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Abstract. In this short paper we prove a parametric version of the Harnack inequality for
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of previous bounds for this kind of operators.
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1. INTRODUCTION

Consider the following φ-Laplacian equation

−div
(
φ(|∇u|) ∇u|∇u|

)
= B(·, u) in Ω (1.1)

on the Orlicz-Sobolev space W 1LΦ(Ω), where Ω ⊆ RN is a bounded domain which
has the segment property [5]. (Complete treatments and characterizations of the
Orlicz-Sobolev spaces W 1LΦ(Ω) and W 1

0LΦ(Ω) can be found in [1,8, 10]). The term
φ : R → R is an odd and increasing homeomorphism. However, in striking contrast
with the classic case treated by Lieberman [11], φ is not required to be differentiable.
It is rather assumed that

1 < pΦ ≤
t φ(t)
Φ(t) ≤ qΦ < +∞, t 6= 0 (1.2)

for some numbers pΦ and qΦ, where Φ is the N -function

Φ(t) =
t∫

0

φ(s)ds. (1.3)
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Note that integration of eq. (1.2) yields Φ(κt) ≤ κqΦΦ(t) for κ > 1 and t > 0 and this
implies the useful inequality

φ(κt) ≤ qΦκ
qΦ−1φ(t) for all t ≥ 0 and κ > 1. (1.4)

The right-hand side B : Ω ×W 1LΦ(Ω) → R of (1.1) is a Carathéodory function
such that

|B(x, u)| ≤ aφ(|u(x)|) + b a.e. x in Ω, (1.5)
where a, b are two nonnegative numbers. Let BR ⊂⊂ Ω be a ball of radius 0 < R ≤ 1
and let BR/2 be the concentric ball of radius R/2. It was proved in [2] that if u is
a locally bounded and nonnegative solution of (1.1) then

sup
BR/2

u ≤ N
(

inf
BR/2

u+ LR

)
,

where N = N (a, pΦ, qΦ, N) is a positive constant and L > 0 is any constant such that
b ≤ φ(L). In this short note we present a parametric version of the estimates obtained
in [2]. In this sense, the bounds obtained here are optimal. These improved bounds
allow for a more general interpretation of the behavior of solutions of φ-Laplacians
and permit us to treat the problem on the regularity of the solutions [3]. Even though
we do not address these properties here, it is of particular interest the special case
of the p-Laplacian operator for which φ(s) = |s|p−2s and p > 1. The particular case
of variable exponents p(x), where p : Ω→ (1,+∞) is a bounded function, is treated in
[14–16]. Special types of nonlinearities in connection with the p-Laplace operator have
been considered recently in the article [9]. In a rather different context, the article
[12] provides a geometric approach to the study of the p-Laplacian on a ball in RN
using techniques from dynamical systems. The author studies the invariant manifolds
at the union of the solutions in the phase space and addresses the variational aspects
of the corresponding tangent vector fields.

2. IMPROVED ESTIMATES

In this article, a solution of (1.1) will be any function u ∈W 1LΦ(Ω) which satisfies
estimates (1.5) and fulfills the identity

∫

Ω

φ(|∇u|) ∇u|∇u| · ∇θdx =
∫

Ω

B(x, u) θdx for all θ ∈W 1
0LΦ(Ω). (2.1)

(Hölder’s inequality guarantees that the integrals above are finite [3]).
Let Bs ⊆ BR be two concentric balls of radii 0 < s < R ≤ 1 centered at a given

point x0 ∈ RN . A smooth function η : RN → [0, 1] satisfying simultaneously

η|Bs ≡ 1, η|(RN\BR) ≡ 0, |∇η| ≤ 2
R− s

is called an s-cut-off function on BR. Such functions do exist [7].
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Lemma 2.1 ([2, Lemma 3.3]). Let BR ⊂⊂ Ω be any ball of radius 0 < R ≤ 1 and
let η be an R/2-cut-off function on BR. Choose v ≥ 0 such that vα ∈ L∞(BR), where
α = ±1. Set w = R−1ηαv. Then qΦ

−1 supBR wα supBR(φ(w))α ≤ supBR(Φ(w))α.
Proposition 2.2. Let BR ⊂⊂ Ω be any ball of radius 0 < R ≤ 1. Choose a σR-cut-off
function η on BR, where σ ∈ (0, 1). Suppose that v is a nonnegative function such
that vα ∈ L∞(BR), where α = ±1. Set w = R−1ηαv and assume that



∫

BR

η−β (Φ(w))αqQdx




1/Q

≤ C q

R(1− σ)qΦ

∫

BR

η−β (Φ(w))αqdx, (2.2)

where the numbers q ≥ β > 0, Q = N/(N − 1) and the constant C depends neither
on the ball BR nor on the number q. Then for p > 0 there exists a positive constant
C = C(β, p, qΦ, C,N) such that

sup
BσR

vα ≤ C
(1− σ)NqΦ/p


 −
∫

BR

vαpdx




1/p

,

where BσR is the ball of radius σR concentric with BR.
Proof. Assume first that β ≤ p. The particular choice q = pQν in (2.2), where ν is
a nonnegative integer, produces



∫

BR

η−β(Φ(w))αpQ
ν+1

dx




1/pQν+1

≤ (CpQν)1/pQν

R1/pQν (1− σ)qΦ/pQν



∫

BR

η−β(Φ(w))αpQ
ν

dx




1/pQν

.

For m ≥ 1, consider ν large enough such that pQν+1 > m. Since (Φ(w))α ∈ L∞(BR),
a Moser iteration [13] of this inequality with respect to ν and the imbedding theorem
yield

‖(Φ(w))α‖Lm(BR) ≤
(

Cp

R(1− σ)qΦ

)N/p
QN(N−1)/p



∫

BR

η−β(Φ(w))αpdx




1/p

,

where Q = N/(N − 1). This estimate is valid for the norm L∞(Ω) [1, Theorem 2.14].
Since (Φ(w))α ≤ qΦw

α(φ(w))α and wα = R−αηα
2
vα, Lemma 2.1 implies

sup
BσR

vα ≤ q2
Φ

(
Cp

(1− σ)qΦ

)N/p
QN(N−1)/pω

1/p
N


 −
∫

BR

vαpdx




1/p

, (2.3)
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where ωN denotes the volume of the unit ball in RN . This concludes the proof in
the case p ≥ β, with C = D1(p) := q2

Φ(Cp)N/pQN(N−1)/pω
1/p
N . Note that if we write

s = σR then the previous estimate, applied with p = β, reads

sup
Bs

vα ≤ D1(β)
(1− s/R)NqΦ/β


 −
∫

BR

vαβdx




1/β

. (2.4)

Now, suppose that 0 < p < β. Since vαβ = vα(β−p)vαp, estimate (2.4) produces

sup
Bs

vα ≤ D1(β)
(1− s/R)NqΦ/β

(
sup
BR

vα
)1−p/β


 −
∫

BR

vαpdx




1/β

.

Since cd ≤ (β−p)
β c

β
(β−p) + p

β d
β
p for c, d ≥ 0, the inequality below follows:

sup
Bs

vα ≤ (β − p)
β

sup
BR

vα + p

β

D1
β/p

(R− s)NqΦ/p
(
RNqΦ −

∫

BR

vαpdx

)1/p
.

An application of [6, Lemma 3.1] on the interval [0, R] yields the conclusion.

Let L be any real nonnegative constant such that b ≤ φ(L). Choose 0 < R ≤ 1
and write v = u+RL where u is a nonnegative solution of (1.1). Then

aφ(u) + b ≤ aφ(u) + φ(L) ≤ aφ(u+RL) + φ

(
RL

R

)
≤ aφ

(
Rv

R

)
+ φ

( v
R

)
.

By (1.5), the right-hand side of the equation (1.1) is hence bounded as follows:

|B(·, u)| ≤M φ
( v
R

)
(2.5)

with the constant M = a + 1.

Proposition 2.3 ([2, Proposition 2.1]). Let u ∈ W 1LΦ(Ω). If supp(u) is compact
contained in Ω then u ∈W 1

0LΦ(Ω).

Proposition 2.4. Let BR ⊂⊂ Ω be any ball of radius 0 < R ≤ 1. Choose a σR-cut-off
function η on BR where σ ∈ (0, 1). Suppose that u is a locally bounded and nonnegative
solution of eq. (1.1). Choose any L ≥ 0 such that b ≤ φ(L). Then for any d > 0 and
q ≥ 2 + d,

∫

Ω

η−d(Φ(w))q−1φ(|∇u|)|∇u|dx ≤ C1
(1− σ)qΦ

∫

Ω

η−d−2qΦ (Φ(w))qdx (2.6)

where w = η(u+RL)/R and C1 = C1(a, qΦ) is a positive constant.
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Proof. Define v = u + RL. The following standard argument will be repeatedly
employed. Since supp(η) is compact in Ω the function w = η v/R ∈ L∞(RN ) and thus
there exists a constant A > 0 such that |w(x)| ≤ A for all x ∈ RN . Define for all t ≥ 0
the function f1(t) = t−d (Φ(t))q−1 if t ∈ (0,A + 1) and write f1(t) = 0 if t 6∈ (0,A + 1).
Note that t 7→ t−d (Φ(t))q−1 is of class C1(0,+∞) and the derivative of this map tends
to zero as t→ 0+. Hence, f ′1 is uniformly bounded on [0,+∞). If F1 denotes the odd
extension of f1 to the entire real line then F1 ∈ C1(R) and F ′1 ∈ L∞(R). Next, define
the term θ = R−dvd+1F1(w) = η−d(Φ(w))q−1v. The product formula [7, eq. (7.18)]
and [7, Theorem 7.8] yield

∇θ = (d+ 1)
Rd

vdF1(w)∇u+ vd+1

Rd+1F
′
1(w)v∇η + vd+1

Rd+1F
′
1(w)η∇u ∈ LΦ(Ω).

Since supp(θ) ⊆ BR ⊆ Ω, Proposition 2.3 implies θ ∈W 1
0LΦ(Ω) and eq. (2.1) becomes

∫

Ω

η−d
[
(q − 1)(Φ(w))q−2φ(w)w + (Φ(w))q−1]φ(|∇u|)|∇u|

=
∫

Ω

B(x, u)η−d(Φ(w))q−1v

−(q − 1)R
∫

Ω

η−d−2(Φ(w))q−2φ(w)w2φ(|∇u|) ∇u|∇u|∇η

+dR
∫

Ω

η−d−2(Φ(w))q−1wφ(|∇u|) ∇u|∇u|∇η.

The term φ(w)w in the argument of the integral on the left-hand side of the equality is
bounded from below by Φ(w). The absolute value of the integrals on the right is taken.
Then the bound φ(w)w ≤ qΦΦ(w) is applied to the argument of the second integral
on the right. Since q ≥ max{1, d}, bounds |∇η| ≤ 2/R(1− σ) and (2.5) produce

q

∫

Ω

η−d(Φ(w))q−1φ(|∇u|)|∇u|dx ≤Mq

∫

Ω

η−d(Φ(w))q−1φ
( v
R

)
vdx

+ 4qqΦ

∫

Ω

η−d(Φ(w))q−1 w

η2
φ(|∇u|)
(1− σ) dx+ 2q

∫

Ω

η−d(Φ(w))q−1 w

η2
φ(|∇u|)
(1− σ) dx

= Mq

∫

Ω

η−d(Φ(w))q−1φ
( v
R

)
vdx+ µq

∫

Ω

η−d(Φ(w))q−1 w

η2
φ(|∇u|)
(1− σ) dx

(2.7)

where µ = 2(2qΦ + 1). Division by q is performed on both sides of the inequality.
The second integral on the right is multiplied and divided by a sufficiently small
quantity ε > 0 so as to form the term w/εη2 in the argument. Young’s inequality
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tφ(s) ≤ tφ(t) + sφ(s), with t = w/εη2(1− σ) and s = |∇u|, is applied to this integral.
From eq. (2.7) we obtain

(1− εµ)
∫

Ω

η−d(Φ(w))q−1φ(|∇u|)|∇u|dx

≤M
∫

Ω

η−d(Φ(w))q−1φ
( v
R

)
vdx+ µ

∫

Ω

η−d(Φ(w))q−1 w

η2(1− σ)φ
(

w

εη2(1− σ)

)
dx.

Eq. (1.4) yields the following two estimates:

φ(v/R)v = φ(w/η)Rw/η ≤ qΦη
−qΦφ(w)w

and
φ
(
w/εη2(1− σ)

)
≤ qΦφ(w)/

(
εη2(1− σ)

)qΦ−1
.

Hence

(1− εµ)
∫

Ω

η−d(Φ(w))q−1φ(|∇u|)|∇u|dx

≤MqΦ

∫

Ω

η−d−qΦ(Φ(w))q−1φ(w)wdx

+ µqΦ
εqΦ−1(1− σ)qΦ

∫

Ω

η−d−2qΦ(Φ(w))q−1φ(w)wdx.

For ε suitably chosen (e.g. ε = 1/2µ) and since φ(w)w ≤ qΦΦ(w) and η−qΦ ≤ η−2qΦ ,
the conclusion follows.

Corollary 2.5. Let u be a locally bounded and nonnegative solution of equation (1.1)
and let BR ⊂⊂ Ω be a ball of radius 0 < R ≤ 1. Then for any p > 0,

sup
BσR

u ≤ 21+1/p C
(1− σ)NqΦ/p

((
−
∫

BR

updx

)1/p

+RL

)

where C = C(a, p, qΦ, N) is the constant in Proposition 2.2 and σ ∈ (0, 1). The term L
is any real nonnegative constant such that b ≤ φ(L) and BσR is the ball of radius σR
concentric with BR.

Proof. Let η be an σR-cut-off function on BR. As in the proof of Proposition 2.4, if
we set v = u+RL then w = η v/R = η (u+RL)/R ∈ L∞(RN ) and thus |w(x)| ≤ A
for x ∈ RN and where A is the same constant in the proof of Proposition 2.4. Take
d > 0, q ≥ 2 + d (to be fixed later) and define f2(t) = Φ(t)f1(t) for t ≥ 0 and where f1
is the function defined in the proof of Proposition 2.4. It is evident that f ′2 is bounded
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on [0,+∞). It follows that F2 ∈ C1(R) and F ′2 ∈ L∞(R) where F2 is the odd extension
of f2 to the entire real line. Define θ = F2(w)vd/Rd = η−d(Φ(w))q. Theorem 7.8 in [7]
yields

∇θ = −dη−d−1(Φ(w))q∇η + η−d−1q(Φ(w))q−1φ(w)w∇η
+ q

R
η−d+1(Φ(w))q−1φ(w)∇u.

Note that φ(w)w ≤ qΦΦ(w), q ≥ d and |∇η| ≤ 2/R(1−σ). Then Gagliardo–Nirenberg
inequality [4, Theorem IX], applied to θ and Q = N/(N − 1), yields CN > 0 such that



∫

Ω

|η−d(Φ(w))q|Q



1/Q

≤CN


2q(1 + qΦ)
R(1− σ)

∫

Ω

η−d−1(Φ(w))q + q

R

∫

Ω

η−d+1(Φ(w))q−1φ(w)|∇u|


 .

Since η ≤ 1 the first integral on the right-hand side of the inequality above is bounded by∫
Ω η
−d−2qΦ(Φ(w))qdx. The argument of the second integral on the right is bounded as

follows. Estimate tφ(s) ≤ tφ(t) + sφ(s) is again used (with t = |∇u| and s = w) and
hence

η−d+1(Φ(w))q−1φ(w)|∇u| ≤ η−d(Φ(w))q−1φ(w)w + η−d(Φ(w))q−1φ(|∇u|)|∇u|
≤ qΦη

−d−2qΦ(Φ(w))q + η−d(Φ(w))q−1φ(|∇u|)|∇u|.

Since 1− σ < 1, eq. (2.6) and the choice −dQ = −d− 2qΦ (i.e. d = 2(N − 1)qΦ) yield



∫

BR

η−2NqΦ(Φ(w))qQdx




1/Q

≤ C2q

R(1− σ)qΦ

∫

BR

η−2NqΦ(Φ(w))qdx

where C2 = C2(a, qΦ, N) = CN (5qΦ + C1). Proposition 2.2 with C = C2, β = 2NqΦ,
p > 0 and α = 1 gives

sup
BσR

u ≤ sup
BσR

v ≤ C
(1− σ)NqΦ/p


 −
∫

BR

vpdx




1/p

for the same constant C in that proposition (and which, in this case, clearly depends
on a, p, qφ and N). Note that x 7→ xr is convex in (0,+∞) for r ≥ 1 whereas
x 7→ 1+xr− (1+x)r is increasing in (0,+∞) if 0 < r < 1. Hence (c+d)r ≤ 2r(cr +dr)
for c, d, r > 0 and this implies the bound claimed. The corollary is proved.
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Proposition 2.6. Let BR ⊂⊂ Ω be any ball of radius 0 < R ≤ 1. Choose a σR-cut-off
function η on BR where σ ∈ (0, 1). Suppose that u is a locally bounded and nonnegative
solution of eq. (1.1). Choose any L ≥ 0 such that b ≤ φ(L) and let χ > 0 be arbitrary.
Then for any q ≥ d ≥ 1,

∫

Ω

η−d(Φ(w))−q−1φ(|∇u|)|∇u|dx ≤ C3
(1− σ)qΦ

∫

Ω

η−d(Φ(w))−qdx (2.8)

where w = (u+RL+ χ)/Rη and C3 = C3(a, qΦ) is a positive constant.

Proof. Define v = u+RL and z = Rη/ψ, where ψ = v + χ = u+RL+ χ. Since u is
nonnegative, z ∈ L∞(RN ) and there exists B > 0 such that |z(x)| ≤ B for all x ∈ RN .
Consider for all t ≥ 0 the function f3(t) = t−d (Φ(t−1))−(q+1) if t ∈ (0,B + 1) and
f3(t) = 0 if t 6∈ (0,B + 1). In this case, the map t 7→ t−d (Φ(t−1))−(q+1) is of class
C1(0,∞) and its derivative tends to zero as t → 0+. It follows that f ′3 is uniformly
bounded on [0,+∞). If F3 is the odd extension of f3 to the entire real line then
F3 ∈ C1(R) and F ′3 ∈ L∞(R). Note that w = z−1. Define

θ = RdF3(z)ψ1−d = Rη1−d(Φ(w))−q−1w.

In this case,

∇θ = Rd+1F ′3(z)ψ−d∇η −Rd+1 η F ′3(z)ψ−(d+1)∇u
+ (1− d)RdF3(z)ψ−d∇u ∈ LΦ(Ω).

Since supp(θ) ⊆ BR ⊆ Ω, Proposition 2.3 ensures that the function θ ∈ W 1
0LΦ(Ω).

The weak formulation (2.1) in this case is equivalent to
∫

Ω

η−d[(q + 1)(Φ(w))−q−2φ(w)w − (Φ(w))−q−1]φ(|∇u|)|∇u|dx

= R(q+1)
∫

Ω

η−d(Φ(w))−q−2φ(w)w2φ(|∇u|) ∇u|∇u|∇ηdx

−Rd
∫

Ω

η−d(Φ(w))−q−1wφ(|∇u|) ∇u|∇u|∇ηdx

−R
∫

Ω

B(x, u)η1−d(Φ(w))−q−1wdx.

The estimate Φ(w) ≤ φ(w)w is applied to the argument of the integral on the left-hand
side of the equality. After taking absolute values on the right-hand side, the bound
φ(w)w ≤ qΦΦ(w) is applied to the argument of the first integral on the right-hand side.
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Write µ = 2(2qΦ + 1). Since q ≥ d ≥ 1 and |∇η| ≤ 2/R(1− σ) the above equivalence
yields

q

∫

Ω

η−d(Φ(w))−q−1φ(|∇u|)|∇u|dx

≤ qµ
∫

Ω

η−d(Φ(w))−q−1 w

(1− σ)φ(|∇u|)dx+Mq

∫

Ω

φ
( v
R

)
η1−d(Φ(w))−q−1wdx.

The term w in the argument of the first integral on the right is divided and multiplied
ε > 0 small. Equation (1.4) implies

φ(w/ε(1− σ)) ≤ qΦ
(
ε(1− σ)

)−qΦ+1
φ(w).

Since φ(v/R) ≤ φ(ηw) ≤ φ(w) and η1−d ≤ η−d, the bound tφ(s) ≤ tφ(t) + sφ(s) with
t = w/ε(1− σ) and s = |∇u| yields

(1− εµ)
∫

Ω

η−d(Φ(w))−q−1φ(|∇u|)|∇u|

≤ q2
Φµ

εqΦ−1(1− σ)qΦ

∫

Ω

η−d(Φ(w))−q +MqΦ

∫

Ω

η−d(Φ(w))−q.

If ε is suitably chosen then the conclusion follows.

Corollary 2.7 (Weak Harnack inequality). Let u be a locally bounded and nonnegative
solution of equation (1.1). Let BR ⊂⊂ Ω be a ball of radius 0 < R ≤ 1 and σ ∈ (0, 1).
Then there exist positive constants p0 = p0(a, pΦ, qΦ, N) and C = C(a, pΦ, qΦ, N) such
that 

 −
∫

BR

up0dx




1/p0

≤ C
(1− σ)NqΦ/p0

(
inf
BσR

u+RL

)

where L is any real nonnegative constant such that b ≤ φ(L) and BσR is the ball of
radius σR concentric with BR.

Proof. Let η be an σR-cut-off function on BR and take χ > 0, arbitrary. As in the
proof of Proposition 2.6, z := Rη/(u + RL + χ) ∈ L∞(RN ) and thus |z(x)| ≤ B
for x ∈ RN and for the same constant. Take q ≥ d ≥ 1 (to be fixed later) and
for all t ≥ 0 define f4(t) = tRd−1Φ(t−1)f3(t) which is differentiable with bounded
derivative. It is clear that if F4 is the odd extension of f4 to the entire real line then
F4 ∈ C1(R) and F ′4 ∈ L∞(R). Write w = z−1. Then [7, Theorem 7.8] applied to
F4(z)ψ1−d = η1−d(Φ(w))−q yields

∇(η1−d(Φ(w))−q)

=
[
(1− d)η−d(Φ(w))−q + qη−d(Φ(w))−q−1φ(w)w

]
∇η − q

R
η−d(Φ(w))−q−1φ(w)∇u.
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Since q ≥ d ≥ 1, the bound φ(t)t ≤ qΦΦ(t) and the Gagliardo–Nirenberg inequality
yield



∫

Ω

|η1−d(Φ(w))−q|Q



1/Q

≤ 2qCN (qΦ + 2)
R(1− σ)

∫

Ω

η−d(Φ(w))−q + CNq
R

∫

Ω

η−d(Φ(w))−q−1φ(w)|∇u|

where Q = N/(N − 1). It follows from eq. (2.8) (with d = N) and Young’s inequality
that 


∫

BR

η−N (Φ(w))−qQdx




1/Q

≤ C4 q

R(1− σ)qΦ

∫

BR

η−N (Φ(w))−qdx

where C4 = C4(a, qΦ, N). Proposition 2.2 with β = N, v = ψ and α = −1 yields

 −
∫

BR

ψ−pdx



−1

≤ Cp
(1− σ)NqΦ

(
inf
BR/2

ψ−1
)p

(2.9)

where p > 0 and C = C(a, p, qΦ, N). Let ξ be a ρ-cut-off function on BR where
0 < ρ ≤ R/2. Consider the function θ = ξqΦ(Φ(w))−1ψ, where w = ψ/ρ. It is easy to
prove that

∇θ = −1
ρ

(Φ(w))−2φ(w)ξqΦψ∇v+ qΦ(Φ(w))−1ξqΦ−1ψ∇ξ+ (Φ(w))−1ξqΦ∇v ∈ LΦ(Ω)

with ∇v = ∇u. Since θ ∈ W 1
0LΦ(Ω), the bound |∇ξ| ≤ 4/(R − ρ) ≤ 4/ρ along with

eq. (2.1) and the obvious bound

(Φ(t))−2φ(t)t− (Φ(t))−1 ≥ (Φ(t))−1(pΦ − 1) > 0

yield

(pΦ − 1)
∫

Ω

ξqΦ(Φ(w))−1φ(|∇u|)|∇u|

≤ 4εqΦ

∫

Ω

ξqΦ(Φ(w))−1 w
εξ
φ(|∇u|) +M

∫

Ω

ξqΦ(Φ(w))−1φ
( v
R

)ρψ
ρ
,

where ε > 0 is sufficiently small. By Young’s inequality (with t = w/εξ and s = |∇u|),

(pΦ − 1− 4εqΦ)
∫

Ω

ξqΦ(Φ(w))−1φ(|∇u|)|∇u|

≤ 4qΦ

∫

Ω

ξqΦ−1(Φ(w))−1wφ
(

w
εξ

)
+Mρ

∫

Ω

ξqΦ(Φ(w))−1φ
( v
R

)
w.
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By (1.4), φ(w/εξ) ≤ qΦφ(w)/(εξ)qΦ−1 and since φ(v/R) ≤ φ(ψ/R) ≤ φ(ψ/ρ) = φ(w),

(pΦ − 1− 4εqΦ)
∫

Ω

ξqΦ(Φ(w))−1φ(|∇u|)|∇u|dx ≤
(

4q3
Φ

εqΦ−1 +MqΦ

)∫

Bρ

1dx.

If ε is chosen sufficiently small such that ε < (pΦ − 1)/4qΦ then
∫

Bρ

ξqΦ
φ(|∇u|)|∇u|

Φ(w) dx ≤ C5 vol(Bρ),

where vol(Bρ) is the Lebesgue measure of Bρ and C5 = C5(a, pΦ, qΦ) > 0. Since
|∇ψ|φ(w) ≤ |∇u|φ(|∇u|) + φ(w)w and as Φ(w) ≤ φ(w)w the following bound holds

∫

Bρ/2

|∇ψ|
ψ

dx ≤ 1
ρ



∫

Bρ/2

|∇u|φ(|∇u|)
Φ(w) dx+

∫

Bρ/2

1dx


 ≤ 2N−1ωN

(
C5 + 1

2N

)(ρ
2

)N−1
,

where ωN is the Lebesgue measure of the unit ball in RN . The result [7, Theorem
7.21], with z = log(ψ) and Ω′ = BR, implies the existence of a positive constant DN

such that 

∫

BR

ep0 zdx





∫

BR

e−p0 zdx


 ≤ D2

N (2R)2N ,

where p0 = p0(a, pΦ, qΦ, N) = 2σ0/(22NC5 + 2N ) and σ0 = σ0(N) is the constant
produced by [7, Theorem 7.21]. Along with estimate (2.9) (with p = p0) the latter
yields

−
∫

BR

ψp0dx ≤ Cp0

(1− σ)NqΦ

(
DN 2N
ωN

)2(
inf
BR/2

u+RL+ χ

)p0

.

The conclusion follows after passing to the limit χ→ 0. The proof is complete.

A combination of Corollary 2.5 and Corollary 2.7 produces the following improved
version of the Harnack inequality.
Corollary 2.8 (Harnack inequality in arbitrary balls). Let u be a locally bounded and
nonnegative solution of equation (1.1). Let BR ⊂⊂ Ω be a ball of radius 0 < R ≤ 1
and σ ∈ (0, 1). Then there exist positive constants p0 andM, which depend only on
a, pΦ, qΦ and N, such that

sup
BσR

u ≤ M
(1− σ)2NqΦ/p0

(
inf
BσR

u+ LR

)
,

where L is any real nonnegative constant such that b ≤ φ(L) and BσR is the ball of
radius σR concentric with BR.
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