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ARTICLE INFO ABSTRACT

Newts have remarkable ability to regenerate their organs and have been used in research for centuries.
However, the laborious work of breeding has hampered reverse genetics strategies in newt. Here, we present
simple and efficient gene knockout using Cas9 ribonucleoprotein complex (RNP) in Pleurodeles waltl, a species
suitable for regenerative biology studies using reverse genetics. Most of the founders exhibited severe
phenotypes against each target gene (tyrosinase, pax6, tbx5); notably, all tyrosinase Cas9 RNP-injected
embryos showed complete albinism. Moreover, amplicon sequencing analysis of Cas9 RNP-injected embryos
revealed virtually complete biallelic disruption at target loci in founders, allowing direct phenotype analysis in
the Fy generation. In addition, we demonstrated the generation of tyrosinase null F; offspring within a year.
Finally, we expanded this approach to the analysis of noncoding regulatory elements by targeting limb-specific
enhancer of sonic hedgehog, known as the zone of polarizing activity regulatory sequence (ZRS; also called
MFCS1). Disruption of ZRS led to digit deformation in limb regeneration. From these results, we are confident
that this highly efficient gene knockout method will accelerate gene functional analysis in the post-genome era
of salamanders.
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1. Introduction P. waltl can be bred easily and reaches sexual maturity in 6 months
(male) or 9 months (female); in addition, fertilized eggs can be
obtained every 2 weeks throughout the year. Recently, the genomic

sequence of P. waltl was obtained and edited using clustered regularly

Newt shows various unique biological properties such as remark-
able regenerative abilities in multiple organs (Parish et al., 2007;

Barbosa-Sabanero et al., 2012; Inoue et al., 2012; Leone et al., 2015;
Tsutsumi et al., 2015; Stocum, 2017), tumor resistance (Seilern-
Aspang and Kratochwil, 1962; Oviedo and Beane, 2009), and contin-
uous gonad differentiation (Flament et al., 2009). However, molecular
genetic research in newt has been hampered by difficulties in breeding
and the lack of a simple and efficient method for gene modification. To
overcome this, we recently adopted Iberian ribbed newt Pleurodeles
waltl as a laboratory newt (Hayashi et al., 2013; Urata et al., 2018).
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interspaced short palindromic repeat (CRISPR)-Cas technology, pro-
viding a foundation for comparative genomic and regeneration studies
(Elewa et al., 2017).

CRISPR-Cas-based genome editing has been established as an
efficient and simple tool for gene disruption in many species and
allowed functional investigations in nonmodel organisms. In addition,
in urodeles, the effectiveness of CRISPR-Cas has been reported in
several studies (Flowers et al., 2014; Fei et al., 2014; Bryant et al.,
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2017; Elewa et al., 2017). Recently, it was reported that a premixture of
recombinant Cas9 protein and guide RNA (gRNA), which forms a
ribonucleoprotein complex (RNP), efficiently introduced mutation in
virtually all somatic cells in injected founder embryos in zebrafish,
designated as crispants (Burger et al., 2016). We previously demon-

A
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strated that Cas9 RNP can effectively introduce gene disruption in
Xenopus tropicalis, somatic mutation rates of which reached ~ 100%
(Sakane et al., 2018).

To develop an effective and simple method of gene disruption in
newt, we used Cas9 RNP in P. waltl and evaluated the efficiency of
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#3 12,490 reads

TGCCACCGAGAGCGCTCGACTCC Wt 0.00%
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Frameshift mutation rate = 100%

#4 12,018 reads
TGCCACCGAGAGCGCTCGACTCC Wt 0.00%
TGCCACCGAGA------ --CTCC A8 70.1%
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Frameshift mutation rate = 99.6%

#5 16,672 reads
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TGCC-----——-~ GCTCGACTCC A9 56.0%
TGCCAC-- --TCGACTCC A9 25.5%
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Fig. 1. Targeted gene disruption of tyrosinase (tyr) in Pleurodeles waltl (A) Representative phenotypes of tyr gRNAs/Cas9 protein-injected embryos (crispants) and their
frequencies. Cas9 protein and sgRNA- (upper panel) or crRNA:tracrRNA-injected embryos (middle panel) showed almost complete albino phenotypes. The two gRNAs have the identical
target sequence (Fig. S2). Phenotypes are classified into three groups: severe, complete loss of pigmentation in retina pigmented epithelium (RPE); mosaic, partial loss of pigmentation
in RPE; and normal, no alteration of pigmentation. Note that almost all surviving crispants showed a severe albino phenotype. Total and each group's sample sizes (n) are indicated at
the top and middle of each graph, respectively. Each value was obtained from two independent experiments. (B) Genotypes of tyr crispants analyzed by amplicon sequencing.
Representative mutant alleles, their occupancy rates, frameshift mutation rates, and total read counts are shown corresponding to each crispant (#1-5). Deletions are indicated by

dashes. Protospacer adjacent motif (PAM) and microhomologous sequences are indicated

by red letters and underscores, respectively. Less than 1% of wild-type alleles were found even

though over ten thousand reads were sequenced, suggesting the saturation of mutagenesis in the founder. All mutant alleles and their frequencies are listed in Table S1. (C) tyr crispant

(left) and wild-type (uninjected controls; right) juveniles.
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somatic mutations in these crispants using next-generation sequen-
cing. Strikingly, we found extremely high mutation rates that exceeded
99% for each target locus in the analyzed genes, suggesting the
potential to expand this approach to high-throughput analysis.
Moreover, we demonstrated the generation of F; offspring from
crispants within a year. Finally, we assessed the effect of this approach
on the function of noncoding regulatory elements by targeting limb-
specific enhancer of sonic hedgehog (shh), known as the zone of
polarizing activity regulatory sequence (ZRS; also called MFCSI1,
Sagai et al., 2005).

2. Results
2.1. Cas9 RNP enabled highly efficient gene disruption in newt

To examine the efficiency of CRISPR-Cas-mediated gene disruption
in P. waltl, we first targeted tyrosinase (oculocutaneous albinism IA;
tyr) involved in melanin synthesis. Upon the injection of Cas9 RNP as
proof of principle, we evaluated two types of guide RNA (gRNA) with
the same target sequence prepared in different manners (Figs. S1-3).
One was in vitro-transcribed single guide RNA (sgRNA) using PCR
templates and the other was chemically synthesized trans-activating
CRISPR RNA (tracrRNA) and CRISPR RNA (crRNA). Surprisingly, a
week after the injection of Cas9 RNP, both types of gRNA led to nearly
complete loss of pigmentation throughout the body in almost all
injected embryos (crispants; Fig. 1A). Furthermore, the same severity

A
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of phenotype was observed upon injecting other gRNAs targeting the
different coding sequences of tyr (Fig. S4). Next, to evaluate the
efficiency in terms of the somatic mutation rate, amplicon sequencing
analysis was performed. Genomic DNA was extracted from the whole
body of each crispant (#1-5) and the target genomic locus was
amplified and sequenced on a MiSeq platform using a 2x 300-bp
paired-end protocol. Even though thousands of reads were analyzed,
which may refer to the genotypes of thousands randomly selected cells,
almost 100% of alleles were mutated in all analyzed embryos (Fig. 1B,
Table S1). Amplicon sequencing also revealed that one to three alleles
occupied over 99% of total read counts. We also found a low frameshift
mutation rate, but severe phenotypes in #2 and #5 embryos, suggesting
the functional importance of the target coding region in tyr (Fig. 1B).
Dozens of tyr crispants were obtained from one experiment; 50 of 70
hatched embryos developed normally and metamorphosed (Fig. 1C).

We previously reported that, by breeding P. waltl at a warmer
temperature (25—-26 °C), the period required for sexual maturation can
be shortened to six months in males and nine months in females
(Hayashi et al., 2013). tyr crispants also showed sex characteristics
within several months and females started to spawn from nine months
after fertilization under these rearing conditions. The first F; offspring
were obtained by crossing crispants with each other within a year
(Fig. 2A). To confirm the genotype of tyr F; offspring, genomic DNA
was extracted from the tail tip and the target site was sequenced. tyr
alleles were homozygous, with full albino phenotypes being shown in
each clutch (Fig. 2B).

1st offspring of tyr
crispant (F,)

Male

Female

Clutch 1

Clutch 2

Clutch 1
TGCCACCGAGAGCGCTCGACTCC Wt 0/9
TGCCACCGAG----CTCGACTCC A 9/9

Clutch 2

TGCCACCGAGAGCGCTCGACTCC Wt 0/10
TGCCACCGAG-----—-—-—~ TcC A0 10/10

Fig. 2. Generation of F; offspring by crossing tyr crispants. (A) Sexually mature tyr crispants (founders, Fy). From 50 juveniles (3 months postfertilization), 39 adults survived
for 17 months and most of them reached sexual maturity within a year. Scale bar = 20 mm. The first F; offspring were obtained on 15 Aug, 2017, from the tyr crispants (F,) established
on 19 Aug, 2016. Scale bar = 2 mm. (B) Genotypes of tyr F; offspring from two clutches identified by Sanger sequencing. Deletions are indicated by dashes. The number of clones for
each allele is indicated on the right. Sequences represent homozygous mutants in two albino clutches. PAM is indicated by red letters.
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CCT---------- ACCCGCCAGA A0 25.9%
it - CCTGCCCGAC-========~-, AGA A0 21.7%
. & CCTGCCCGACTCC---CGCCAGA A3 1.24%
#3 (class2) .

Frameshift mutation rate = 47.2%

Fig. 3. Targeted gene disruption of pax6 (A) Representative phenotypes of pax6 crispant and frequencies of phenotypes from two independent experiments. Phenotypes are
classified into four groups, in accordance with a previous report (Yasue et al., 2017). All of the pax6 crispants showed eye malformation. Total and each group's sample sizes (n) are
indicated at the top and middle of each graph, respectively. (B) Genotypes of pax6 crispants. Representative mutant alleles, their occupancy rates, frameshift mutation rates, and total
read counts are shown corresponding to each embryo (#1-3). Deletions are indicated by dashes. PAM and microhomologous sequences are indicated by red letters and underscores,

respectively. All mutant alleles and their frequencies are listed in Table S1.

For the next proof-of-principle experiment, we targeted pax6,
which is involved in eye formation (Suzuki et al., 2013; Yasue et al.,
2017). Consistent with previous reports, pax6 crispants showed eye
malformations, for example, small eye (class 1), small eye with partial
loss of pigmentation (class 2), or no eye (class 3) (Fig. 3A).
Furthermore, all crispants showed eye defects, suggesting the high
efficiency of gene disruption by Cas9 RNP, similar to that of tyr. The
same phenotype was also observed for different sgRNA (Fig. S4).
Amplicon sequencing analysis revealed that somatic mutation rates
were 99% or higher, with a few different types of mutation occurring,
similar to the results for tyr (Fig. 3B, Table S1). We found no
relationship between the levels of frame shift mutation rates and the
severity of the phenotypes, consistent with a previous report on a
mouse study (Yasue et al., 2017).

Finally, we also targeted tbx5, which is required for forelimb bud
formation (Agarwal et al., 2003; Rallis et al.,, 2003) and heart
development (Bruneau et al., 2001; Garrity et al., 2002). tbx5 crispants
had no detectable forelimb buds consistent with previous reports on
other vertebrates (Fig. 4A). Moreover, hearts of tbx5 crispants beat
slower than those of wild-type embryos without visible blood flow
(Movie S1: beating heart of wild-type larva, Movie S2: beating heart of
tbx5 crispant), indicating heart abnormalities. The same phenotype
was also observed in the other crRNA:tracrRNA, which targeted a
different coding sequence of tbx5, but was never seen in the control
groups: the uninjected group and the Cas9 protein and tracrRNA-
injected (without tbx5 crRNA) group (Fig. 4B, Fig. S4). Amplicon
sequencing analysis revealed virtually complete biallelic disruption in
all analyzed embryos with a few different types of mutation (Fig. 4C).

2.2. ZRS perturbation caused digit deformation during limb
regeneration

We next tested whether the use of this Cas9 RNP system can be
expanded to the analysis of cis-regulatory elements, not only coding
sequences. We targeted limb-specific enhancer of shh, known as the
zone of polarizing activity regulatory sequence (ZRS). ZRS is essential
for proper limb development in mouse (Sagai et al., 2005) and recently
a 17-bp snake-specific deletion in ZRS was reported (Kvon et al., 2016).
This 17-bp sequence is specifically deleted in multiple species of snake
and present in limbed tetrapods and fish, and was shown to be able to
resurrect the snake ZRS enhancer function in mouse (Kvon et al.,
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2016). We designed two sgRNAs adjacent to the 17-bp snake-specific
deletion site of ZRS in the P. waltl genome to excise out this sequence
(Fig. 5A, Fig. S5), and co-injected them into one-cell-stage embryos.
Regarding limb development, both forelimb and hindlimb of ZRS
crispants seemed to develop normally, without limb truncation like in
ZRS-deleted mouse (Sagai et al., 2005) and mouse with its original ZRS
replaced by snake ZRS (Kvon et al., 2016). Most of the ZRS crispants
formed four digits in forelimb, the same as in the wild type, whereas 7
of 33 larvae formed only three digits (Fig. 5B; left column). To
investigate this further, we amputated the forelimb of ZRS crispants.
Unlike in development, digit formation was severely disrupted in
regeneration; specifically, approximately half of ZRS crispants failed
to complete regeneration, while wild-type larvae regenerated their
digits completely (Fig. 5B; right column). Notably, the formation of one
or two digits was seen only in ZRS crispants. We observed an one-digit-
regenerated ZRS crispant for 13 months, but it failed to regenerate the
other digits at the end of this period (Fig. S6), suggesting that this
phenotype reflects impaired regeneration but not delayed regeneration.
Genomic DNA was extracted from the amputated limb and genotyped
individually for each phenotype (Fig. 5C, Table S1). Entire deletion of
the 17-bp sequence did not occur as we expected, even in cases of
defective regeneration; however, all analyzed alleles had an insertion or
deletion (indel) at the ZRS sgRNA?2 cleavage site (Fig. 5C, Table S1). To
examine whether ZRS perturbation affected the shh expression in
regeneration, we quantified shh expression in each blastema of ZRS
crispants (n=21) and uninjected siblings (n=16) using RT-qPCR
analysis. As expected, shh expression level was significantly lower in
ZRS crispants than in the wild type (Fig. 5D).

3. Discussion

We have presented here a highly efficient and simple method of
gene knockout in newt by using Cas9 recombinant protein and
synthetic crRNA:tracrRNA duplex or in vitro-transcribed sgRNA using
PCR-based templates to accelerate reverse genetics in newt (Fig. 6).
Cas9 recombinant protein is more effective than Cas9 mRNA because it
can be active immediately after delivery into human cells and zebrafish
eggs (Kim et al., 2014; Burger et al., 2016). As we previously
demonstrated in Xenopus (Shigeta et al., 2016; Sakane et al., 2018),
Cas9 RNP actually achieved highly efficient gene disruption in P. waltl,
even in the founder generation. Amplicon sequencing analysis of on-
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Fig. 4. Targeted gene disruption of tbx5 (A) A representative phenotype of tbx5 crispant; dorsal view, ventral view, and cross section through the torso. Arrow and arrowhead
indicate limb bud formation in the control and no limb bud formation in the tbx5 crispant, respectively. (B) Frequencies of phenotypes from two independent experiments. Phenotypes
are classified into two groups: class 1, limb defect only; and class 2, limb defect and heart abnormalities. Neither of the control experimental groups, uninjected and Cas9 protein with
only tracrRNA injected (without tbx5 crRNA), showed these phenotypes. (C) Genotypes of tbx5 crispants. Representative mutant alleles, their occupancy rates, frameshift mutation
rates, and total read counts are shown corresponding to each embryo (#1-3). Deletions are indicated by dashes. PAM and microhomologous sequences are indicated by red letters and

underscores, respectively. All mutant alleles and their frequencies are listed in Table S1

target sites revealed saturating somatic mutations in most of the
crispants (>99%), allowing direct phenotype readouts from them
(Ablain et al., 2015; Burger et al., 2016; Zuo et al., 2017; Sakane
et al., 2018). For this rapid phenotype analysis, the retention of wild-
type and various in-frame alleles is a major concern. In P. waltl, we
found on average fewer than four mutation alleles in crispants
exhibiting severe phenotypes. This suggests that somatic mutations
caused by Cas9 RNP resulted in saturation after a few initial cleavages.
Sanger sequencing analysis of on-target sites also led to the estimation
of a low somatic allele count of genome-edited P. waltl (Hayashi et al.,
2014; Elewa et al., 2017), and we assume that the longer time for the
first cleavage in P. waltl (5—-6 h at 25 °C) would ensure the efficiency of
genome editing (Hayashi et al., 2014). Furthermore, we demonstrated
the generation of tyr F; offspring from crispants within a year.
Therefore, we are confident that both crispants with saturated muta-
tion and their F; progeny will facilitate the functional analysis of genes
of interest.

Frameshift mutation disrupts proper translation due to a premature
stop codon and nonsense-mediated mRNA decay, so it is the main
cause of gene loss of function caused by CRISPR-Cas. The frameshift
rates reached 100% in tbx5 crispants (Fig. 4C); however, they were

lower in #2 and #5 tyr crispants (Fig. 1B) and #3 pax6 crispants
(Fig. 3B), even though their phenotypes indicated severe loss of
function of the target genes. The gRNAs were designed to recognize
exon 1 of tyr or DNA binding domain in pax6, which would be critical
for the function of each protein (Suzuki et al., 2013). Therefore,
designing gRNAs against the functional domains would contribute to
efficient gene loss of function, even if in-frame mutations occur (Burger
et al., 2016; Shigeta et al., 2016). We found phenotypic spectrum in
pax6 crispants, as with the previous reports in mouse and Xenopus
(Suzuki et al., 2013; Yasue et al., 2017). pax6 is a transcription factor
that regulates itself during eye formation. Therefore, its somatic
mutation (e.g., various truncated proteins and mosaicism in optic
cup and lens placode) may perturb the pax6 gene network and result in
varying degrees of eye malformation. In addition, designing multiple
gRNAs to the target gene is also preferable for efficient gene disruption,
since it is known that the cleavage activity of programmable nucleases
is affected by the chromatin state at the target site (Wu et al., 2014;
Kuscu et al., 2014). Actually, phenotype frequencies were shown to
vary in a manner dependent on the sequences of gRNAs against a
target gene. In our study, at least one gRNA induced a severe
phenotype in ~ 80% of embryos when we tested two or three gRNAs
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Fig. 5. Targeted cis-regulatory element disruption of the limb enhancer of sonic hedgehog (A) The VISTA plot of the zone of polarizing activity regulatory sequence (ZRS).
The plot shows conserved sequences between P. waltl and human, mouse, and snakes (python and cobra). Putative 17-bp snake-specific deletions in P. waltl ZRS and sgRNA target
sequences are shown below the plot. sgRNA target and PAM sequence are marked in gray and red, respectively. (B) Left column: Phenotypes of ZRS crispants in limb development (1-
month postfertilization). Most of the ZRS crispants developed limbs normally and 7 of 33 larvae showed the loss of one digit. Numbers of digits of left forelimbs and their frequencies are
shown. Right column: Phenotypes of ZRS crispants in limb regeneration. Unlike in limb development, severe reduction of digit formation was seen. In addition, approximately half of
ZRS-disrupted larvae could not regenerate their digits completely. Numbers of regenerated digits and their frequencies are shown. (C) Genotypes of ZRS crispants with severe
phenotypes. Genomic DNA was extracted from each amputated limb (#1-4) and the target genomic locus was sequenced. Representative mutant alleles, their occupancy rates, and total
read counts are shown. Deletions are indicated by dashes. PAM, part of the 17-bp snake-specific deletion site, and microhomologous sequences are indicated by red and yellow letters,
and underscores, respectively. Genotypes of other larvae with moderate phenotypes, all mutant alleles, and their frequencies are listed in Table S1. (D) Quantitative analysis of shh
expression in regenerating ZRS crispants. Left panel: The left forelimbs were amputated at the middle of the forearm level and regenerating blastemas were collected at 7 days
postamputation. Scale bar =500 um. Right panel: Boxplot of shh mRNA level in each blastema from wild-type (n=16) and ZRS crispant (n = 21) relative to gapdh measured by RT-
qPCR. shh expression was significantly decreased in ZRS crispant (*: Mann—Whitney U-test, p = 0.03).
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against each target gene. Moreover, confirming the identical phenotype
using multiple gRNAs is one way of avoiding the misreading of
phenotypes and obtaining reliable phenotypes due to off-target effects
in salamanders, in view of their huge genome size (Fei et al., 2014).
Recently, the genome of P. waltl has been sequenced (Elewa et al.,
2017), so more detailed off-target evaluation can now be applied; for
example, candidates of off-target sites can be identified from genome
sequence data and unexpected mutations are easily examined by
performing a heteroduplex mobility assay on the candidates (Zhu
et al., 2014; Shigeta et al., 2016).

Functional assessment of noncoding regulatory elements is impor-
tant to understand how genes are up- or downregulated in a precise
spatiotemporal manner during development and regeneration. The
CRISPR-Cas9 system also allows us to investigate their function easily
in vivo, not only the functions of protein-coding genes (Han et al.,
2015; Burger et al., 2016). We designed a pair of gRNAs adjacent to the
17-bp snake-specific deletion site to excise out this sequence; however,
they did not remove it. Optimization of the distance of two gRNAs
would be needed when using offset gRNAs (Ran et al., 2013), but we
were unable to design another gRNA due to the very small region of
interest. Even though the deletion of ZRS was only 4-5 bp, it caused
severe digit deformation in regeneration. Meanwhile, a large 120-bp
deletion was occasionally seen (~ 10%). Such large deletions occur in
association with programmable nucleases (Shin et al., 2017): when
double-strand breaks at the target site are mainly repaired by the non-
homologous end joining (NHEJ) pathway, endogenous nucleases could
occasionally create large deletions.

We demonstrated that CRISPR-mediated perturbation of ZRS
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decreased shh mRNA expression and led to defects in digit patterning
during regeneration. Similar phenotypes of digit loss were also seen in
regenerating limb treated with cyclopamine, a shh signaling inhibitor, in
a dose-dependent manner (Roy and Gardiner, 2002), supporting the
view that the failure of limb regeneration in the ZRS crispant was caused
by insufficient reactivation of shh. Notably, ZRS-perturbed newts
showed variability in their regenerating ability; some of them regener-
ated their limbs normally, despite possessing similar mutations at the
on-target site. Variation of limb phenotype upon ZRS perturbation was
also reported to be seen in ZRS 3’-end-deleted mouse (Lettice et al.,
2014) and mouse carrying human ZRS (in which the endogenous mouse
ZRS had been replaced with human ZRS; Kvon et al., 2016). Even point
mutations in ZRS would be a factor that weakens or strengthens cis—
trans interaction, consequently subtly altering shh expression
(Williamson et al., 2011; Lettice et al., 2017). This subtle alteration
can lead to stochastic variability of phenotypes associated with ZRS
mutations (Hill, 2007; Symmons et al., 2016). Therefore, the variability
in limb phenotype in ZRS crispants may reflect subtle alteration of the
shh expression rather than allele complexity or mosaicism in the
founder. We speculate that low levels of shh signaling in ZPA stochas-
tically affected digit number in regeneration. In addition, ZRS perturba-
tion may also subtly alter spatio-temporal expression of shh and affect
digit patterning (Shapiro et al., 2003). Intriguingly, even a few base
deletions at the 17-bp snake-specific deletion site resulted in impaired
limb regeneration, revealing that the small site (ZRS sgRNA2 targeting
sequence) plays a crucial role in the reactivation of shh. This site
contains predicted homeodomain DNA motifs, implying that the muta-
tion disrupted Hox binding (Kvon et al., 2016; Leal and Cohn, 2016). To
decipher the mechanism by which this site regulates shh expression
during limb regeneration, further study is needed. We are also confident
that this highly efficient gene knockout method will be suitable for
evaluating regulatory elements in noncoding regions related to develop-
ment and pathogenesis using salamanders.

Overall, in this study we demonstrated a highly efficient method of
gene disruption for functional analysis of genes of interest and
noncoding genome elements using Cas9 RNP in P. waltl. Recently,
rapid advances of next-generation sequencing technology and assembly
algorithms have enabled reading of the gigantic genome of salaman-
ders (Elewa et al., 2017; Nowoshilow et al., 2018). Therefore, we expect
that this reverse genetic tool will contribute to understanding the
regenerative ability and other unique biological features of salaman-
ders in the post-genome era.

4. Materials and methods
4.1. Animals

The Iberian ribbed newts (Pleurodeles waltl) used in this study
were maintained in a closed colony following their original purchase
from Tao (Chiba, Japan) in 2010. The animals were reared as described
previously (Hayashi et al., 2013), unless stated otherwise. The devel-
oping stages were defined according to the criteria described by Shi and
Boucaut (1995). For anesthesia before limb regeneration, MS-222
(Sigma, St. Louis, MO, USA) was used at a final concentration of
0.02%. Animal rearing and treatments were performed and approved
in accordance with Guidelines for the Use and Care of Experimental
Animals and the Institutional Animal Care and Use Committee of
Hiroshima University and Tottori University.

4.2. Sequencing of ZRS locus and various genes

The ZRS locus of P. waltl was sequenced after inverse PCR cloning
of this locus using the primers listed in Table S2. The partial genomic
sequences and amplicon sequencing data of tyr, pax6, tbx5, and ZRS
have been deposited in GenBank (L.C378706) and the DDBJ Sequence
Read Archive (DRA006550). The cDNA sequence for each gene was


ncbi-n:LC378706
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predicted from the P. waltl transcriptome data set (Elewa et al., 2017)
and resequenced (Fig. S1, 7).

4.3. Preparation of gRNAs

All gRNA targeting sequences are highlighted in Fig. S2. gRNAs
were designed using CRISPR-direct (Naito et al., 2015). For sgRNA
preparation, templates were assembled by a PCR-based strategy
(Sakane et al., 2017). The oligonucleotide information is listed in
Table S2. DNA templates were purified with a QIAquick PCR
Purification Kit (Qiagen, Hilden, Germany); subsequently, sgRNAs
were synthesized in vitro using a MEGA Shortscript T7 Kit and purified
using a MEGA Clear Kit (Thermo Fisher Scientific, Waltham, MA,
USA). The synthetic tracrRNA and crRNA were obtained from
Integrated DNA Technologies (IDT; Skokie, IA, USA). The tracrRNA
and crRNA were annealed in accordance with the manufacturer's
instructions just before injection.

4.4. Microinjection

Microinjection was performed based on our previously reported
protocols (Hayashi et al., 2014; Hayashi and Takeuchi, 2016; Sakane
et al.,, 2017, 2018). A brief description of this protocol with minor
modification is presented below. The fertilized eggs were treated with
0.5% cysteine in 0.25x Holtfreter's solution for 30 s to remove the jelly.
De-jellied eggs were rinsed in 0.25x Holtfreter's solution and trans-
ferred into injection medium [4% Ficoll or 0.75% methylcellulose
(Sigma) in 0.25x Holtfreter's solution]. The eggshells were removed
using forceps and stored at 8 °C in injection medium until microinjec-
tion. One nanogram of recombinant Cas9 protein (Alt-R S.p. Cas9
Nuclease 3NLS; IDT) and 200 pg of sgRNA or 60 pg of crRNA + 160 pg
of tracrRNA in 150 mM KCl and 20 mM HEPES buffer were injected
into one-cell-stage embryos using Nanoject II (Drummond, Broomall,
PA, USA). For targeting ZRS, 2 ng of Cas9 and 200 pg of each sgRNA
(400 pg in total) were co-injected. After microinjection, the embryos
were incubated overnight at 25°C in injection medium and then
transferred into 0.25x Holtfreter's solution. When injecting Cas9 +
sgRNAs, 0.1x Marc's modified Ringer's (MMR) was used instead of
0.25x Holtfreter's solution and 5% Ficoll in 0.3x MMR was used as
injection medium. Phenotypes were evaluated at 6 days postfertiliza-
tion (dpf) for tyr disruption, and 9 dpf for pax6 and tbx5 disruption.
Embryos that showed developmental defects from 2 dpf were here
counted as having developmental defects.

4.5. Limb regeneration

Crispant or uninjected larvae were separated into single cases
before the feeding stage and reared individually for one month.
Larvae were anesthetized with 0.02% MS-222. Then, the left forelimbs
were amputated with a surgical knife at the middle of the forearm level.
Each amputated limb was stored at —20°C until genomic DNA
extraction for amplicon sequencing. The number of digits was counted
when uninjected control larvae completed regeneration, at 18 days
postamputation (dpa). A small spike structure was not counted as
representing a regenerating digit.

4.6. Genotyping

Genomic DNA was extracted from whole bodies of tyr (n = 5), pax6
(n=3), and amputated limb of ZRS crispants (n=11) using DNeasy
Blood and Tissue Kit (Qiagen), individually. Uninjected samples were
also collected for each experimental group. An amplicon-sequencing
library was prepared based on the Illumina “16S Metagenomic
Sequencing Library Preparation.” For the first round of PCR, the target
regions containing gRNA targeting sites were amplified from individual
genomic DNA of uninjected embryos, tyr, pax6, and ZRS crispants,

134

Developmental Biology 443 (2018) 127-136

using KOD FX Neo (TOYOBO, Osaka, Japan) with primer sets contain-
ing barcode and overhang adaptor sequences. Each PCR product was
purified using a QIAquick PCR Purification Kit (Qiagen) and equal
quantities of PCR products were pooled and re-purified using the same
kit. For tbx5 crispants (n = 3), the target region was amplified from the
tail lysates using KAPA HiFi (Roche Diagnostics, Basel, Switzerland)
with primer sets containing overhang adaptor sequences and purified
using AMPure XP (Beckman Coulter, Pasadena, CA, USA). Then, each
PCR product underwent the second round of PCR using different index
primer sets. The second round of PCR was performed to construct a
sequence library using a Nextra XT index kit (Illumina, San Diego, CA,
USA). The final library was purified and sequenced on Illumina MiSeq.
Library construction and sequencing were performed at the National
Institute for Basic Biology (NIBB) and Microgen Japan (Kyoto, Japan).
Amplicon-sequencing data were analyzed in accordance with the work
of Sakane et al. (2018). PCR and Illumina sequence error rates were
determined using uninjected samples, and then mutant reads were
counted using an in-house script in R (version 3.3.3; for tyr, pax6, and
ZRS) or CRISPResso (http://crispresso.rocks/; Pinello et al., 2016; for
tbx5) (Table S1). For Sanger DNA sequencing of tyr F, larvae,
amplicons were subcloned into pTA2 using Target Clone Plus
(TOYOBO). Then, positive clones were selected by colony PCR and
sequenced using BigDye Terminator v3.1 Cycle Sequencing kit (Life
Technologies). All primers are listed in Table S2.

4.7. Histological analysis

Embryos were deeply anesthetized with 0.02% MS-222 and fixed
with modified Carnoy's solution (65% ethanol, 30% formalin, 5% acetic
acid). Tissues were processed for paraffin embedding and then
sectioned at 8 um. Sections were deparaffinized, rehydrated, and
stained with hematoxylin and eosin.

4.8. VISTA global alignments

Comparison of P. waltl ZRS genomic sequences with other species
was performed using the mVISTA program (Frazer et al., 2004; http://
genome.lbl.gov/vista/) based on LAGAN multiple alignments (Brudno
et al., 2003), using the default parameters. The genomic DNA
sequences analyzed here are shown in Fig. S5.

4.9. RNA extraction and RT-qPCR

Forelimbs of crispant and uninjected larvae were amputated as
described above, and then medium-bud-stage blastema (Iten and
Bryant, 1973) was collected at 7 dpa. Tissues were incubated overnight
in RNAlater (Thermo Fisher Scientific) at 4 °C, and stored at — 80 °C
after removing the solution. Total RNA was isolated from each sample
by using NucleoSpin RNA Plus XS with rDNase Set (TaKaRa Bio). The
same amount of total RNA (20 ng) was reverse-transcribed and pre-
amplified using CellAmp Whole Transcriptome Amplification Kit
(TaKaRa Bio). qPCR was carried out by using SYBR Premix Ex Taq
II (TaKaRa Bio) with a Step One real-time PCR system (Thermo Fisher
Scientific). The copy numbers of each gene were quantified using
pCRII-TOPO-Pwshh vector and purified PCR product of Pwgapdh as
standards, and subsequently relative shh expression levels were
normalized by gapdh. Two technical replicates were used per sample.
All primers are listed in Table S2. Primer sets for PCR were designed
by Primer 3 (Untergasser et al., 2012). The statistical significance of
differences was calculated by the Mann—-Whitney U-test using EZR
software (Kanda, 2013).
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