirical vs. modelled density plot, quantile–
quantile plot, return level plot and the
quantitative assessment has been made using the

negative log likelihood (NLL) and the Akaike infor
mation criterion (AICc) corrected for small sample
sizes. The likelihood function tends to be a most
sensitive criterion of the deviation of the model
parameters from the true values (Cramer 1946;
Akaike 1974). Alternatively, we seek a minimum
of the NLL = − ln L. The AICc = AIC + (2k(k +
1)/(n − k − 1)), where AIC = 2k − 2 ln L, where
k being the number of independently adjusted
parameters within the model, with a penalty for
additional parameters in more complicated mod-
els. Most parsimonious model with infimum AICc
value will be selected.



14 Page 8 of 16 J. Earth Syst. Sci. (2019) 128:14

Figure 2. Isohyetal zones, watersheds and rain gauging
stations in the MMB basin.

3. Data

The MMB subbasin located in the north-western
part of the Krishna basin in India with a catchment
area of 6317 km2 is selected as study area. The
mountainous western part receives very good rain-
fall, which drastically decreases towards the eastern
part which is a rainfall deficit region thus the basin
characterises very high temporal and spatial varia-
tion. Figure 2 shows a watershed map of the MMB
basin stratified into six zones I–VI by drawing iso-
hyetal lines of 2500, 2000, 1500, 1000 and 500 mm.
Annual rainfall for the period 1971–2007 for six iso-
hyetal zones and the whole MMB basin have been
compiled based on data from 33 representative

rain gauge stations maintained by the Water
Resources Department, Maharashtra State (Jagtap
et al. 2011). Summary of statistical characteristics
of annual rainfall in the MMB basin is given in
table 1.

3.1 Preliminary data analysis

The non-stationarity in the assessment of extremal
behaviour of annual rainfall, which is a vital
parameter for water resources planning, has been
discussed. The GEV distribution is used as the
annual rainfall in different zones of study region
is characterised by extreme intermittency typically
driven by a very small number of intense events
depicting non-symmetric, heavy-tailed probability
distribution. A preliminary investigation carried
out for annual rainfall in the MMB basin indicates
deviation from stationarity assumption, which
could be attributed to natural climate variabil-
ity or anthropogenic climate change and its severe
impact on extreme value estimates possibly fuelled
due to highly uncertain nature of monsoon-type
climate of the region. Various graphical diagnos-
tics of stationary GEV distribution fitted to annual
rainfall data in six isohyetal zones confirm the
invalidity of the model assumptions and inappro-
priateness of the stationary model. The two-cycle
pattern depicted in figure 3 for representative data
series in the MMB basin indicates the presence of
non-stationary behaviour. The assumption of ran-
domness, independence and stationarity of annual
rainfall series has been quantitatively checked using
the Wald–Wolfowitz two-sided run test (Wald and
Wolfowitz 1943), since its violation could result in
the detection of a statistically significant trend,
even if no trend was present (Cox and Stuart
1955). The test results given in table 2 show clear
evidence against the stationarity of data series
except for zones I and III at 5% significance level.

Table 1. Summary statistics of annual rainfall (mm) in the MMB basin.

Isohyetal zone

I II III IV V VI MMB basin

n 37 37 37 37 37 25 37

Min 2208 1141 890.8 201.2 307.9 70.3 744.7

Max 5941 4010 3128.5 2445.0 1135.7 714.4 2274.4

Average 3866 2465 1874.6 1089.3 671.0 333.7 1367.4

SD 947.3 700.6 596.3 482.5 172.4 162.9 329.9

CV 24.5 28.4 31.8 44.3 25.7 48.8 24.1

Skewness 0.28 0.65 0.56 0.42 0.32 0.58 0.74

Kurtosis −0.77 0.09 −0.64 0.84 0.82 0.00 1.08
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Figure 3. Temporal variation in annual rainfall over the MMB basin.

Table 2. Testing randomness, independence and stationarity of annual
rainfall in the MMB basin using Wald–Wolfowitz run test.

Isohyetal zone (basin)

I II III IV V VI MMB

Test statistic 0.906 2.570 0.687 3.258 2.709 2.544 2.087

p-value 0.365 0.010 0.492 0.001 0.007 0.011 0.037
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Figure 4. Lag-one autocorrelation of annual rainfall in the MMB basin.

The driving force to undertake the problem
further can revolve around the following main
issues:

1. There is a huge amount of uncertainty in the
estimation of hydrometeorological quantiles. To
explain the additional uncertainty caused due
to non-stationarity, there is a need for detailed
exploratory data analysis.

2. There is a need for developing more consistent
non-stationary frequency analysis methods that

can account for the transient nature of a
changing climate, lack of data and information
characterising hydrometeorological variables.

3.2 Exploratory data analysis

The stationarity assumption is investigated
further in this section. In four out of seven data
series in each zone of the MMB basin, we found
that the lag-one autocorrelation was significantly
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Table 3. Pettitt non-parametric test to detect a shift in the central tendency of annual
rainfall in the MMB basin.

Isohyetal zone (basin)

I II III IV V VI MMB

Pettitt test statistic (K) 148 122 82 150 94 82 76

p-value 0.160 0.359 0.921 0.149 0.722 0.167 1.000

Probable change point (yr) 1984 1989 2002 1979 2003 2003 2003

Table 4. Mann–Kendall test to detect a monotonic trend in annual rainfall in the MMB basin.

Isohyetal zone (basin)

I II III IV V VI MMB

Mann–Kendall test statistic (T ) −0.120 0.108 −0.009 0.288 0.074 0.260 0.045

p-value 0.302 0.353 0.948 0.012 0.530 0.072 0.704

Table 5. Hurst exponent H for annual rainfall in the MMB basin.

Isohyetal zone (basin)

I II III IV V VI MMB

Corrected R over S Hurst exponent (H) 0.781 0.608 0.595 0.654 0.581 0.561 0.559

Corrected empirical Hurst exponent (H) 0.565 0.239 0.248 0.358 0.282 0.479 0.107

different from zero, although of the order of 0.4, as
depicted in figure 4. The presence of any abrupt
changes in the central tendency and the variance
of the annual rainfall distribution are tested using
the Pettitt test. The p-values and probable change
points have been given in table 3. Although the
test has identified some probable change points for
each rainfall series but the changes detected are
not significant. The identified bahaviour although
insignificant could be linked to the change in rain-
fall regime. The presence of slowly varying changes
is examined by means of the Mann–Kendall trend
test (Mann 1945; Kendall 1970). Test results in
table 4 show that out of seven data series without a
statistically significant change point in location, a
statistically significant increasing monotonic trend
has been detected in zone IV at 5% significance
level and in zone VI at 10% significance level.
The main difference between abrupt and gradual
changes is that with the former the time series
remains in the same regime until another abrupt
change occurs. Slowly varying changes will tend to
persist in the future.

We have computed the Hurst exponent H for
examination of long-term persistence, which can
result in apparent trends in time series that are
actually stationary; the results are summarised

in table 5. Hurst exponents estimated using the
corrected empirical method are smaller than or
equal to 0.5 suggests that the time series do
not exhibit long-term persistence. Whereas Hurst
exponents estimated using the corrected R over
S method indicate H is consistent with long-term
persistence although the estimated H may not be
significantly larger than 0.5. It may be mentioned
that the estimates of H are very different by dif-
ferent approaches due to the limited sample sizes,
so it will not be desirable to provide a conclusive
statement.

4. Results using the proposed model

Identification of covariate structure to aptly
represent the non-stationary behaviour in the envi-
ronmental data series and to capture ambiguous
trends, periodicities or cyclicities is a formidable
task. Various prospective function relationships
for distribution parameters and covariate time
as described in section 2.2 have been consid-
ered for analysis of extremes. Initially, we have
incorporated covariate on an individual basis for
location, scale and shape parameter in the
GEV distribution. Complexities increase in the
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Figure 5. Traces of NLL for GEV parameters whereby other parameters held fixed at MLE values and respective gradient
for annual rainfall in the MMB basin zone I.

optimisation of log likelihood as we endeavour
covariate simultaneously for various combinations
of parameters. The trace plot of NLL for each
parameter of GEV distribution, whereby other
parameters are held fixed at the MLE values, and
the corresponding gradient negative log-likelihoods
are useful in diagnosing any fitting problems
that might arise in practice. The trace plot in the
case of stationary GEV model for annual rainfall
in the MMB basin zone I is given in figure 5.

Data analysis has been carried out using the
codes developed by extRemes package in R soft-
ware (R Core Team 2015). Details about some
attempted non-stationary extreme value models,
and their corresponding NLL and AICc statistics
are given in table 6. It indicates that the mag-
nitudes of annual rainfall when modelled using
cyclic trends as non-stationary location param-
eter show better NLL and AICc values. It is
further observed that the variation in the annual
rainfall also comprises some cyclic patterns; hence,
the non-stationary scale parameter with sinusoidal

function has been incorporated into the analysis.
Moreover, we had incorporated non-stationarity
in the shape parameter also. The linear, logarith-
mic and reciprocal function is used to model the
changing behaviour in the shape or heaviness in
the tail of the distribution. It is seen that one
may get better values of NLL and AICc by incor-
porating non-stationarity in the shape parameter;
however, various diagnostic plots show the unsta-
ble behaviour of the corresponding log likelihood.
Thus, in the absence of any concrete support for
incorporating non-stationarity in the shape param-
eter, it will remain just a mathematical exercise
and hence, it has not been included in the final
shortlisted models. Interestingly, we get sinusoidal
as a suitable covariate function of time representing
the cyclic pattern of approximately 30 yr period for
the hydrometeorological data series.

It can be inferred from table 6 that there is a
considerable gain in using non-stationary EVA over
the plain stationary GEV model as could be seen
from the enhanced NLL and AICc statistics that
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Table 6. Diagnostics of non-stationary GEV models with different covariate structures for
annual rainfall in the MMB basin zone I.

Location α (t) Scale β (t)

Shape

γ (t) NLL AICc

α β γ 304.91 616.54

α0 + α1 sin ((t/30)2π) β0 + β1abs {sin ((t/30)2π)} γ 300.42 612.77

α0 + α1 sin ((t/30)2π) β0 + β1 sin ((t/30)2π) γ 301.64 615.21

α0 + α1 sin ((t/30)2π) β γ 302.98 615.22

α eβ0+β1abs{sin((t/30)2π)} γ 303.28 615.81

α0 + α1 sin ((t/30)2π) β0 + β1t γ 302.50 616.93

α0 + α1 sin ((t/30)2π) eβ0+β1 ln t γ 302.78 617.50

α0 + α1abs {sin ((t/30)2π)} eβ0+β1abs{sin((t/30)2π)} γ 303.03 617.99

α0 + α1abs {sin ((t/30)2π)} β γ 304.61 618.46

α eβ0+β1 sin((t/30)2π) γ 304.82 618.90

α0 + α1t β γ 304.92 619.09

Density plot

Return Period

Return Level Plot

Quantile-Quantile plot Quantile-Quantile plot of data simulated from fitted model
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Figure 6. Diagnostic plot for non-stationary GEV model with location α (t) = α0+α1 sin ((t/30)2π) and scale β (t) = eβ0+β1t

for extremal analysis of annual rainfall in the MMB basin zone I.
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ultimately results in the reduction of uncertainty.
In other words, one can see that the reliabil-
ity in the quantile estimates of annual rainfall in
the MMB basin has been improved as we employ
the non-stationary extreme value modelling. The
density plot of empirical and modelled densities,
quantile–quantile plot of empirical and modelled
quantiles and that of the data simulated from the
fitted model, return level plot corresponding to 2,
20 and 100 yr return periods for the fitted non-
stationary GEV distribution for annual rainfall in
the MMB basin zone I for assessing the adequacy
of one combination of the proposed model is shown
in figure 6.

Table 7 gives the NLL and AICc statistics for
shortlisted GEV non-stationary models along with
the stationary model for all annual rainfall data
series in the MMB basin. Incorporation of sinu-
soidal covariates with a frequency of 30 yrs for cap-
tivating possible cyclic trends in magnitudes and
variation of annual rainfall have given enhanced
model fits in respect all the seven data series as
compared with the plain GEV stationary model.
The extreme value estimates of annual rainfall cor-
responding to 2, 20 and 100 yr return periods for
six isohyetal zones and the MMB basin as a whole
using the non-stationary GEV model are shown in
figure 7. It indicated that the estimated extreme
values of environmental variables corresponding to
various return periods are changing over time due
to the existence of potential non-stationarity.

The proposed non-stationary GEV model FX (x,
θ(t)) with cyclic covariate structure α (t) = α0 +
α1abs {sin ((t/30)2π)} , t = 1, 2, . . . , n, for location
and β (t) = expβ0+β1abs{sin((t/30)2π)} for scale has
performed reasonably well for the majority of the
hydrometeorological data series under the study
indicating sinusoidal pattern with a period of
around 30 yr. Although the approach used in the
investigation is basically a data-driven approach,
the cyclic patterns pinpointed in the outcome can
possibly be linked to the ‘Sun cycles’ which could
be an important driving mechanism for the occur-
rence of rainfall on earth.

For ascertaining the applicability of the proposed
non-stationary GEV model with the sinusoidal
covariate of the period around 30 yr for location
and scale, it has been used for analysis of the
extremal behaviour of annual rainfall over the Tapi
basin with catchment area of 63,923 km2 located in
central India. The rainfall data has been accessed
from the source India Water Resources Informa-
tion System website: www.india-wris.nrsc.gov.in. T
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Figure 7. Return level plots using non-stationary GEV model for annual rainfall in the MMB basin.
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Figure 8. Return level plots using non-stationary GEV
model for annual rainfall in the Tapi basin.

The whole Tapi basin has been divided into Upper,
Middle and Lower sub-basins and the rainfall data
is based on meteorological stations maintained
by India Meteorological Department (IMD), Cen-
tral Water Commission (CWC) and Indian Space
Research Organization (ISRO). The NLL and AICc
statistical criteria indicate that the proposed non-
stationary GEV model with cyclic covariate per-
forms better than the plain stationary GEV model
which thus ultimately results in the reduction of
uncertainty. The return level plot corresponding
to 2, 20 and 100 yr return periods for the fitted
non-stationary GEV for annual rainfall in the Tapi
basin is given in figure 8.

5. Conclusion

We have made a critical examination of
non-stationary frequency analysis essential for real-
world applications. Reliable information on the
extremal behaviour of some random quantities in
our environment such as annual rainfall is a vital
input for planning socio-economic activities. Pre-
liminary data analysis, various statistical tests as
well as exploratory data analysis indicate the pres-
ence of non-stationarity and in-homogeneity that
need to be dealt in the extreme value analysis. The
proposed non-stationary GEV model with cyclic
covariate structure for magnitude and variation of
data series has resulted in improved extreme value
estimation thereby fall in overall uncertainty. Inter-
estingly, the sinusoidal function with periodicity
around 30 yrs has been originated as a suitable
covariate structure to deal with ambiguous nature

of temporal trends and has effectively explained the
cyclic patterns seen in the environmental random
variables as illustrated for annual rainfall series. It
could be linked to ‘Sun cycles’ possibly an impor-
tant driving mechanism for the occurrence of rain-
fall on earth. Various diagnostic plots and statistics
support the usefulness of the proposed covariate
structure to tackle potential non-stationarity in the
hydrometeorological data series.

One of the limitations may possibly be the
complexities in the estimation with increased num-
ber of parameters in the probability model. The
increasing data length would lead to better model
selection and reduction in uncertainty. Reliable
information on physical laws driving climatic pro-
cesses leading to peculiar rainfall patterns would
aid in the proper detection of the covariate struc-
ture. Parameter estimation methods which address
complexities and standard guidelines for practi-
tioners for the inclusion of non-stationary analyses
to avoid misuse are indispensable.
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