Developmental Biology 443 (2018) 1-9

i

Contents lists available at ScienceDirect

D, EVELOPMENTAL

BiorLogy

Developmental Biology

journal homepage: www.elsevier.com/locate/developmentalbiology

Lung morphogenesis is orchestrated through Grainyhead-like 2 (Grhl2)
transcriptional programs

@ CrossMark

Ariena Kersbergen®, Sarah A. Best®”, Sebastian Dworkin®, Casey Ah-Cann®",

Michael E. de Vries®, Marie-Liesse Asselin-Labat™”, Matthew E. Ritchie®’, Stephen M. Jan el
Kate D. Sutherland®"*

2 ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkuille, Victoria 3052, Australia
b Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia

¢ Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia

d Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia

€ Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia

£ School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia

ARTICLE INFO ABSTRACT

Keywords: The highly conserved transcription factor Grainyhead-like 2 (Grhl2) exhibits a dynamic expression pattern in
Grhl2 lung epithelium throughout embryonic development. Using a conditional gene targeting approach to delete
Lung morphogenesis Grhl2 in the developing lung epithelium, our results demonstrate that Grhl2 plays multiple roles in lung
Progenitor cells morphogenesis that are essential for respiratory function. Loss of Grhl2 leads to impaired ciliated cell
EIf5 differentiation and perturbed formation of terminal saccules. Critically, a substantial increase in Sox9-positive
distal tip progenitor cells was observed following loss of Grhl2, suggesting that Grhl2 plays an important role in
branching morphogenesis. Gene transcription profiling of Grhi2-deficient lung epithelial cells revealed a
significant down regulation of Elf5, a member of the Ets family of transcription factors. Furthermore, ChIP and
comparative genomic analyzes confirmed that EIf5 is a direct transcriptional target of Grhl2. Taken together,
these results support the hypothesis that Grhl2 controls normal lung morphogenesis by tightly regulating the

activity of distal tip progenitor cells.

1. Introduction

Lung morphogenesis is under strict spatiotemporal control
(Herriges and Morrisey, 2014; Warburton et al., 2000). During mouse
embryogenesis, lung specification begins at embryonic day (E) 9.5 with
the separation of the foregut into the future trachea and esophagus,
and the formation of two primary lung buds. This is followed by a series
of morphogenetic events involving crosstalk between the endoderm
and mesoderm that ultimately gives rise to a complex branched
network (Morrisey and Hogan, 2010; Short et al., 2013). In early lung
development, distal tip epithelial cells marked by co-expression of Sox9
and Id2, function as multipotent progenitors giving rise to all mature
lung epithelial cell types in two distinct developmental waves (Alanis
et al., 2014; Rawlins et al., 2009). The bronchiolar lineage is specified
first, triggered by the up regulation of Sox2, while cells exiting the tip
downregulate Sox9 and co-express markers of alveolar type I (AT1) and
alveolar type 2 (AT2) fate. As morphogenesis proceeds, these bipotent

cells line the developing alveolar sacs and differentiate as mature AT1
or AT2 cells (Desai et al., 2014; Treutlein et al., 2014).

The Grainyhead-like (Grhl) gene family encodes highly conserved
transcription factors remarkable for the functional diversity they
display, with family members regulating numerous developmental
processes including neural tube closure (Ting et al., 2003), epidermal
barrier formation and wound healing (Caddy et al., 2010; Ting et al.,
2005), brain morphogenesis and neural apoptosis (Dworkin et al.,
2012) and craniofacial development (Dworkin et al., 2012, 2014). In
humans, GRHL?2 is a clinically relevant gene in the context of lung
diseases, whereby homozygous mutations in GRHL2 have been linked
with ectodermal dysplasia, deafness and hypodontia and critically
bronchiolar asthma (Petrof et al., 2014). Alterations in the GRHL2
gene have also been linked to bronchopulmonary dysplasia (BPD)
(Wang et al., 2013), a chronic lung condition characterized by impaired
alveolar development resulting in respiratory deficiency (Kinsella et al.,
2006), and potential deregulation of maintenance of alveolar epithelial
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integrity in idiopathic pulmonary fibrosis (Varma et al., 2014). Lastly,
GRHL2 is implicated as an oncogene in the etiology and progression of
non-small cell lung cancer (Dompe et al., 2011; Pan et al., 2017).

In the developing mouse lung, Grhl2 exhibits the earliest, strongest
and most persistent expression of the three Grhl-family members.
Grhl2 is expressed in the foregut endoderm at E10.5 and its expression
progressively increases during branching morphogenesis (E12.5-
E16.5). At E16.5, the tracheal epithelium and all epithelial cells lining
the large and small bronchioles express high levels of Grhl2 (Auden
et al., 2006). After E16.5, Grhl2 is dramatically down regulated, with
low expression levels detected throughout the lung parenchyma as
terminal differentiation commences. Consistent with these findings, in
the human lung, GRHL2 is expressed in both the luminal and basal
cellular compartments of the small and large airways (Gao et al., 2013).
Mice lacking Grhl2 (Grhl2”") exhibit embryonic lethality by E11.5
(Rifat et al., 2010), thus precluding the study of lung development past
this stage. Interestingly, an N-ethyl-N-nitrosourea (ENU)-induced
mutant Grhl2 mouse survived, though exhibited defective lung mor-
phogenesis (Pyrgaki et al., 2011). Enforced expression of dominant
negative GRHL2 in primary human bronchial epithelial cells led to
defects in cell morphogenesis, motility and adhesion (Gao et al., 2013).
Loss of Grhl2 in basal progenitor cells lining the pseudostratified
airway epithelium had no effect on their self-renewal, there was
reduced capacity of basal progenitor cells to differentiate along the
ciliated cell lineage (Gao et al., 2015). However, no study to date has
assessed the functional role of Grhl2 in lineage specification within the
developing lung.

In this report, we utilized the well-characterized lung epithelial
driver; Shh-Cre to conditionally delete Grhl2 specifically in the devel-
oping lung of a novel Grhl2”f mouse model. These mice enabled the
investigation into the role of Grhl2 in the initial establishment of the
trachea and bronchial tree, as well as later roles for Grhl2 in terminal
cell specification. Loss of Grhl2 function in lung epithelium resulted in
death within hours of birth due to respiratory distress. Our results
reveal unreported roles for Grhl2 in tracheal chondrogenesis and the
regulation of distal lung progenitors, the latter of which is controlled
through the direct regulation of Elf5, a novel Grhl2 target gene.

2. Results and discussion

2.1. Grhl2 deletion in the anterior foregut results in perinatal
lethality

To overcome the embryonic lethality of Grhl2 null mutants and
address the function of Grhl2 in lung morphogenesis, we generated
mice carrying a conditionally targetable Grhl2 allele, with loxP sites
flanking exon 2 (Fig. 1A). Mice homozygous for the floxed allele
(GrhI2"Y were healthy and fertile, and when crossed with mice
carrying a B6-Cre transgene, expressed at the two-cell stage of
development, recapitulated the lethal phenotype of Grhl2 null
(Grhl27") mice (Rifat et al., 2010) (Fig. S1A). In line with this
observation, analysis of B6-Cre;Grhl2*/~ embryos at E9.5, revealed a
complete loss of Grhl2 at the genomic level (Fig. S1B). To specifically
delete Grhl2 in lung epithelium, we crossed Grhl2”" mice with Shh-Cre
mice (Harfe et al., 2004), allowing us to excise Grhl2 from the lung
primordium from E9.5 (Shh-Cre;Grhl2*/~; hereafter Grhl2*/"). As the
Cre allele was knocked into the Shh locus, resulting in loss of one Shh
allele, Shh-Cre;Grhl2*’* animals (hereafter Grhl2*/*) were used as
controls. PCR analysis of genomic DNA isolated from epithelial
(CD45°CD31 EpCAM™) cells revealed efficient deletion of the Grhl2
floxed allele specifically in lung epithelial cells of conditionally targeted
mice (Fig. S1C). Shh-Cre-mediated deletion correlated with markedly
reduced Grhl2 mRNA expression and no evidence of compensatory up-
regulation of Grhll and Grhl3 mRNA expression (Fig. 1B). Western
blot analysis confirmed the absence of Grhl2 protein expression in
GrhI2*- E16.5 lungs (Fig. 1C).
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Until E18.5, Grhi2*/~ embryos were present at normal Mendelian
ratios (Fig. 1D). Critically however, GrhI2*/~ newborns exhibited signs
of respiratory distress and died within hours of birth, whereas Grhl2
heterozygous (Grhl2"~ and Grhi2*/*) and wildtype (Grhi2"*) control
mice were viable (Fig. 1D). In Drosophila, the antecedent member of
the Grhl family, grainyhead (grh), contributes to tracheal organogen-
esis by regulating the size of the apical membrane and morphogenesis
of tracheal epithelial cells (Hemphala et al., 2003). However, such a
phenotype has yet to be ascribed to Grhl family members in mammals.
Macroscopically, the tracheal tubes of Grhl2*/~ newborns appeared
thinner and more fragile than littermate controls. Alcian blue staining
of whole-mounted tracheas from post-natal day (PND) 0 Grhl2 wild-
type (wt; Grhi2”*) and heterozygous (het; Grhl2¥~ and Grhi2*/*)
control mice revealed uniform C-shaped cartilage rings (Fig. 1E). In
contrast, tracheas from conditional knockout (null; Grhl2*/~) mice
confirmed macroscopic observations and displayed severely disorga-
nized cartilage rings (Fig. 1E). Tracheal stenosis was confirmed by
measurement of tracheal width, which was significantly reduced in
GrhI2*- mutants (Fig. 1F). No difference was observed in the length of
the trachea (data not shown). Taken together, the abnormal formation
of the tracheal rings and apparent tracheal stenosis likely contributes to
the perinatal lethality of Grhl2*/~ mutant mice and underscores a non-
cell autonomous function for Grhl2 in tracheal cartilage patterning.

2.2. Loss of Grhl2 results in perturbed lung morphogenesis

Histological analysis of lungs from Grhi2*/~ embryos at E18.5
revealed a disorganized architecture characterized by a reduction in
distal saccules, thickened hypercellular intersaccular septa and a dense
distribution of Nkx2.1-positive respiratory epithelial cells (Fig. 2A).
Interestingly, total cell numbers (Fig. S2A) and the percentage of
epithelial (CD31°CD45°EpCAM™) cells (Fig. 2B) present in Grhi2*/
mutant E18.5 lungs was comparable to that observed in Grhl2*/*
control lungs. Macroscopic analysis of Grhi2®/~ mutant lungs prior to
birth, however, revealed a reduction in the size of the left lung lobe
(Fig. S2B and C). Furthermore, quantification of distal airspace size,
using T1-alpha as a marker of saccule boundaries (Fig. S2D), revealed a
significant reduction in the saccule size in Grhi2*- E18.5 lungs
(Fig. 2C) when compared to Grhi2*/* littermate controls. Taken
together, Grhl2 loss results in a condensed cellular morphology, due
to a reduction in lung size.

To explore whether Grhl2 loss effected branching morphogenesis,
we employed the mouse embryonic lung culture assay system
(Warburton et al., 1992) and compared the growth of Grhl2 wildtype
(wt; Grhl2*), heterozygous (het; Grhi2¥~, Grhl2*/*) and conditional
knockout (null; Grhi2*") E11.5 lungs cultured ex vivo for 72h.
Interestingly, Grhl2 heterozygous and knockout lungs exhibited sig-
nificantly more airway tips (Fig. 2D and E), a direct readout of branch
number, suggesting that reduced Grhl2 expression results in increased
branching morphogenesis. Grhl family members have been implicated
in the control of cytoskeletal dynamics, with Grhl2 involved in the
regulation of the epithelial apical junctional complex through its ability
to directly modulate expression of E-cadherin and Claudin 4 (Werth
et al., 2010). Given that proper epithelial cell arrangement is crucial for
branching morphogenesis, we assessed Claudin 4 (Cldn4) transcript
levels in whole lung tissue isolated from E16.5 Grhi2*/* and Grhi2*/-
embryos. Interestingly, Cldn4 mRNA expression was significantly
down regulated in the absence of Grhl2 (Fig. 2F). Notably, immuno-
fluorescence staining revealed the maintenance of Claudin 4 expression
in epithelial cells lining the proximal airways of Grhli2*/- E16.5 lungs
(Fig. S2E), but a complete absence of expression in distal epithelium
(Fig. 2G). Expression of 3-catenin was maintained in both the proximal
and distal airway compartments (Fig. S2E and Fig. 2G). The correct
formation of adherence junctions in the absence of Grhl2 was further
confirmed by no change in E-cadherin expression at both the mRNA
(Fig. 2F) and protein (Fig. S2F) levels, suggesting that alternate
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Fig. 1. Loss of Grhl2 in lung epithelium results in perinatal lethality. (A) Schematic representation of the Grhl2 conditional (f) allele. LoxP sites flank exon 2 of the Grhi2 gene. (B)
Quantitative RT-PCR analysis of Grhll, Grhl2 and Grhl3 mRNA expression in whole lung tissue isolated from E16.5 Grhl2*/~ embryos relative to Grhl2*/* lung tissue (n =3 per
genotype). Mean + SEM. ****p < 0.0001. (C) Western blot analysis of Grhl2 in protein lysates prepared from E16.5 control and Grhi2*/~ lungs (n = 2 embryos). p-actin provides the
protein loading control. (D) Ratios of genotypes observed in litters of crosses between Shh-Cre;Grhl2*/~ and Grhl2"f mice. The observed percentage is shown in parentheses. “y? was
used to compare expected and observed number of offspring. ****p < 0.0001. (E) Whole-mount Alcian Blue staining of Grhl2 wildtype (wt; Grhl2”*), heterozygous (het; Grhl2"",
Grhi2®*) and conditional knockout (null; Grhl2*/") tracheas at birth. Scale, 500 um. (F) Quantification of tracheal width in Grhl2 wildtype (wt; Grhl2"*, n = 11), heterozygous (het;
Grhi2”-, n =11, Grhi2**, n = 6) and conditional knockout (null; GrhI2*/~, n = 19) post-natal day 0 (PNDO) mice. Mean + SEM. *p = 0.0286; ***p0.0002; ****p < 0.0001.

pathways maintain E-cadherin expression in lung epithelium. As mice
lacking Cldn4 are viable, and display only minor physiological lung
impairment (Kage et al., 2014), reduced Claudin 4 cannot therefore
account for all the morphological defects observed in Grhi2*/~ lungs.
Thus, other critical Grhl2 targets likely direct the morphogenesis and
integrity of lung epithelium.

2.3. Impaired epithelial differentiation following loss of Grhl2

Recent studies have revealed the importance of Grhl2 in the
differentiation of basal progenitor cells along the ciliated cell lineage
(Gao et al., 2015). To address whether Grhl2 is also crucial for the
differentiation of proximal progenitor cells we first examined the
expression of Sox2, a transcription factor required for the generation
of mature secretory and ciliated cell lineages of the conducting airways
(Gontan et al., 2008; Que et al, 2009; Tompkins et al., 2011).
Immunohistochemical staining revealed no significant changes in
Sox2 expression at E18.5 (Fig. 3A and B), suggesting that airway
precursor cells develop normally in the absence of Grhl2. Moreover, no
apparent change in expression of CC10-positive club cells (Fig. 3C and
D), and secretoglobin 3a2 (Scgb3a2) (data not shown), a marker of club
cell precursors, was observed in GrhI2*/~ lungs. Notably, a reduction in
the number of ciliated cells, as assessed by FoxJ1 (Fig. 3E and F)
staining was observed in GrhI2*/~ mutant lungs. This observation is in
line with recently published findings in tracheal epithelium (Gao et al.,

2015), and independently confirms a critical role for Grhl2 in control-
ling ciliated cell differentiation.

To determine whether distal progenitor development was disrupted
in Grhl2*/- mutant lungs, we examined the expression of Sox9, a
marker of distal progenitor cells, whose expression is down regulated
by E18.5 as differentiation of the alveolar lineage progresses (Rockich
et al., 2013). Interestingly, Sox9-expressing cells were still detected in
Grhl2®/~ mutant lungs when these cells were markedly reduced in
Grhi2*’* control lungs at E18.5 (Fig. 3G and H; Fig. S3A). These
results are consistent with a delay in the differentiation of Sox9-
positive precursor cells, or augmented branching morphogenesis. To
analyze distal epithelial cell differentiation in greater detail in Grhi2*/-
mutant lungs, we performed immunostaining with antibodies specific
for alveolar type II (pro-SPC) and type I (Tla) cells. While the
distribution of pro-SPC-positive AT2 cells was dense in Grhi2*/~ lungs
(Fig. 3I and J), quantification of pro-SPC* nuclei revealed a reduction
in the number of pro-SPC-expressing cells following loss of Grhl2 (Fig.
S3B). No apparent change in the expression of AT1 (Tla) cells was
detected in Grhi2*/- lungs (Fig. 3K and L). To assess whether Grhi2*/-
mutant epithelial cells exhibit enhanced progenitor cell activity, we
isolated EpCAM™ cells from GrhI2*/~ and Grhi2*/* control E16.5 lungs.
The E16.5 time-point was chosen to enrich for Sox9-expressing distal
progenitor cells, while allowing us to obtain sufficient cell numbers
from individual lungs for in vitro colony assays. Sorted EpCAM™* cells
were then embedded on a Matrigel base layer and assayed for colony
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Fig. 2. Loss of Grhl2 expression in lung epithelium results in perturbed lung morphogenesis. (A) Representative H & E and Nkx2.1 immunostaining of lungs from E18.5 Grhi2*/*
control and GrhI2%/~ mutant embryos. Scale, 100 um. (B) Percentage CD31°CD45 EpCAM™ cells in Grhi2®/* control (n = 10) and Grhl2®/" mutant (n =7) E18.5 lungs. Mean + SEM. (C)
Quantification of saccule size in Grhl2*/* control (n = 5) and Grhl2*/- mutant (n = 6) E18.5 lungs. Mean + SEM. ****p < 0.0001. (D) Representative images of E11.5 Grhl2 wildtype (wt;
Grhi2"*), heterozygous (het; Grhi2"-, and Grhi2*/*) and conditional knockout (null; Grhl2*/") lungs following 72 h of ex vivo culture. Scale, 0.5 mm. (E) Quantification of airway tips in
Grhi2 wildtype (wt; GrhI2"*, n = 6), heterozygous (het; Grhl2"", n = 4, Grhl2*/*, n = 7) and conditional knockout (null; GrhI2*/~, n = 7). Mean + SEM. *p = 0.0156. (F) Quantitative
RT-PCR analysis of Cdhl and Cldn4 mRNA expression in whole lung tissue isolated from E16.5 Grhl2*/- embryos relative to control lung tissue (n = 3 per genotype). Mean + SEM.
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formation on day 14 (Fig. S3C). Similar to colonies derived from the
distal lung epithelium (Bilodeau et al., 2014), colonies that grew were
small with irregular morphologies (Fig. S3D). Critically however, the
colony formation potential of Grhl2*~ mutant epithelial cells was
significantly higher than seen with Grhi2*/* control epithelium (Fig.
S3E). Taken together, these findings suggest that Grhl2 regulates the
activity of Sox9-expressing progenitor cells in the distal compartment
of the developing lung and effects their ability to differentiate along the
AT?2 cell lineage.

2.4. Elf5 is a novel target of Grhl2 in lung epithelium

To identify direct transcriptional targets responsible for the ob-
served increase in distal progenitor cells in Grhl2*~ lungs, we
performed RNA-seq on epithelial (EpCAM™) cells from Grhi2*/-
mutant and control E16.5 lungs. Statistical analysis using the limma
software (Ritchie et al., 2015) identified gene expression changes
in Grhi2®- epithelium with 353 down regulated genes (blue;
FDR< 0.05), and 277 up regulated genes (red; FDR < 0.05)

p < 0.0001. (G) Representative immunofluorescence co-staining of Claudin-4 (Cldn4; red) with f-catenin (green) on Grhi2*’* control and Grhl2*" mutant E16.5 lungs.

(Fig. 4A; Table S1). In line with the observed defect in differentiation
along the ciliated cell lineage following loss of Grhi2 (Fig. 3A) (Gao
et al., 2015), gene ontology (GO) analysis revealed a significant
underrepresentation of genes implicated in cilia development
(Fig. S4A). Notch signalling is critical in controlling the balance
between ciliated cells and secretory cells during lung morphogenesis
(Gao et al., 2015; Guseh et al., 2009; Tsao et al., 2009). However, in
contrast to previous studies (Gao et al., 2015; Guseh et al., 2009; Tsao
et al., 2009), KEGG pathway analysis failed to reveal changes in Notch
pathway components, including Notch1, Notch3, Jagl and Jag2 genes
(Fig. S4B), which are putative direct Grhl2 targets based on promoter
occupancy by Grhl2 in chromatin immunoprecipitation (ChIP)-seq
analyses (Gao et al., 2015). These data suggest that Grhl2 does not
function upstream of the Notch pathway, however, expression of
transcription factors known to promote ciliogenesis; Multicilin
(Mcidas), and Znf750, the latter a recently described Grhl2 target in
the regulation of ciliogenesis (Gao et al., 2015), were both significantly
down regulated in Grhi2%/~ epithelium (Fig. S4C). This confirms the
integral role for Grhl2 in ciligogenesis in the developing lung.
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Fig. 3. Grhl2 loss results in defective epithelial differentiation. Representative immu-
nohistochemical staining of sections from Grhi2®/* control and Grhi2*/- lungs for (A, B)
Sox2, (C, D) CC10, (E, F) FoxJ1, (G, H) Sox9, (I, J) pro-SPC and (K, L) T1-alpha protein
expression. Representative images of E18.5 lungs are shown for Sox2, FoxJ1, Sox9, pro-
SPC, T1-alpha and of PNDO lungs for CC10. Scale, 50 pm.

Elf5, a member of the Ets family of transcription factors, plays
important roles in epithelial fate decisions (Oakes et al., 2008). EIf5 is
expressed in differentiating keratinocytes and branching epithelia such
as the salivary gland, prostate, mammary gland and kidney (Oettgen
et al., 1999; Zhou et al., 1998). In the developing mouse lung, Elf5
expression exhibits a dynamic expression pattern. In early develop-
ment Elf5 expression is restricted to distal epithelium, and from the
end of gestation, expression is enriched in proximal epithelial cells and
lost in distal epithelium (Metzger et al., 2008, 2007). Moreover,
expression of ELF5 was recently demonstrated to be among a set of
transcription factors enriched in human epithelial tip progenitors
(Nikolic et al., 2017). Interestingly, Elf5 was strongly down regulated
in Grhl2*/- mutant epithelium (Fig. 4A, FDR < 0.05). Consistent with
this finding, we confirmed a marked reduction in Elf5 expression in the
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developing lungs of Grhl2*" mutant embryos at both the mRNA
(Fig. 4B) and protein level (Fig. 4C).

The Grhl DNA consensus-binding site (5’~AACCGGTT-3’) is highly
conserved across species (Ting et al., 2005), and recent genome-wide
ChIP studies have revealed an enrichment of GRHL2 ChIP peaks at
transcriptional start sites, promoters and within intronic regions (Aue
et al., 2015; Gao et al., 2013; Walentin et al., 2015). Utilizing an in
silico approach, we interrogated the 630 differentially expressed genes
(Fig. 4A), for the presence of a Grhl binding site (Jolma et al., 2013) 5
kb upstream of transcriptional start sites, and inside gene bodies. This
approach revealed the presence of two putative Grainyhead consensus
motifs within an intronic region of the Elf5 gene (Fig. 4D), of which site
1 is highly conserved (Fig. 4D). These findings suggest that Grhl2 may
regulate Elf5 expression in lung epithelial cells. To test this observa-
tion, we performed ChIP on whole embryonic lungs, or purified
mesenchymal (EpCAM") cells as a control for cells in which Grhl2 is
not expressed (Auden et al., 2006). We confirmed specific binding of
Grhl2 to site 1 of Elf5 (Fig. 4E and Fig. S5), and to two sites in Cldn4, a
bona fide Grhl2 target (Fig. S5). Overexpression of Elf5 in the
embryonic lung disrupts branching morphogenesis and leads to a
block in alveolar and airway differentiation (Metzger et al., 2008). To
explore whether Grhl2 regulates distal progenitor cells through the
activation of Elf5, we compared the expression of differentially
expressed genes in Grhl2*/~ epithelium with the gene signature of
E16.5 SFTPC/Elf5 lungs derived from Metzger et al. (2008). Gene set
testing revealed a statistically significant enrichment for Elf5 signature
genes among the genes down regulated in the absence of Grhl2
(Fig. 4F, P =0.0085). These findings provide additional evidence that
Elf5 is a direct Grhl2 target, crucial in regulating the differentiation of
distal lung epithelium.

In conclusion, our results present new evidence for a crucial role of
Grhl2 in respiratory function. In the embryonic trachea, Grhl2 plays a
non-cell autonomous role in the differentiation of tracheal mesench-
yme (Fig. S6). In future studies it will be important to determine
whether restricted loss of Grhl2 in the tracheal epithelium disrupts
paracrine signalling cascades from the epithelium to the underlying
mesenchyme or directly regulates the expression of transcription
factors, such as Sox2 (Que et al., 2009), crucial for tracheal cartilage
patterning. In the proximal airways, consistent with previous studies
(Gao et al., 2015), conditional deletion of Grhl2 leads to a reduction in
the number of ciliated cells (Fig. S6), reinforcing the importance of
Grhl2 in ciliogenesis. In the distal compartment, the number of Sox9-
positive progenitor cells is increased in the absence of Grhi2 (Fig. S6),
likely the result of augmented branching morphogenesis. Importantly,
we describe a novel transcriptional axis between Grhl2 and Elf5, an
interaction which likely influences the activity of distal tip progenitor
cells and may be a key network in lung homeostasis.

3. Materials and methods
3.1. Generation of experimental animals

All animal experiments were conducted according to the Walter and
Eliza Hall Institute of Medical Research Animal Ethics Committee
guidelines (AEC 2013.028, 2016.024) or approved by the AMREP
Animal Ethics Committee. The generation and genotyping of Grhl2*/-
mice have been described previously (Rifat et al., 2010). B6-Cre
(Schwenk et al., 1995) and Shh-Cre (Harfe et al., 2004) mice were
obtained from Jackson Laboratories. The construction and validation
of the Grhl2 targeting vector will be described elsewhere and genotyped
using the primer set outlined in Table S2. Grhl2*/~ mice were crossed
with Shh-Cre mice, and the resultant animals were crossed with Grhl2Y
f mice to produce Shh-Cre;Grhl2®/- (Grhi2*/) experimental mice,
where A is the deleted floxed allele. Shh-Cre;Grhl2** (Grhl2*’*) mice
were used as controls.
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Fig. 4. EIf5 is a direct transcriptional target of Grhl2 in lung epithelium. (A) A plot of differentially expressed genes (up-regulated in red; down-regulated in blue) between Grhl2*/-
mutant and Grhl2*/* control EpCAM™* epithelial cells isolated from E16.5 embryonic lungs. (B) Quantitative RT-PCR analysis of Elf5 mRNA levels in whole lungs at E15.5, E16.5, E17.5
and E18.5 (n = 3 per time point). Mean + SEM. *p = 0.0461, ****p < 0.0001. (C) Western blot analysis of EIf5 in E16.5 control and Grhl2*/~ lungs. B-actin provided the protein loading
control. (D) Schematic of conserved Grhl2 consensus site in intron 4/6 of the Elf5 gene. (E) ChIP in E16.5 whole lungs and mesenchymal (EpCAM") cells sorted from E16.5 C57BL/6
lungs served as a negative control. ChIP was performed with a Grhl2 antibody or an immunoglobulin G (IgG; negative control) antibody. (F) Gene set analysis of differentially expressed
genes in Grhi2*/~ mutant epithelium compared to the alveolar type II signature genes from mice engineered to overexpress EIf5 in lung epithelium (Metzger et al., 2008) (roast gene set
test p < 0.0005). Index marks indicate genes from the Alveolar type II/EIf5 signature. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article).

3.2. Histology and Immunohistochemistry

For histological analysis, lungs were fixed in 4% paraformaldehyde
in phosphate-buffered saline (PBS), embedded in paraffin and sections
(2 um) prepared and stained by Haematoxylin and Eosin (H&E).
Alternatively, following fixation, lungs were embedded in 7.5% gelatin,
15% sucrose and snap frozen for the preparation of frozen tissue
sections (10 um). For immunohistochemistry, sections were blocked in
10% serum prior to incubation with specific antibodies, followed by
biotin-conjugated secondary antibodies (Table S3). For mouse primary
antibodies, the Mouse on Mouse (M.O.M™) Kit (Vector Laboratories
BMK-2202) and the Streptavidin/Biotin Blocking Kit (Vector
Laboratories SP-2002), were used according to the manufacturer's
instructions. Signal was amplified using Vectorstain Elite ABC HRP Kit
(Vector Laboratories PK-6100) for 30 min, followed by 3, 3’-diamino-
benzidine (DAKO K3468). Sections were counterstained with
Haematoxylin.

For immunofluorescence staining, sections were blocked in 10%
serum, incubated with appropriate antibodies overnight at 4 °C fol-
lowed by fluorophore-conjugated antibodies (Table S3). Slides were
imaged on the Zeiss AxioObserver microscope using Zen software

(Zeiss). Quantification of Sox9 and pro-SPC staining was automated
through custom-written ImageJ Macros (using the FIJI distribution
package) (Schindelin et al., 2012). Segmentation was performed using
the color deconvolution plug-in, filtering and defined thresholds on
each of the stains.

For wholemount alcian blue staining, dissected postnatal day 0
(PNDO) tracheas were fixed in 95% ethanol for 12h followed by
overnight staining with 0.03% alcian blue dissolved in 80% ethanol
and 20% acetic acid.

3.3. Flow cytometry

Individual lungs (E16.5 or E18.5) were digested in 2 mg/mL
Collagenase I (Worthington LS004197) in 0.2 g/L. DPBS/glucose for
30 min at 37 °C and red blood cells were lysed in 0.8% NH4CI (Sigma
A4514) for 3 min at RT. Samples were blocked in FcR blocking reagent
(Milteny Biotech 130-092-575) in 0.1 mg/mL Rat IgG for 10 min at
4 °C. Primary antibodies (Table S3) were incubated for 30 min at 4 °C,
as previously described (Galvis et al., 2015). Flow cytometry was
performed using an ARIA sorter (Beckton Dickinson) and analyzed
using FlowlJo software (FlowJo LLC).
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3.4. In vitro colony assay

Freshly sorted CD45CD31'EpCAM™ epithelial cells were resus-
pended in DMEM/F-12 + Glutamax, supplemented with B27
Supplement (Gibco 17504044), insulin-transferrin-sodium selenite
(ITS) Supplement (Gibco 41400045), Heparin, 20 ng/mL fibroblast
growth factor (FGF) and 10 ng/mL epidermal growth factor (EGF).
Cells at a density of 7500 cells/200 pl were seeded on top of a cushion
of 50% growth factor reduced Matrigel (BD Biosciences) in DMEM/F-
12 + Glutamax. Cells were cultured in a low oxygen incubator for 14
days, with media changes every other day. Seven independent litters
were used in experiments with each experiment containing at least one
Grhi2*’* and one Grhl2%/~ embryo. Colonies were imaged and scored
using ImageJ software (Schindelin et al., 2012).

3.5. Ex vivo lung culture

E11.5 lungs were isolated and cultured in an air-liquid interface on
an 8um membrane placed on 1mL of DMEM/F-12 + Glutamax,
supplemented with 100 U/mL penicillin and 100 pg/mL streptomycin.

3.6. RNA isolation and quantitative RT-PCR

RNA was isolated from embryonic lung tissue using TRIzol™
(Thermo Scientific 15596026) or the miRNeasy Mini Kit (Qiagen
74106) according to the manufacturer's specifications. DNase treat-
ment was performed using TURBO™ DNA-free Kit (Ambion AM1907).
c¢DNA was synthesized using the Superscript III kit (Thermo Scientific
18080051). Quantitative RT-PCR was performed using the SensiMix™
SYBR® Hi-ROX kit (Bioline QT605-05) on the Viia7 Real-Time PCR
System (Thermo Scientific) with primers (Table S2). Relative mRNA
was calculated compared to Gapdh internal control using the delta-
delta-cT statistical method.

3.7. RNA-seq and genome-wide motif analysis

Reads were aligned to the Mus musculus genome (mm10) using the
Rsubread package (Liao et al., 2013) and assigned to genes by the
featureCounts function (Liao et al., 2014) using the in-built RefSeq
annotation. Filtering and normalization used the edgeR package
(Robinson et al., 2010). Genes with low expression (defined as having
a count per million (CPM) of less than 0.5 in fewer than 3 samples)
were removed from further analysis. Compositional differences be-
tween libraries were normalized using the trimmed mean of M-values
(TMM) method (Robinson and Oshlack, 2010). Subsequent differential
expression analysis was performed using the limma package (Ritchie
et al., 2015). Counts were transformed to log2-CPM values (with an
offset of 0.5) with associated observational and sample-specific weights
obtained from the voomWithQualityWeights method (Liu et al., 2015)
assuming a linear model with effects for genotype, sex and a blocking
effect for littermates. Contrasts between the different groups; Grhi2*/-
(epithelial; EpCAM™) versus Grhl2*/* (epithelial; EpCAM*), were
estimated and differential expression was assessed using moderated
t-statistics. Genes were ranked according to their false discovery rate
(FDR), and those with FDR < 0.05 were considered differentially
expressed. Gene ontology analysis used the goana function, which
includes a correction for gene length bias as per goseq (Young et al.,
2010) and KEGG analysis used the kegga function, both from limma.
Gene set testing using the roast method (Wu et al., 2010) was applied
on the Metzger et al. (Metzger et al., 2008) alveolar type II gene
expression signatures. The data is available from GEO (Accession
Number GSE105781).

The Mus musculus (mm10) genome was scanned for Grhl2 motifs
obtained from Jolma et al. (Jolma et al., 2013) using FIMO (Grant
et al., 2011) and assigned to genes using the ChIPpeakAnno package
(Zhu et al., 2010) when they occurred within a 5kB window upstream

Developmental Biology 443 (2018) 1-9

of the promoter or inside the gene body (setting upstream & inside in
annotatePeakInBatch).

3.8. ChIP and Western blot analyses

ChIP was performed on E16.5 C57BL/6 lung cells as previously
described (Merino et al., 2015; Voss et al., 2012), with anti-GRHL2
(Sigma HPA004820) and rabbit anti-IgG (Cell Signalling 3900 S).
Freshly isolated CD31°CD45 EpCAM™ cells were used as a negative
control. Shearing was performed to generate fragments approximately
500 bp in size. PCR primers used are listed in Table S2.

Protein lysates from mouse lung tissue were prepared in KALB lysis
buffer (150 mM NaCL; 1 mM EDTA; 50 mM Tris. HCI, pH 7.5; 10 mM
NaF; 1mM NazVO, 1mM PMSF; 1% Triton X-100) containing
cOmplete Protease Inhibitor Cocktail (Roche 11697498001) as pre-
viously described (Barker et al., 2008).

3.9. Statistics

Statistical analysis was performed using GraphPad Prism software
(GraphPad Software). Pairwise comparisons were performed using an
unpaired Student t-test and multivariate comparisons were performed
using one-way ANOVA (Kruskal-Wallis test) with Tukey's multiple
comparisons test or two-way ANOVA with Dunn's multiple compar-
isons test for grouped analyses. For qRT-PCR studies, Gaussian
distribution was applied.
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