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Abstract. Let R be a noncommutative prime ring of characteristic different from 2 with
Utumi quotient ring U and extended centroid C, let F';, G and H be three generalized
derivations of R, I an ideal of R and f(z1,...,2n) a multilinear polynomial over C' which
is not central valued on R. If

F(f(r))G(f(r)) = H(f(r)?)

for all r = (r1,...,7rn) € I", then one of the following conditions holds:

(1) there exist a € C and b € U such that F(z) = az, G(z) = zb and H(z) = zab for all
z € R;

(2) there exist a,b € U such that F(z) = za, G(x) = bz and H(z) = abx for all € R,
with ab € C;

(3) there exist b € C' and a € U such that F(z) = az, G(z) = bz and H(x) = abzx for all
T € R;

(4) f(x1,...,zn)? is central valued on R and one of the following conditions holds:

(a) there exist a,b,p,p’ € U such that F(x) = ax, G(x) = zb and H(x) = px + xp’
for all z € R, with ab=p + p/;

(b) there exist a,b,p,p’ € U such that F(z) = za, G(z) = bx and H(z) = px + zp’
for all x € R, with p+p' =abe C.
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1. INTRODUCTION

Throughout this paper R always denotes an associative prime ring with cen-
ter Z(R), extended centroid C, and U its Utumi quotient ring. The Lie commutator
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of z and y is denoted by [z,y] and defined by [z,y] = zy — yx for x,y € R. An
additive mapping d: R — R is called a derivation if d(zy) = d(x)y + xzd(y) holds for
all z,y € R. An additive subgroup L of R is said to be a Lie ideal of R if [L, R] C L.
An additive mapping F': R — R is called a generalized derivation if there exists
a derivation d: R — R such that F'(zy) = F(x)y + xd(y) holds for all z,y € R. Ev-
idently, any derivation is a generalized derivation. Thus, the generalized derivation
covers both the concepts of derivation and left multiplier mapping. The left mul-
tiplier mapping means an additive mapping F': R — R such that F(zy) = F(x)y
holds for all z,y € R. We denote by s4 the standard polynomial in four variables,

which is s4(z1, 22, 23,24) = D (=1)7%6(1)To(2)To(3)To(a) Where (—1)7 is +1 or —1
ogESy
according to o being an even or odd permutation in symmetric group Sy.

Let S be a nonempty subset of R and F': R — R an additive mapping. Then
we say that F' acts as a homomorphism or anti-homomorphism on S if F(zy) =
F(z)F(y) or F(zy) = F(y)F(z) holds for all z,y € S, respectively. The additive
mapping F acts as a Jordan homomorphism on § if F(2?) = F(x)? holds for all
r€eS.

A series of papers in literature studied the homomorphism or anti-homomorphism
of some specific type of additive mappings in prime and semiprime rings under certain
conditions (see [1], [2], [4], [5], [10], [17], [14], [19], [30], [31]).

In [10], De Filippis studied the following cases: (i) when the generalized deriva-
tion F' acts as a Jordan homomorphism on a noncentral Lie ideal L of R, that is
F(z)F(x) = F(2?) forall x € L, and (ii) F(z)F(x) = F(2?) for all x € [I, I], where I
is a nonzero right ideal of a prime ring R.

It is natural to ask what happens, if we consider three generalized derivations
F,G,H: R — R such that F(z)G(z) = H(z?) for all x in a suitable subset of R.

Recently, Dhara, Rehman and Raza in [16] proved that if R is a prime ring of
characteristic not 2, L a nonzero square closed Lie ideal of R and F,G, H three
generalized derivations associated with derivations d(# 0), d(# 0), h such that
F(u)G(v) £ H(uv) € Z(R) for all u,v € L or F(u)G(v) + H(vu) € Z(R) for all
u,v € L, then L C Z(R).

In the present paper, our motive is to investigate the situation F(z)G(z) = H(z?)
for all x € {f(x1,...,2n): @1,...,2, € I}, where I is a nonzero ideal of R and
f(x1,...,2,) is a multilinear polynomial over C. Note that in case F = G = H,
Dhara, Huang and Pattanayak studied a more general situation in [15], that is,
F(z)" = F(a") for all x € {f(x1,...,2p): Z1,...,2, € I}, where I is a nonzero
right ideal of R and f(z1,...,zy) is a multilinear polynomial over C.

More precisely, we prove the following theorem:
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Main theorem. Let R be a noncommutative prime ring of characteristic different
from 2 with Utumi quotient ring U and extended centroid C, let F,G and H be
three generalized derivations of R, I an ideal of R and f(x1,...,z,) a multilinear
polynomial over C which is not central valued on R. If

for all r = (r1,...,r,) € I", then one of the following conditions holds:
(1) there exist a € C and b € U such that F(z) = ax, G(x) = zb and H(z) = xab
for all x € R;

(2) there exist a,b € U such that F(x) = xza, G(x) = bx and H(x) = abx for all
r € R, with ab € C;
(3) there exist b € C and a € U such that F(z) = az, G(x) = bx and H(z) = abz
for all x € R;
(4) f(x1,...,m,)? is central valued on R and one of the following conditions holds:
(a) there exist a,b,p,p’ € U such that F(x) = azx, G(x) = xb and H(z) =
px + xp’ for all x € R, with ab =p + p’;
(b) there exist a,b,p,p’ € U such that F(z) = za, G(z) = bz and H(z) =
pr+xp’ forallz € R, withp+p =abe C.

Example 1.1. Let Z be the set of all integers. Consider a ring R = {(3 (y)):
z,y € Z} and a multilinear polynomial f(z,y) = zy which is not central valued
on R. We define maps F,G,d,g: R — R by G(gg) = (g%’), g(gg) = (gg),

F(§ (y)) = (3 30y) and d(g g) = (8 QOy). Then F' and G are generalized derivations

of R associated with derivations d and g, respectively. We see that

G(f(z,y)F(f(z,y)) = F(f(z,9)*)

for all z,y € R.

As an immediate application of the main theorem, in particular, when H = 0, we
obtain the result of Carini, De Filippis and Scudo in [7]:

Corollary 1.2. Let R be a noncommutative prime ring of characteristic different
from 2 with Utumi quotient ring U and extended centroid C, let F', G be two
nonzero generalized derivations of R, I an ideal of R and f(z1,...,2,) a multilinear
polynomial over C' which is not central valued on R. If

E(f(r)G(f(r)) =0
for all r = (r1,...,7m,) € I", then one of the following conditions holds:
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(1) there exist a,b € U such that F(x) = za, G(z) = bz for all x € R, with ab = 0;
(2) f(z1,...,2,)% is central valued on R and there exist a,b € U such that
F(z) = ax, G(x) = xb for all x € R, with ab = 0.

In particular, when F' = G in our Main theorem, we obtain Theorem 1 of De Fi-
lippis and Scudo in [12] as a special case.

Corollary 1.3. Let R be a noncommutative prime ring of characteristic differ-
ent from 2 with Utumi quotient ring U and extended centroid C, let F and H be
two generalized derivations of R, I an ideal of R and f(x1,...,%,) a multilinear
polynomial over C' which is not central valued on R. If

for all r = (r1,...,rs) € I", then one of the following conditions holds:
(1) there exists a € C such that F(z) = ax, and H(z) = oz for all z € R;
(2) f(x1,...,7,)? is central valued on R and there exist a € C, p,p’ € U such that
F(x) = ax, and H(x) = px + xp’ for all z € R, with p+p’ = a*.

In particular, when F' = G = H, our Main theorem yields the following corollary
which is Corollary 2.3 in [15].

Corollary 1.4. Let R be a noncommutative prime ring of characteristic different
from 2 with Utumi quotient ring U and extended centroid C, let F' be a generalized
derivation of R, I an ideal of R and f(x1,...,x,) a multilinear polynomial over C'
which is not central valued on R. If

for allr = (ry,...,ry) € I", then F(x) =« for all x € R.

Another immediate corollary is obtained by taking F'(z) =z forallz € R, G = 2d
and H = d, where d is a derivation in our Main theorem, which gives the particular
case of the main result of Lee and Lee in [26]. Moreover, replacing multilinear
polynomial f(z1,...,x,) by x, the corollary gives the famous result of Posner in [29)].

Corollary 1.5. Let R be a prime ring of characteristic different from 2 with
extended centroid C, let d be a nonzero derivation of R, I an ideal of R and
f(z1,...,2,) a multilinear polynomial over C. If [d(f(r)), f(r)] = 0 for all r =
(r1,...,rn) € I", then f(x1,...,x,) is central valued on R.
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2. MAIN RESULTS

First we consider the inner generalized derivation cases. Let F(z) = ax + xc,
G(z) = bx+zq and H(z) = pr+xp’ for all x € R, for some a, b, c,p,q,p’ € U. Then
F(f(r)G(f(r)) = H(f(r)?) for all x € f(R) yields

(af(r) + f(r)e)(0f(r) + f(r)a) = pf(r)* + f(r)*D,

which gives

af (rbf(r) + af(r)*q+ f(r)c' f(r) + f(r)ef(r)a = pf(r)* + £(r)*p'

for all r = (r1,...,7,) € R", where ¢/ = cb. We investigate this generalized polyno-
mial identity in the prime ring.
We need the following known results:

Lemma 2.1 ([3], Lemma 1). Let R be a noncommutative prime ring, a,b € U,
let p(z1,...,2,) be any polynomial over C' which is not an identity for R. If ap(r)—
p(r)b =0 for all r = (r1,...,ry) € R", then one of the following conditions holds:

(1) a=be,
(2) a=0b and p(z1,...,zy) is central valued on R,
(3) char(R) =2 and R satisfies s4.

Lemma 2.2 ([3], Lemma 3). Let R be a noncommutative prime ring with Utumi
quotient ring U and extended centroid C, and let f(x1,...,x,) be a multilinear
polynomial over C' which is not central valued on R. Suppose that there exist
a,b,c,q € U such that (af(r) + f(r)b)f(r) — f(r)(cf(r) + f(r)g) = 0 for all r =
(r1,...,7,) € R™. Then one of the following conditions holds:

(1) a,geCandg—a=b—c=a€C;

(2) f(z1,...,m,)? is central valued on R and there exists a € C such that ¢ — a =
b—c=a;

(3) char(R) =2 and R satisfies s4.

In particular, from the above lemma, we have the following result:

Lemma 2.3. Let R be a noncommutative prime ring with Utumi quotient ring U
and extended centroid C, and let f(z1,...,x,) be a multilinear polynomial over C
which is not central valued on R. Suppose that there exist a,b,c € U such that
f(r)af(r) + f(r)*b — cf(r)> = 0 for all r = (r1,...,7,) € R™. Then one of the
following conditions holds:
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(1) bceCandc—b=a=a€(C;
(2) f(z1,...,2,)? is central valued on R and there exists o € C such that ¢ — b =
a=q;

(3) char(R) = 2 and R satisfies sy.

Lemma 2.4. Let R be a noncommutative prime ring with Utumi quotient ring U
and extended centroid C, and let f(z1,...,x,) be a multilinear polynomial over C
which is not central valued on R. Suppose that there exist a,b € U such that
(af(r) + f(r)b)f(r) =0 for all r = (r1,...,r,) € R™. Then one of the following
conditions holds:

(1) a,be C anda+b=0;
(2) char(R) = 2 and R satisfies sy.

Lemma 2.5. Let R be a noncommutative prime ring with Utumi quotient ring U
and extended centroid C, and let f(x1,...,2,) be a multilinear polynomial over C
which is not central valued on R. Suppose that there exist c¢,q € U such that
f(r)ef(r)+ f(r)g) =0 for all r = (ry,...,7,) € R™ Then one of the following
conditions holds:

(1) ¢,q € C and g+ ¢ = 0;
(2) char(R) =2 and R satisfies s4.

Lemma 2.6 ([11], Lemma 1). Let C be an infinite field and m > 2. If Ay,..., Ay
are not scalar matrices in M,,(C) then there exists an invertible matrix P € M,,(C)
such that all matrices PA1P~',..., PA,P~" have entries different from zero.

Proposition 2.7. Let R = M,,(C), m > 2, be the ring of all m x m matrices
over the infinite field C, f(x1,...,z,) a noncentral multilinear polynomial over C
and a,b,c,p,q,c,p' € R. If

af(rbf(r) +af(r)?q+ f(r)e f(r) + f(r)ef(r)g = pf(r)* + f(r)*D'
for all r = (r1,...,rs) € R", then either a or b and either ¢ or q are central.

Proof. By our assumption R satisfies the generalized identity

(2.1) af(zy, ... xn)bf(z1, ... xn) +af(zy,...,2.)%q
+ f(xr,. . xn) f(mr, o mn) + f(x1, . xn)ef (1, .., 20
=pf(x1,. . x0)? 4 f@r,. .., x0)%P .
We assume first that a ¢ Z(R) and b ¢ Z(R). Now we shall show that this case

leads to a contradiction.
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Since a ¢ Z(R) and b ¢ Z(R), by Lemma 2.6 there exists a C-automorphism ¢
of M,,(C) such that a; = ¢(

a), by = p(b) have all nonzero entries. Clearly a1, b1,
a1 =¢(c), ¢y =p(d), a1 = ¢(q), p1 = ¢(p) and pj = p(p’) must satisfy the condition

(22)  arf(zr, ..., xp)bif(ze, .. x0) Farf(zy, ..., 20)%q
+ f(xla s 7:[,’,”)0/1'](.(1[:17 s 7xn) + f(xla s axn)clf(xla v 7xn)(h
= plf(xlv s 7xn)2 + f(xla v axn)Qpll
for all z1,...,z, € R.

Here ey; denotes the usual matrix unit with 1 in (k,[)-entry and zero elsewhere.
Since f(x1,...,%,) is not central, by [24] (see also [27]) there exist u1,...,u, €
M, (C) and 0 # v € C such that f(u1,...,u,) = yer, with k& # . Moreover,
since the set {f(r1,...,7n): 71,...,7n € M, (C)} is invariant under the action of all
C-automorphisms of M,,(C) for any i # j there exist r1,...,r, € M,,(C) such that
f(ri,...,rn) = ve;5, where 0 # v € C. Hence by (2.2) we have

/
(2.3) aleijbleij + eijC €45 + €ijC1€45q1 = 0

and then left multiplying by e;; implies e;ja;1e;5b1e;; = 0, which is a contradiction,
since a; and b; have all nonzero entries. Thus we conclude that either a or b are
central.

Similarly we can prove that c or ¢ are central. ([

Proposition 2.8. Let R = M,,,(C), m > 2, be the ring of all matrices over the
field C' with char(R) # 2, f(z1,...,%,) a noncentral multilinear polynomial over C
and a,b,c,p,q,c,p' € R. If

af(rbf(r) +af(r)’q+ f(r)d f(r) + f(r)ef(r)a = pf(r)* + f(r)*p
for all v = (r1,...,7m,) € R™, then either a or b and either c or q are central.

Proof. If one assumes that C is infinite, then the conclusions follow by Propo-
sition 2.7.

Now let C' be finite and let K be an infinite field which is an extension of the
field C. Let R = M,,(K) = R ®c K. Notice that the multilinear polynomial
f(x1,...,2,) is central valued on R if and only if it is central valued on R. Consider
the generalized polynomial

(2.4) P(x1,...,20) = af(z1,...,2)bf (x1,...,20) +af(x1,...,2,)%q
+ flxr, .. xn) (o1, mn) + f(21, o zn)ef (21, o T
_(pf(xla"'vxn)2+f(x1a"'axn)2p/):0

which is a generalized polynomial identity for R.
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Moreover, it is multi-homogeneous of multi-degree (2, ...,2) in the indeterminates

TlyeeeyTp.
Hence the complete linearization of P(x1, ..., 2, ) is a multilinear generalized poly-
nomial ©(x1,...,Zn,Y1,---,Yn) in 2n indeterminates, moreover,
O(x1,.. Ty, @1, ..y Tpy) = 2" Pz, ..., 20).
Clearly the multilinear polynomial ©(z1,...,Zpn,y1,...,Ys) is a generalized polyno-
mial identity for R and R too. Since char(C) # 2 we obtain P(ry,...,r,) = 0 for all
T1,...,7n € R and then the conclusion follows from Proposition 2.7. O

Lemma 2.9. Let R be a noncommutative prime ring of char(R) # 2, a,b,c,
d eU,let p(x1,...,2x,) be any polynomial over C which is not an identity for R. If
ap(r) + p(r)b + ¢p(r)c’ =0 for all r = (rq,...,r,) € R™, then one of the following
conditions holds:

(1) b, eCanda+b+cd =0,
(2) a,ce C anda+b+cc =0,
(3) a+b+cd =0 and p(x1,...,z,) is central valued on R.

Proof. 1If p(xy,...,x,) is central valued on R, then our assumption ap(r) +
p(r)b + cp(r)d = 0 yields (a + b+ cd)p(r) = 0 for all » = (r1,...,7m,) € R". Since
p(r1,...,7,) is nonzero valued on R, a + b + ¢¢ = 0 and hence we obtain our

conclusion (3).

If ¢ € C, then by assumption we have (a + cc)p(r) + p(r)b = 0 for all r =
(r1,...,r,) € R™. By Lemma 2.1, we have one of the following conditions: (1) a +
ed = —b € C, which is our conclusion (1); (2) a + ¢ = —b and p(r1,...,7y) is
central valued on R, which is our conclusion (3).

If ¢ € C, then by assumption we have ap(r) + p(r)(b + ¢¢’) = 0 for all r =
(r1,...,r,) € R™. By Lemma 2.1, we have one of the following conditions: (1) b+
e = —a € C, which is our conclusion (2); (2) b+ ¢ = —a and p(r1,...,7y) is
central valued on R, which is our conclusion (3).

Next, we assume that p(z1,...,2,) is not central valued on R and ¢, ¢ C. Let
G be the additive subgroup of R generated by the set S = {p(z1,...,z,): z1,...,
x, € R}. Then S # {0}, since p(x1,...,2,) is nonzero valued on R. By our
assumption we get ax + xb 4+ cxc’ = 0 for any x € G. By [8], either G C Z(R)
or char(R) = 2 and R satisfies s4, except when G contains a noncentral Lie ideal
L of R. Since p(z1,...,2,) is not central valued on R, the first case cannot occur.
Moreover, since char(R) # 2, we have only the case that G contains a noncentral Lie
ideal L of R. By [6], Lemma 1, there exists a noncentral two sided ideal I of R such
that [I, R] C L. In particular, alz1, z2] 4 [21, 22]b + ¢[z1,22]¢’ = 0 for all 21,z € I.
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By [9], alz1,z2] + [x1, 22]b + c[z1,x2]¢’ = 0 is a generalized polynomial identity for
R and for U.

Since ¢ and ¢ are not in C, the generalized polynomial identity (GPI) a[zy,zo] +
[21, 22]b + c[x1, 22]¢’ = 0 is nontrivial GPI for U and U ®¢ C. Since both U and
U ®c C are centrally closed (see [18]), we may replace R by U or U ®¢ C according
as C is finite or infinite. Thus we may assume that R is centrally closed over C'
which is either finite or algebraically closed. By Martindale’s theorem in [28], R is
a primitive ring having a nonzero socle Soc(R) with C' as the associated division ring.
In light of Jacobson’s theorem in [20], page 75, R is isomorphic to a dense ring of
linear transformations on some vector space V over C. Since R is not commutative,
dimeV > 2. If dimg V' = n, then by density of R we have R & M, (C), n > 2.
Replacing [x1, x2] = [€4i, €i;] = €5, we have 0 = ae;j + e;;b + ce;j¢’. Left and right
multiplying by e;;, we have 0 = cjic;ieij. This implies cjic;-i = 0. Then by the same
argument as before Proposition 2.7 and Proposition 2.8, we conclude that either
ce Corc €, acontradiction. Assume now that V is infinite dimensional over C.
Then for any e = €2 € Soc(R) we have eRe = M;(C) with k = dimc Ve. Since
c ¢ Cand ¢ ¢ C, cand ¢ do not centralize the nonzero ideal Soc(R) of R, so
cho # hoc and ’hy # hic for some hg,h; € Soc(R). By Litoff’s theorem in [22],
page 280, there exists an idempotent e € Soc(R) such that hg, h1, hoc, chg, hic,
c'hy are all in eRe. We have eRe = My (C) where k = dime Ve. Since R satisfies
GPI e(alexie, exqe] + [exie, exze]b + clexie, exge]c’)e = 0, the subring eRe satisfies
the GPI eae[x1,x2] + [x1, z2]ebe + ecer1,x2]ec’e = 0. Then by the above finite
dimensional case, we conclude that either ece € Z(eRe) or ec’e € Z(eRe). Then

chg = echg = ecehg = hgece = hgce = hye
and
chiy =ec’hy =edeh; = hiec'e = hic'e = hyc'.
Both the cases lead to contradiction. O
Lemma 2.10. Let R be a noncommutative prime ring of characteristic different
from 2 with Utumi quotient ring U and extended centroid C, and let f(x1,...,x,)

be a multilinear polynomial over C' which is not central valued on R. If F\G and H
are three inner generalized derivations of R such that

for all r = (ry,...,r,) € R", then one of the following conditions holds:
(1) there exist a € C and b € U such that F(x) = ax, G(x) = xzb and H(z) = xab
for all x € R;
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(2) there exist a,b € U such that F(x) = xza, G(x) = br and H(x) = abx for all
x € R, with ab € C;
(3) there exist b € C and a € U such that F(z) = ax, G(x) = bx and H(z) = abx
for all x € R;
(4) f(z1,...,2,)? is central valued on R and one of the following conditions holds:
(a) there exist a,b,p,p’ € U such that F(x) = azx, G(x) = xb and H(z) =
px +xp’ for all x € R, with ab=1p+p’;
(b) there exist a,b,p,p’ € U such that F(x) = za, G(z) = bx and H(x) =
px +ap’ forallx € R, withp+p' =abe C.

Proof. Since F, G and H are three inner generalized derivations of R, we
assume that F(z) = ax + z¢, G(x) = bx + xq and H(x) = px + xp’ for all z € R for
some a, b, c,p,q,p’ € U. Then by hypothesis we have

(2.5) V(21 ..y xn) = af(x1,. ., 20)bf (X1, 2n) Faf(zr, ... 20)%

+ f(x1, . xn)ebf(xr, .o xn) + f(z1, . xn)ef (21, ..., T0)g

- (pf(xlv s 7xn)2 + f(xla s axn)zp/) =0
for all z1,...,2, € R. Since R and U satisfy the same generalized polynomial
identities (see [9]), U satisfies ¥(z1,...,2,) = 0. Suppose that ¥(zq,...,x,) is
a trivial GPI for U. Let T = U x¢ C{x1,x2,..., =y}, the free product of U and
C{z1,...,x,}, be the free C-algebra in noncommuting indeterminates x1, za, ..., Tp.
Then, U(x1,...,2,) is the zero element in T' = U *¢ C{x1,...,2,}. This implies
that {p,a, 1} is linearly dependent over C. Let ap + Sa +~v = 0. If @ = 0, then

B # 0, and hence a € C. If a # 0, then p = Aa + p for some A, u € C. In this case
our identity reduces to

(2.6) af(x, ...,a:n)bf(xl,...,a:n)—l—af(xl,...,xn)zq
+ fz1, .. xn)ebf(x1, .. cyxn) + (21, .. xn)ef (@1, ..., 20)g
—(Ma+m) [, zn)? + (21, 0)2p) = 0.

If a ¢ C, then
(2.7)  af(zy,...,z)bf (21, .., 20) +af(x1,. .. 20)%q — Naf(z1,...,2,)% =0,
that is
(2.8) af(xi,...,Tn)bf(x1,. .. xn) + (21, ..y xn)g — Af(21,...,2,)) = 0.
This implies b € C. Thus we conclude that either a € C or b € C.
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Similarly, we can prove that either ¢ € C or ¢ € C.

Next suppose that ¥(z1,...,z,) is a nontrivial GPI for U. In case C is infinite, we
have ¥(z1,...,2,) =0 for all 21,...,2, € U®¢c C, where C is the algebraic closure
of C. Since both U and U ®¢ C are prime and centrally closed [18], (see Theorems 2.5
and 3.5), we may replace R by U or U ®@¢ C according to C being finite or infinite.
Then R is centrally closed over C' and ¥(xy,...,2,) =0 for all 21,...,2, € R. By
Martindale’s theorem in [28], R is then a primitive ring with a nonzero socle soc(R)
and with C as its associated division ring. Then, by Jacobson’s theorem (see [20],
page 75), R is isomorphic to a dense ring of linear transformations of a vector space V'
over C. Assume first that V is finite dimensional over C, that is, dimg V = m. By
density of R, we have R = M,,(C). Since f(ry,...,r,) is not central valued on R,
R must be noncommutative and so m > 2. In this case, by Proposition 2.8, we get
that a or b and ¢ or ¢ are in C. If V is infinite dimensional over C, then for any
e? = e € soc(R) we have eRe = M,;(C) with ¢t = dimc Ve. We want to show that in
this case also a or b and ¢ or ¢ are in C. To prove this, let none of a and b and none
of c and ¢ be in C. Then a,b,c and ¢ do not centralize the nonzero ideal soc(R).
Hence there exist hi, ho, hs, ha € soc(R) such that [a, h1] # 0, [b, he] # 0, [c, hs] # 0
and [q, h4] # 0. By Litoff’s theorem [22], page 280, there exists an idempotent
e € soc(R) such that ahy, hia,bha, hab,chs, hsc,gha, haq, h1,ha, hs, hy € eRe. We
have eRe = M} (C) with k = dim¢ Ve. Since R satisfies the generalized identity

(2.9) e{laflexie, ... exne)bf(exe, ... exne) +aflexie, ..., exne)’q
+ f(exye, ..., expe)chf(exe,. .., exne)
+ f(exqe, ..., expe)cf(exqe,. .. exne)q

— (pf(exzye, ... exne)® + flexie, ... exne)’p)}e =0

the subring eRe satisfies

(2.10) eaef(z1,...,zn)ebef(x1,. .., x,) + eacf(x1, ..., x,)%eqe
S (@ ma)echef (@, oy @a) + [(@1, . wn)ecef (@, ., mn)eqe
— (epef(x1,...,x0)° + f(x1,...,2,)%ep'e) = 0.

Then by Proposition 2.8, either eae or ebe and either ece or ege are central elements
of eRe. Thus ahy = (eae)h; = hieae = hia or bhe = (ebe)hy = ha(ebe) = hab and
chs = (ece)hs = hs(ece) = hsc or qghy = (eqge)hy = hgege = hyq, a contradiction.

Thus up to now, we have proved that a or b and ¢ or g are in C. Thus we have

the following four cases:
Case I: a,c € C. In this case, (2.5) reduces to

(2.11)  f(r)abf(r) + f(r)*aq+ f(r)ebf(r) + f(r)*cq — (pf (r)* + f(r)*p') = 0
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that is

(2.12) F@r)(ab+cb) f(r) + f(r)*(ag +cq — p') = pf(r)* = 0
for all r = (ry,...,r,) € R". Then by Lemma 2.3, we have any one of the following
cases:

>ag+ceq—p,peCandp—(ag+cqg—p’)=ab+cb=a € C. Thus in this case we
have a,c,p € C, (a+¢)b € C and p+p' = (a+¢)(g+b). Since F # 0, we have
0#a+ce C. Hence (a+ ¢)b € C implies b € C. Thus we have F(x) = (a + ¢)z,
G(z) =xz(b+q) and H(z) = z(p+p') = z(a+¢)(g+b) for all z € R, which is our
conclusion (1).

> f(x1,...,2,)? is central valued on R and there exists o € C such that p — (aq +
cqg—p') = ab+ cb = . In this case we have a,c € C, (a+c)be C and p+p =
(a+c¢)(g+b). Since F # 0, we have 0 # a + ¢ € C. Hence (a + ¢)b € C implies
b e C. Hence F(x) = (a+c)x, G(z) = x(b+q) and H(z) = pr+ap’ for all z € R,
which is our conclusion 4 (a).
Case II: a,q € C. In this case, (2.5) reduces to

(2.13) F(r)(ab+cb+cq+aq) f(r) — (pf(r)* + f(r)*p) =0
for all r = (r1,...,7,) € R™. Then by Lemma 2.3, we have any one of the following
cases:

>p,p €Candp+p =ab+cb+cq+agq = a € C. Thus in this case we have
a,q,p,p' € C, with p+p' = (a+¢)(b+q) € C. Hence F(z) = z(a + ¢), G(x) =
b+ q)x and H(z) = (p+p' )z = (a+ ¢)(b+ ¢)x for all z € R, which is our
conclusion (2).

> f(z1,...,7,)? is central valued on R and there exists o € C such that p+p’ = ab+
cb+cq+aq = a € C. In this case we have a,q € C, with p+p' = (a+¢)(b+¢q) € C.
Hence F(z) = z(a+c¢), G(z) = (b+¢)x and H(z) = px+xp’ for all z € R, which
is our conclusion 4 (b).
Case III: b,c € C. In this case, (2.5) reduces to

(2.14) (ab+be —p)f(r)* +af(r)*q+ f(r)*(cg —p') = 0

for all r = (r1,...,7,) € R™. Then by Lemma 2.9, we have any one of the following

three cases:

> g,cq—p € C and ab+ bc — p+aq+ cqg —p' = 0. Thus in this case we have
byc,q,p' € Cand (a+c)(b+q) =p+p'. Hence F(x) = (a+ ¢)z, G(z) = (b+ ¢)x
and H(z) = (p+p' )z = (a+ ¢)(b+ ¢)z for all z € R, which gives conclusion (3).

106



> a,ab+bc—p € C and ab+bc—p+aq+cq—p = 0. In this case we have a, b, c,p € C
and (a +¢)(b+¢q) = p+p'. In this case F(z) = (a + ¢)z, G(z) = z(b+ q) and
H(zx)=xz(p+p) =xz(a+c)(b+ q) for all x € R. This gives conclusion (1).

> f(x1,...,2,)? is central valued on R and ab+ bc — p + aq + c¢q — p’ = 0. Thus in
this case we have b,c € C and (a + ¢)(b+¢q) = p+p’. Hence F(z) = (a + ¢)z,
G(z) = (b4 q) and H(z) = px + xp’ for all x € R. This gives conclusion 4 (a).
Case IV:b,q € C. In this case, (2.5) reduces to

(2.15) (ab+ aq — p)f(r)* + f(r)(cb + cq) f(r) = f(r)*p" =0
for all r = (ry,...,r,) € R". Then by Lemma 2.3, we have any one of the following
cases:

> ab+ aq — p,p’ € C with p’ — (ab+ aq — p) = cb+ ¢q € C. In this case we have
b,q,p' € C and p+p' = (a+¢)(b+¢q). Since G # 0, we have 0 # b+ q € C. Hence
cb+cq=c(b+q) € C implies ¢ € C. Thus F(z) = (a + ¢)z, G(x) = (b+ ¢)x and
H(z)=(p+p)z = (a+c)(b+ q)x for all x € R, which is our conclusion (3).

> f(x1,...,7,)? is central valued on R and there exists a € C such that p’ — (ab +
ag—p) = cb+cq = a. In this case, we have b, q, (b+q)c € C and p+p’ = (a+c)(b+q).
Since G # 0, we have 0 # b+ g € C. Hence (b+ ¢)c € C implies ¢ € C. Thus
F(z) = (a+c)z, G(z) = z(b+q) and H(x) = px + zp’ for all z € R, which is our
conclusion 4 (a). O

Lemma 2.11. Let R be a noncommutative prime ring of characteristic different
from 2 with Utumi quotient ring U and extended centroid C'. Let F, G be two
generalized derivations of R, H an inner generalized derivation of R, I an ideal

of R and f(z1,...,2,) a multilinear polynomial over C' which is not central valued
on R. If
F(f(r)G(f(r)) = H(f(r)?)
for all r = (r1,...,r,) € I"™, then one of the following conditions holds:
(1) there exist a € C and b € U such that F(x) = ax, G(x) = zb and H(z) = xab
for all x € R;

(2) there exist a,b € U such that F(x) = za, G(x) = bx and H(xz) = abx for all
x € R, with ab € C;
(3) there exist b € C and a € U such that F(z) = ax, G(x) = bx and H(z) = abx
for all x € R;
(4) f(z1,...,2,)? is central valued on R and one of the following conditions holds:
(a) there exist a,b,p,p’ € U such that F(zx) = az, G(x) = xb and H(z) =
px + xp’ for all x € R, with and ab = p + p’;
(b) there exist a,b,p,p’ € U such that F(x) = xa, G(z) = bx and H(x) =
px +ap’ forallx € R, withp+p' =abe C.
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Proof. Since H is an inner generalized derivation of R, let H(x) = cx + xc
for all z € R and for some ¢,/ € U. In view of [25], Theorem 3, we may assume
that there exist a,b € U and derivations d, 0 of U such that F(z) = ax + d(z) and
G(z) = bx + d(x). Since R and U satisfy the same generalized polynomial identities
(see [9]) as well as the same differential identities (see [24]), we may assume that

(2.16) (af(r) +d(f () (Bf (r) +8(f () = cf (r)* + f(r)*c

for all r = (r1,...,7,) € U™, where d, ¢ are two derivations on U.

If both F' and G are inner generalized derivations of R, then by Lemma 2.10, we
obtain our conclusions. Thus we assume that not both of F' and G are inner. Then
d and 0 cannot be both inner derivations of U. Now we consider the following two

cases:

Case I: Assume that d and ¢ are C-dependent modulo inner derivations of U, say
ad + p§ = ady, where o, 5 € C, q € U and ady(x) = [¢,z] for all z € U.

Subcase i: Let o # 0.
Then d(x) = MJ(x) + [p, z] for all z € U, where A = —Ba~! and p = o~ lq.

Then ¢ cannot be inner derivation of U. From (2.16), we obtain

(2.17) (@f(r) + A8(f(r) + [p, F () (0f (r) + 8(f (1)) = cf (r)* + f(r)*c

for all r = (ry,...,r,) € U™, that is, U satisfies

(2.18) (af(rl,...,rn)+)\f5(r1,...,rn)
+/\Zf(r1,...,5(ri),...,rn)+[ ,f(rl,...,rn)]>

X <bf(r1,...,rn)+f5(r1,...,rn)+Zf(r1,...,5(ri),...,rn))

= Cf(rla' . arn)Q +f(rlv" '7rn)20/7

where fO(ry,...,7,) is the polynomial obtained from f(ry,...,r,) by replacing each

of the coefficients o, by §(,) and then we have §(f(ri,...,7n)) = fo(ri,...,mn) +
S f(riy...,0(r;),..., ). By Kharchenko’s theorem, see [21], we have that U satis-
i

108



fies
(2.19) (af(rl, ...,rn)—i—)\f‘s(rl,...,rn)

+)\Zf(r1,...,yi,...,rn)+[ ,f(rl,...,rn)])

X (bf(rl,...,rn)—f—f‘s(m,...,rn)+Zf(r1,...,yi,...,rn))

= Cf(rlv" '7rn)2 +f(r1a' ..,7"”)20/~

In particular, for 11 = 0 we have that U satisfies
(2.20) M1, rn)? =0,

This implies A = 0 or U satisfies f(r1,...,7,)?> = 0. In the latter case U satisfies
the polynomial identity f(71,...,7,)? = 0 and hence there exists a field E such that
U C My(FE) and U and My (F) satisfy the same polynomial identities [23], Lemma 1.
Then again by [27], Corollary 5, f(r1,...,7y) is an identity for My (E) and so for U,
a contradiction. Hence we conclude that A = 0. Thus from (2.19), U satisfies the

blended component

(2.21) (af(ri,...,rn) +| ,f(rl,...,rn)])Zf(m,...,yi,...,rn):O.

In particular, for y; =7 and y2 = ... =y, = 0 we have that U satisfies

(2.22) (af(riy...yrn)+ oy fre, o osr))f(re, .o yrn) = 0.

By Lemma 2.4, this yields that p € C and a = 0, implying F' = 0, a contradiction.
Subcase ii: Let a = 0.
Then §(x) = [¢/,x] for all z € U, where ¢ = 371q. Since ¢ is inner, d cannot be
an inner derivation. From (2.16), we obtain

(2.23) (af(r) +d(fr))Of(r) +[d's f()]) = ef (r)* + f(r)*c

for all ¥ = (ry,...,7ry) € U™
Since d(f(r1,...,mn)) = f4(r1,...,rn) + 3. f(r1,...,d(r;),..., ), by Kharchen-

ko’s theorem, see [21], we can replace d(f(71,...,7,)) by f4(r1,...,rn)+>. f(r1,...,
i

Yiy- -, Tn) in (2.23) and then U satisfies the blended component

(2.24) Zf(rl,...,yi,...,rn)(bf(rl,...,rn) +1d, flri,...,m)]) =0
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and so in particular

(2’25) f(rlﬂ' M ,rn)(bf(rl’. "7rn) + [q/7f(r17" "rn)]) = O'

By Lemma 2.5, this yields ¢’ € C and b = 0, implying G = 0, a contradiction.

Case II: Assume next that d and 0 are C-independent modulo inner derivations
of U.

Then applying Kharchenko’s theorem from [21], we have from (2.16) that U sat-
isfies the blended component

(2.26) S Fr i) > f sty ) =0,

This gives f(r1,...,m,)? = 0, implying f(r1,...,7,) = 0 as above, a contradiction.
O

Lemma 2.12. Let R be a prime ring of characteristic different from 2 with Utumi
quotient ring U and extended centroid C, let F', G, H be three generalized derivations
of R, I an ideal of R and f(z1,...,x,) a multilinear polynomial over C' which is not
central valued on R. If F is the inner generalized derivation of R such that

for all v = (r1,...,7m,) € I", then one of the following conditions holds:
(1) there exist a € C and b € U such that F(x) = ax, G(x) = xb and H(z) = xab
for all x € R;

(2) there exist a,b € U such that F(x) = xza, G(x) = bx and H(x) = abx for all
x € R, with ab € C;
(3) there exist b € C and a € U such that F(z) = ax, G(x) = bx and H(z) = abx
for all x € R;
(4) f(x1,...,m,)? is central valued on R and one of the following conditions holds:
(a) there exist a,b,p,p’ € U such that F(x) = azx, G(x) = xb and H(z) =
px + xp’ for all x € R, with ab=1p +p’;
(b) there exist a,b,p,p’ € U such that F(x) = xa, G(z) = bx and H(x) =
pr +xp’ forallz € R, withp+p =abe C.

Proof. Since F is inner, let F(x) = ax + xza’ for all z € R for some a,a’ € U.
In view of [25], Theorem 3, we may assume that there exist b,c € U and derivations
3, h of U such that G(z) = bz + é(x) and H(x) = cz + h(x). Since R and U satisfy
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the same generalized polynomial identities (see [9]) as well as the same differential
identities (see [24]), we may assume that

(227)  (af(r) + f(r)a)bf(r) + 6(f(r) = cf(r)* + F()A(f (1)) + h(f(r)) f(r)

for all r = (ry,...,r,) € U™, where d, 0 are two derivations on U.

If H is inner, then the result follows by Lemma 2.11. So we assume that H is not
the inner generalized derivation of U. Now we consider the following two cases:

Case I: Assume that h and § are C-dependent modulo inner derivations of U, say
ad+pBh = ady, where o, § € C, g € U and ady(x) = [g,z] forallz € U. If & = 0, then
8 cannot be equal to zero, implying that h is the inner derivation, a contradiction.
Thus «a # 0.

Then 6(z) = Ma(z) + [p, ] for all z € U, where A = —Ba~! and p = a~1q.
From (2.27) we obtain

(2.28) (af(r) + f(r)a")Of(r) + M(f(r)) + [p, f(r)])
= cf(r)* + f(r)h(f(r)) + h(f (1)) f(r)

for all r = (r1,...,7,) € U™, that is, U satisfies

(2.29) (af(ri, -ooyrn) + f(re, ..., rn)ad) (bf(rl,...,rn) + Ay, )

FAD frn b)) + ,f(rl,...,rn)])

+ (fh(rl,...,rn) —l—Zf(m,...,h(ri),...,rn)>f(r1,...,rn),

where f"(ry,...,7,) is the polynomial obtained from f(r1,...,7,) by replacing each

of the coefficients a,, by h(a,) and then we have h(f(r1,...,7)) = fA(re,...,m) +
S f(riy...,h(r;),...,r). By Kharchenko’s theorem, see [21], we have that U sat-
i
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isfies
(2.30)  (af(r1,.--,7n) +f(r1,...,rn)a’)(bf(m,...,rn)+/\fh(r1,...,rn)
+/\Zf(r1,...,yi,...,rn)+[,f(rl,...,rn)]>
- cf(m,z. oy Tn)?
+f(r1,...,rn)<f Flyeooy —l—Zfrl,...,yi,...,rn))
+<f TlyeonsT —I—Zf7“1,...,yi,...,rn))f(rl,...,rn).

In particular, U satisfies the blended component

(2.31) (af(ri,..., ) —l—f(rl,...,rn)a’))\Zf(m,...,yi,...,rn)
flra,...,r Zfrl,...,yi,...,rn)
—|—Zf TlyewosWiseoosTn)f(r1, oo mn).

In particular, for y; = 71 and y2 = ... = y, = 0 we have
(2.32) Aaf(r) + f(r)a')f(r) = 2/ ()2,
that is,

(2.33) (Aa—2)f(r) + F(r)Aa') () = 0

forallr = (rq,...,r,) € U". By Lemma 2.4, this gives Aa’ € C and Aa+ Xa’ —2 = 0.
Then (2.31) gives

(2.34) flr, . Zf PLye s Yis s Tn)
flra,...,r Zfrl,...,yi,...,rn)
—|—Zf (P1yee s Yiseroymn) f(ra, .o imn),
i
that is

(2.35) [zi:f(rl,...,yi,...,rn),f(rl,...,rn)} =0.

Then by [13], Lemma 1.2, f(x1,...,x,) is central valued, a contradiction.
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Case II: Assume now that h and ¢ are C-independent modulo inner derivations
of U.
Then applying Kharchenko’s theorem [21], we have from (2.27) that U satisfies

(2.36) (af(ri,...,mn) —l—f(rl,...,rn)a’)(bf(rl,...,rn)

+f5(7"1,...,7"n)+Zf(r1,...,yi,...,rn)>

= cf(rl,...,rn)Q

+f(?“l,...,Tn)(fh(rh...,rn)+Zf(7’1,...,ti,...,7’n))

+ (fh(rh,. .,’I"n) +Zf(’l"1,. .. ;ti;- .. ,’I“n))f(’l“l,.. .,Tn).
i
In particular, U satisfies the blended component

(2.37) 0:f(rl,...,rn)Zf(rl,...,ti,...,rn)
+Zf(r1a"'7tia'"7rn)f(r1a"'7rn)'

This gives 2f(r1,...,r,)? = 0, implying f(r1,...,7,) = 0 as before, a contradiction.
O

Proof of Main theorem. If F =0 or G = 0, then by hypothesis H(f(r)?) = 0,
which yields H(f(r))f(r) + f(r)d(f(r)) =0 for all r = (ry,...,r,) € I", where d is
a derivation associated with H. Then by [3], Theorem 1, we have f(x1,...,2,)? is
central valued on R and H is an inner derivation of R, which is our conclusion (4).
So, we assume that F' # 0 and G # 0.

In [25], Theorem 3, Lee proved that every generalized derivation g on a dense right
ideal of R can be uniquely extended to a generalized derivation of U and thus can
be assumed to be defined on the whole U in the form g(z) = az + d(z) for some
a € U where d is a derivation of U. In light of this, we may assume that there exist
a,b,c € U and derivations d, ¢, h of U such that F(z) = ax + d(z), G(z) = bx + 6(x)
and H(z) = cx + h(z). Since I, R and U satisfy the same generalized polynomial
identities (see [9]) as well as the same differential identities (see [24]), without loss of
generality, to prove our results, we may assume (af(r) +d(f(r)))(bf(r)+0(f(r))) =
cf(r)? + h(f(r)?) for all r = (r1,...,r,) € U™, where d,d,h are three derivations
on U.
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If F or H is an inner generalized derivation of R, then by Lemma 2.11 and
Lemma 2.12 we obtain our conclusions. Thus we assume that F' and H are not

inner. Hence

(238)  {af(r) +d(f(M)HbF(r) +6(F(r)} = cf(r)* + F(r)h(F(r) + h(f(r) f(r)

for all r = (rq,...,r,) € U™ Then neither d nor h can be inner derivations of U.
Now we consider the following two cases:

Case 1: Let d and § be C-dependent modulo inner derivations of U, i.e., ad+ (3§ =
ady . Then B # 0, otherwise d is inner, a contradiction. Hence 6 = Ad + ad,, where
A= —f"ta and ¢ = B371p’. Hence (2.38) becomes

(2.39) {af(r) +d(f(r)H{of (r) + Ad(f(r) + g, £ ()]}
= cf (r)* + f(r)h(f(r)) + h(f(r)f(r)

for all r = (ry,...,r,) € U™. Now we have the following two subcases:
Subcase i: Let d and h be C-dependent modulo inner derivations of U.

Then there exist o, as € C such that oy d + agh = ady . Since both d and h are
outer derivations of U, a; # 0, as # 0. Then d = uh + ad., where y = —042041_1 and
¢ =q'a;*. Then (2.39) gives

(2.40) {af(r) + ph(f(r) + [, FOIHDF(r) + Aph(f(r) + A + ¢, f(r)]}
= cf(r)* + f(r)h(f (1)) + h(f(r)f(r)

for all r = (r1,...,7,) € U™ Since h is an outer derivation, by Kharchenko’s
theorem, see [21], we can replace h(f(r1,...,mn)) by f'(ri,...,mn) + S f(r1,...,
Yis -+, Tn) in (2.40) and then in particular for r = 0, U satisfies !

(2.41) MEF(Yry .. ymn)? =0.

This implies that either A = 0 or u = 0, since f(ry,...,7,) #O0forallry,...,r, € U.
Now p = 0 gives d is inner, a contradiction. Hence A = 0 and thus (2.40) gives

(2.42) {af(r) + ph(f(r)) + 1/, ()OS (r) + g, f(r)]}
= cf(r)* + f(r)h(f (1)) + h(f(r)f(r)
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for all r = (r1,...,7,) € U™ Then again by Kharchenko’s theorem, see [21], U sat-
isfies the blended component

(2.43) {,uz:f(rl,...,yi,...,rn)}{bf(rl,...,rn)—l—[q,f(rl,...,rn)]}
:f(rl,...,rn)Zf(rl,...,yi,...,rn)
+Zf(r17"'7yia"'arn)f(rla"'arn)'

In particular, for y; =1 and y2 = ... =y, = 0, we have that U satisfies

(2.44) wf(re, .o oro){0f(r1, .. oyrn) + g, fr1,...,m0)]} = 2f(r1,...,rn)2,

that is

(2.45) flr, o)+ @) flri, .. oyrn) = flre,...,rn)(2 4+ pg)) = 0.

Then by Lemma 2.5, 2+ g € C and p(b+q) — (2 + pq) = 0, that is, ub, ug € C' and
ub = 2. Then (2.43) gives

(2.46) [Zf(rl,...,yi,...,rn),f(rl,...,rn) =0.

Then by [13], Lemma 1.2, f(z1,...,x,) is central valued, a contradiction.
Subcase ii: Let d and h be C-independent modulo inner derivations of U.
Then applying Khrachenko’s theorem, see [21], to (2.39), we can replace
d(f(ri,...,mn)) by fe(re,...,m) + Zf(rl, cesYiyeooyrn) and h(f(r1,...,m)) by
K3

oy, orn) > f(r1,. .. tiy. .., 7)) and then U satisfies blended components
i

O:f(rl,...,rn)Zf(rl,...,ti,...,rn)+Zf(r1,...,ti,...,rn)f(rl,...,rn).

In particular, this yields 0 = 2f(r1,...,r,)?, which implies f(r1,...,7r,) = 0 for all
r1,...,rn € U, a contradiction.

Case 2: Let d and 6 be C-independent modulo inner derivations of U.

Subcase i: Let d, 6 and h be C-dependent modulo inner derivations of U.

In this case there exist aq,as, a3 € C such that ayd + axd + ash = ad,. Then
as # 0, otherwise d and & would be C-dependent modulo inner derivation of U,
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a contradiction. Then we can write h = f1d + 526 + ady» for some (51, Py € C' and
a” € U. Then (2.38) becomes

(247) {af(ri,...,rn) +d(f(re, ... orn)HOf (1, oo cymn) +0(f(r1y - ooy m0))}
=cf(ri,...,rn)2 + fOre, .. ,r ) {Brd(f(r1, ..., ) + B20(f(r1, ... mn))
+la” fOrs )l {Bd(f ()
+ B20(f(r1y..smn)) +a”, fFr, ) (e, ).

Since d and § are C-independent modulo inner derivations of U, by Kharchenko’s
theorem, see [21], U satisfies

(2.48) {af(rl, ...,rn)+fd(r1,...,rn)+Zf(r1,...,yi,...,rn)}
X {bf(rl,...,rn)+f5(r1,...,rn)+Zf(r1,...,ti,...,rn)}

— cf(rl,...,rn)2 +f(rl,...,rn){ﬂlfd(rl,...,rn)
+ﬁlzf(’f'1,...,yi,...,’I“n)—l-ﬁgfé(’l“l,...,’l“n)

—l—ﬁgz:f(rl,...,ti,...,rn)—i—[a”,f(rl,...,rn)]}

+{61fd(7“17---,7”n)+/612f(rla---;yi7---arn)

—I—ﬁgfé(rl,...,rn)—l—ﬁgz:f(rl,...,ti,...,rn)
i
+[a”, f(ri, ... ,rn)]}f(rl, T
In particular, for r = 0, U satisfies
(2.49) flyy .o oyrn)f(t1,...,mn) = 0.
This gives f(r1,...,mn)? = 0, implying f(r1,...,7,) = 0, a contradiction.

Subcase ii: Let d, § and h be C-independent modulo inner derivations of U.
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Then from (2.38), by Kharchenko’s theorem [21], U satisfies

(2.50) {af(rl, ...,rn)—l—fd(rl,...,rn)—I—Zf(rl,...,yi,...,rn)}

:Cf(Tl,...,Tn)2

—l—f(rl,...,rn){fh(rh...,rn)+Zf(r1,...,zi,...,rn)}

+ {fh(rh,..,rn) +Zf(r1,...,zi,...,rn)}f(rl,...,rn).
i
In particular, U satisfies the blended component

(2.51) flyr, oo oyrn) flta, ... ymn) =0,

implying f(r1,...,7,)%> = 0 and so f(r1,...,7,) = 0 as before, a contradiction. [J

In particular, when F, G and H all are derivations, we have the following result:

Corollary 2.13. Let R be a noncommutative prime ring of characteristic different
from 2 with extended centroid C, let Dy, Dy and D3 be three derivations of R, I
an ideal of R and f(x1,...,x,) a multilinear polynomial over C' which is not central
valued on R. If

Dy (f(r))Da(f(r)) = Ds(£(r)?)

forallr = (rq,...,7,) € I", then Dy = Dy =0, f(r1,...,7,)? is central valued on R
and there exists p € U such that D3(x) = [p, x| for all x € R.
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