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CONGRUENCES FOR WOLSTENHOLME PRIMES
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Abstract. A prime p is said to be a Wolstenholme prime if it satisfies the congruence
(2;’:11) =1 (mod p?). For such a prime p, we establish an expression for (2;’:11) (mod p®)
p—1 .
given in terms of the sums R; := > 1/k* (i = 1,2,3,4,5,6). Further, the expression in
k=1
this congruence is reduced in terms of the sums R; (i = 1,3,4,5). Using this congruence,
we prove that for any Wolstenholme prime p we have

2 -1 (g} i
p—1\ _ 2 7
(pl)—1—2pk§_1g—2p kg_lk—Q(modp).

Moreover, using a recent result of the author, we prove that a prime p satisfying the above
congruence must necessarily be a Wolstenholme prime.

Furthermore, applying a technique of Helou and Terjanian, the above congruence is given
as an expression involving the Bernoulli numbers.

Keywords: congruence; prime power; Wolstenholme prime; Wolstenholme’s theorem;
Bernoulli number
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1. INTRODUCTION AND STATEMENTS OF RESULTS

Wolstenholme’s theorem (see, e.g., [23], [7]) asserts that if p is a prime greater

than 3, then the binomial coefficient (2;’__11

<2p N 1) =1 (mod p?).

p—1

) satisfies the congruence

It is well known (see, e.g., [8]) that this theorem is equivalent to the assertion that

for any prime p > 5 the numerator of the fraction
1 1 1

14+ 4.+ ——
Tyttt oI
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written in reduced form, is divisible by p?. A.Granwille [7] established broader
generalizations of Wolstenholme’s theorem. As an application, it is obtained in [7]
that for a prime p > 5 we have

2 -1\ 7/20\> _ [3\ /(2)° 5
<p— 1 >/<p> N <2>/<1) (mod 7).
Notice that C.Helou and G. Terjanian [9] established many Wolstenholme type con-
gruences modulo p* with a prime p and & € N such that & < 6. One of their
main results ([9], Proposition 2, pages 488-489) is a congruence of the form (:f; ) =
f(n,m,p) (:1) (mod p), where p > 3 is a prime number, m,n € N with 0 < m < n,
and f is a function on m,n and p involving the Bernoulli numbers By. As an ap-
plication, ([9], Corollary 2 (2), page 493; also see Corollary 6 (2), page 495), for any

prime p > 5 we have

2p—1 . 1 6
<p 4 > =1 —p3Bp3_pz_2 + gpSBp,g — gpSBp,g) (mod p®).
A similar congruence modulo p” (Corollary 1.2) is obtained in this paper for Wol-
stenholme primes.

A prime p is said to be a Wolstenholme prime if it satisfies the congruence

(2;__11) = 1 (mod p").

The two known such primes are 16843 and 2124679, and in 2007 R. J. McIntosh and
E.L. Roettger [17] reported that these primes are the only two Wolstenholme primes
less than 10°. However, using an argument based on the prime number theorem,
Mclntosh [16], page 387, conjectured that there are infinitely many Wolstenholme
primes, and that no prime satisfies the congruence (25:11) =1 (mod p°).

Wolstenholme primes form a subset of irregular primes. Indeed, Wolstenholme
primes are those irregular primes p which divide the numerator of B,_3 (see, e.g.,
[16] or [19]). Recall that the irregular primes as well as Wieferich and related primes
are connected with the first case of Fermat’s last theorem; see [21], Lecture I, pages
9-12, and [21], Lecture VIII, pages 151-154, [2], [3], [12], [13], [22].

The following result is basic in our investigations.

Proposition 1.1. Let p be a Wolstenholme prime. Then

p—1 k2 k3 4 Lek
k=1 k=1 k=1 k=1
5 p—1 6 p—1
p 1 p 1 8
TE 2 2 g (med PY)
k=1 k=1
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The above congruence can be simplified as follows.

Proposition 1.2. Let p be a Wolstenholme prime. Then

—1 p—1 3[)1 —1
2p—1 3p~1 p? 1
=1+=y =N = d
( —1) TRl AT Zl& 1 z:: (mod p7)

Reducing the modulus in the previous congruence, we can obtain the following

simpler congruences.
Corollary 1.1. Let p be a Wolstenholme prime. Then

(oo

k=
p

p—1

w3

k=1
3 p—

>—t>~
P?'I'—‘

Eol e

+2 11
3 kP
k

=1+2p (mod p7).

k

I
—

The Bernoulli numbers By, (k € N) are defined by the generating function

It is easy to find the values By =1, By = —1/2, B, =1/6, By = —1/30, and B,, =0
for odd n > 3. Furthermore, (—1)"" !By, > 0 for all n > 1. These and many other
properties can be found, for instance, in [10] or [4].

The second congruence from Corollary 1.1 can be given in terms of the Bernoulli
numbers by the following result.

Corollary 1.2. Let p be a Wolstenholme prime. Then

2p—1 - 3 3
<§_1> 51—p3Bp4_p3_2—§p5Bp p—a+ — 10 p°B,_5 (mod p").

The above congruence can be given by the following expression involving lower

order Bernoulli numbers.

239



Corollary 1.3. Let p be a Wolstenholme prime. Then

2% — 1 8 8 1
( 1 ) =l-p (3Bp—3 —3Byp-a+ ngp—:a - §B4p—6)

8 3
_p4(§B”*3 ~ Pt 25B‘°’” ° B4p76)

72

8 3
-p (273 _ZB2p74+ 12533;; 5 — 27B4p 6+ Bp 5 — BQp76)
2 7
~ 5eP °B, 5 (mod p").

Combining the first congruence in Corollary 1.1 and a recent result of the author
n [18], Theorem 1.1, we obtain a new characterization of Wolstenholme primes as
follows.

Corollary 1.4 ([18], Remark 1.6). A prime p is a Wolstenholme prime if and
only if

2p —1 1 L,
A 2
(p—l) 1—2p§ E—Qp E k;2 (mod p7).

Remark 1.1. A computation shows that no prime p < 10° satisfies the second
congruence in Corollary 1.1, except the Wolstenholme prime 16843. Accordingly,
an interesting question is as follows: Is it true that the second congruence in Corol-
lary 1.1 implies that a prime p is necessarily a Wolstenholme prime? We conjecture
that this is true.

A proof of Proposition 1.1 is given in the next section. Proofs of Proposition 1.2
and Corollaries 1.1-1.3 are presented in Section 3.

2. PrROOF OF PROPOSITION 1.1
For the proof of Proposition 1.1, we will need some auxiliary results.

Lemma 2.1. For any prime p > 7, we have

(2.1) 21)2_:

k=1

p—1

Zki modp
k=1

Eol B

Proof. The above congruence is in fact the congruence (14) in ([25], Proof of
Theorem 3.2). O
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Lemma 2.2. For any prime p > 7, we have
2p — 1 =i
(2.2) (p > —1+2pz (mod p®),
k= 1

and

(2.3) (2;__11> =1-p° Z % (mod p°).

p—1
Proof. Let Ri(p) = > 1/k. Following ([25], Definition 3.1) we define w, < p?
k=1

to be the unique nonnegative integer such that w, = R1(p)/p® (mod p?). Then by
([25], Theorem 3.2), for all nonnegative integers n and r with n > r,

(2.4) (Zg) / <:‘> =1+ wynr(n —r)p® (mod p°).

Since %(21)”) = (2;’__11), taking n = 2 and r = 1, (2.4) becomes

2p —1 .
(;_ 1) =1+ 2w,p® (mod p°),

which is actually (2.2). Now the congruence (2.3) follows immediately from (2.2)
and (2.1) of Lemma 2.1. O

Lemma 2.3. The following statements about a prime p > 7 are equivalent:

(1) p 1s a Wolstenholme prime;

(ii) éll/k'—O(modp)

=

p—

(iii) Z 1/k* =0 (mod p?);

(iv) p d vides the numerator of the Bernoulli number B,,_3.

Proof. The equivalences (1)< (ii)<(iii) are immediate from Lemma 2.2 if we
consider the congruences (2.2) and (2.3) modulo p*. Further, by a special case of
Glaisher’s congruence ([5], page 21, [6], page 323; also see [16], Theorem 2), we have

2 — 1 2
(p 1 ) =1- §p3Bp_3 (mod p*),

which implies the equivalence (i)«<(iv). This concludes the proof. O
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For the proof of Proposition 1.1, we use the congruences (2.2) and (2.3) of
Lemma 2.2 with (mod p?) instead of (mod p®). By a classical result of E.Leh-

p—1
mer [15]; (also see [24], Theorem 2.8), > 1/k = —1B, 3 (mod p*). Substitut-
k=1

ing this into Glaisher’s congruence given above, we obtain immediately (2.2) of
Lemma 2.2, with (mod p*) instead of (mod p°).

Notice that the congruence (2.3) is also given in [16], page 385, but its proof is
there omitted.

For a prime p > 3 and a positive integer n < p — 2 we denote

p—1
1 1
i=1 1< <ia <o <in<p—1 L2 0n

In the sequel we shall often write R,, and H,, instead of R, (p) and H,,(p), respectively.

Lemma 2.4 ([1], Theorem 3; also see [24], Remark 2.3). For any prime p > 3
and a positive integer n < p — 3, we have

R,(p) =0 (mod p?) ifnisodd, and R,(p)=0 (modp) ifn iseven.

Lemma 2.5 (Newton’s formula, see, e.g., [11]). Let m and s be positive integers

such that m < s. Define the symmetric polynomials

— . — m m m
P (s) = Pp(s;z1,22,...,0s) =" + a5 + ...+ 27",
and
Am(s) = Ap (521,22, ..., x5) = E Xy Tiy « -« T, -
1<41 <02 <. <im <S8
Then forn =1,2,...,s, we have

Pr(s) = A1(s)Pa-1(s) + Az(s) Pn—2(s)
o (=D A1 (8)PL(s) + (1) An(s) = 0.

Lemma 2.6 (see [20], Lemma 2.2, the case [ = 1). For any prime p > 5 and
a positive integer n < p — 3, we have

H,(p) =0 (mod p?) ifnisodd and H,(p)=0 (modp) ifn is even.

Lemma 2.6 is an immediate consequence of a result of X.Zhou and T.Cai [26],
Lemma 2; (also see [24], Theorem 2.14).
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Lemma 2.7. For any Wolstenholme prime p, we have

Ro(p) = —2H»(p) (mod p°), Rs(p) = 3H3(p) (mod p°),
Ry(p) = —4H,(p) (mod p4), Rs5(p) = 5H5(p) (mod p4)
and Rg(p) = —6Hg(p) (mod p?).

Proof. By Newton’s formula (see Lemma 2.5), for n = 2,3,4,5,6 we have
(2.5) Ry + (—1)"nH, = HiRp_y — HyRp_o+ ...+ (—=1)"Hp_1 Ry.

First note that by Lemma 2.3, By = H; = 0 (mod p3) and Ry = 0 (mod p?).
Therefore, (2.5) implies Ry + 2Hy = H1R; = 0 (mod p%), so that Ry = —2H,
(mod p%). From this and Lemma 2.3 we conclude that Ho = Ry =0 (mod p?).

Further, by Lemma 2.4 and Lemma 2.6, R3 = H3 = R5 = Hs = 0 (mod p?)
and Ry = Hy = 0 (mod p). Substituting the previous congruences for H; and R;
(1=1,2,3,4,5) into (2.5) with n = 3,4, 5,6, we get

Rs —3H3 = HiRy — HyR; =0 (mod p°),
R,+4Hy = HiR3 — HoRy, + H3R1 =0 (mod p4),
R5 — 5H5 = H1R4 — H2R3 + H3R2 — H4R1 =0 (mod p4),
Rg+ 6Hg = HiRs — HyRy + H3R3 — HyRy + H5Ry = 0 (mod p?).
This completes the proof. ([

Proof of Proposition 1.1. For any prime p > 7, we have

(2p—1) _+De+2) ... (p+k)...(p+ (- 1))
p—1 1-2...k...p—1

:(?—Fl)(%—kl)...(%—kl)...(Ll—kl)

p—1 2 k

p D p
=1+) =+ ) ot ) —
7 111 1172 ...1
i=1 1<i<ia<p—1 172 1<i <iz<...<ip<p—1 172 k

p—1
+...+ (P; —1+Zpka = 1+Zpka+ZPka
p—1
Since by Lemma 2.6, p° ‘ >" p*Hj, for any prime p > 11, the above identity yields
k=T

2p —1 .
(;_ 1 ) =1+ pHy + p*Ha + p*Hs + p*Hy + p°Hs + p°Hg (mod p°).
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Now by Lemma 2.7, for n = 2, 3,4, 5,6, we have
R
H,=(-1)""1=2 (mod p*) forey; =6, e3 =5, e4 =4, e5 =4 and eg = 3.
n

Substituting the above congruences into the previous one, and setting H; = Ry, we

obtain
2p—1 p? P’ ! p° PP 8
=14pR1 ——=Ro+—=R3s——Ry+—Rs ——R d p°).
(p—l) T =5 2+3 377 4+5 57 % 6 (mod p°)
This is the desired congruence from Proposition 1.1. O

3. PROOFS OF PROPOSITION 1.2 AND COROLLARIES 1.1-1.3

In order to prove Proposition 1.2 and Corollaries 1.1-1.3, we need some auxiliary
results.

Lemma 3.1. Let p be a prime, and let m be any even positive integer. Then the
denominator d,, of the Bernoulli number B,,, written in reduced form, is given by

dm = H D,
p—1|m
where the product is taken over all primes p such that p — 1 divides m.

Proof. The assertion is an immediate consequence of the von Staudt-Clausen
theorem (see, e.g., [10], page 233, Theorem 3) which asserts that B, + Y. 1/pis

p—1|m
an integer for all even m, where the summation is over all primes p such that p — 1

divides m. O

Recall that for a prime p and a positive integer n, we denote
p—1 1 p—1
Ru(p) =Rn =) o and P(p) = >k
k=1 k=1

Lemma 3.2 ([9], page 8). Let p be a prime greater than 5, and let n, r be positive
integers. Then

1/ n
(31) Pn(p) = Z ; (S _ 1)}7an+15 (mOd pr)v
s—ordp(s)<r

where ord,(s) is the largest power of p dividing s, and the summation is taken over
all integers 1 < s < n + 1 such that s — ordy(s) < 7.

The following result is well known as the Kummer congruences.

244



Lemma 3.3 ([10], page 239). Suppose that p > 3 is a prime and m, n, r are
positive integers such that m and n are even, r < n—1 < m—1, and m # 0
(mod p —1). If n = m (mod (p")), where p(p") = p"~1(p — 1) is Euler’s totient
function, then

(3.2)

The following congruences are also due to Kummer.

Lemma 3.4 ([14]; also see [9], page 20) Let p > 3 be a prime and let m, r be
positive integers such that m is even, r < m —1 and m 0 (mod p — 1). Then

(3.3) Z(—l)k (7:) % =0 (mod p").

Lemma 3.5. For any prime p > 11, we have

(i) Ri(p) = —3p*Bpi_ps_2 — 0" Bpr—p_a + §0°Bp3 + 550" Bp—5 (mod p°),
(ii) Rs(p) = —3p*Bps_ps_4 (mod p*),

(iii) Ra(p) = pBps_ps_4 (mod p?),

(iv) pRs(p) = —2Rs(p) (mod p*).

Proof. If sis a positive integer such that ord,(s) = e > 1, then for p > 11 we
have s —e > p® — e > 10. This shows that the condition s — ord »(s) < 6 implies that
ord,(s) = 0, and thus, s < 6 must hold for such an s. Therefore, by Lemma 3.2,

6
(3.4) P,( :gé(sﬁl)anH s (mod p®) forn=1,2,.

By Euler’s theorem, for 1 < k < p — 1 and positive integers n, e we have
1/k#P)=n = k™ (mod p°), where ¢
Hence, R (pe)—n(p) = Pn(p) (mod p°).
then by Lemma 3.1, pS | pGB (p—1)—6 for each prime p > 11. Therefore, using the
fact that Bp5(p—1)—1 = Bp5(p—1)—3 = Bp (p—1)=5 = 0, (34) ylelds

p¢) = pe_l(p — 1) is Euler’s totient function.

—

In particular, if n = ¢(p%)—1 = p°(p—1) -1,

1
Ri(p) = Py (p—1)-1(p) = 5(105(1? -1)— 1)p2Bp5(p71)72

LP°(p-1) -1 (p-1)-2)(p°(p—1) - 3)

* 6

P*Bys(p—1)—4 (mod p°),

e~ |
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whence we have

B P

06 _p5— Bp _p5_4 (mod p%).

(3.5) Ri(p) =
By the Kummer congruences (3.2) from Lemma 3.3, we have

B _pﬁ—pS—zB QBp—p— :(1_17_3
o 2

4
pb—p5—2 = m p47p372 p T 2 )Bp47p372 (mod p )

Substituting this into (3.5), we obtain

p2 p5 4
(36) Ry (p) = —?Bp4,p3,2 + ZBp4,p3,2 - ZBp6,p5,4 (mod pﬁ).
Similarly, we have
4 3
pr—p° =2 2

Bp47p372 = pTBp_B = ng_:j (mOd p)
and

6 5

p-—p°—4 4Bp2_py p
Bp67p5,4 = mez,p,LL = ;fi = (1 — 4)szfp74 (mod p2)

Substituting the above two congruences into (3.6), we get

e P pt P
(3.7) Ri(p)=-— 5 Bp _pi_a+ EB[,_3 — ZB 2 p4 —|— 16 B2 _p_4 (mod p%).
Finally, since
2—p—4 4
B = %Bp% = —B,_5 (mod p),

- 5

the substitution of the above congruence into (3.7) immediately gives the congru-
ence (i).

To prove the congruences (ii) and (iii), note that if n —3 # 0 (mod p— 1), then by
Lemma 3.1, p* | p*B,,_3 for odd n > 5, while B,,_3 = 0 for even n > 6. Therefore,
reducing the modulus in (3.4) to p*, for all odd n > 3 with n —3 # 0 (mod p — 1)
and for all even n > 2 we have

2 3
(3.8) Pu(p) = pBy+ onByy + Fon(n = 1)B, s (mod p*).
In particular, for n = p* — p® — 3 we have By _,3_3 = Bpa_,s_5 = 0, and thus (3.8)
yields
2,4 _ 3 2
po(p”—p° -3 3p
R ( ) Pp4fp _ (p) = %szlfpsle = —TBp4,p3,4 (mod p4)
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Similarly, if n = p* — p® — 4, then since p* — p®> — 6 # 0 (mod p — 1), by Lemma 3.1
we have p? | pBBp _ps—¢ for each prime p > 11. Using this and the fact that
Bpi_ps_5 =0, from (3.8) modulo p* we find that

Ry(p) = Ppr_ps_4(p) = pBpa_pz_4 (mod p’).

It remains to show (iv). If n is odd such that n—3 £ 0 (mod p— 1), then by (3.8)
and Lemma 3.1, P,(p) = (n/2)p?B,_1 (mod p*) and P,_1(p) = pB,_1 (mod p?).
Thus, for such an n we have

Po(p) = 5pPa-1 (mod p*).

|3

In particular, for n = p* — p? — 5, from the above we get

4_ .3
pt—p’—5)p
Rolp) = Pyyrsp) = B2 " p )
) )
=3P pPp_ps_6(p) = —EpRG(p) (mod p?).
This implies (iv) and the proof is complete. O

Lemma 3.6. For any prime p and any positive integer r, we have

(3.9) 2R, = — ZpiRHl (mod p" ).
i=1

Proof. Multiplying the identity

) pr—l pr —qr
14+=4...4+= = - -
i il g l(p —4)

by —p/i?, 1 <i < p— 1, we obtain

prfl) B _prJrl —|—er _ D

ir=1)  irti(p—i) ~ i(p—1)

r+1).

—%(1+§+...+ (mod p

7

Therefore,
2 T

1 1 - P D p r+1
(?+p—i):_<¢_2+z’_3+”'+z‘r+l) (mod p™™).

from which we immediately obtain (3.9) after summing over all ¢ from 1 top—1. O
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Proof of Proposition 1.2. 'We begin with the congruence from Proposition 1.1:

2p—1 P2 3 p* p° PO s
1 =14+pR — —=Ry+ —Rs— — Ll » S d »8).
(3.10) (p 1> pRy 2R2 3R3 4R4+ 5R5 6R6 (mod p®)

As by Lemma 2.4 we have p? | Ry, Lemma 3.6 with r = 7 yields
(3.11) 2R, = —pRy — p*R3 — p°Ry — p*Rs — p°Rs (mod p®),

and after multiplying by p/4 it follows that

4
1
—%sz = §R1 + Z(Psz +p’R3 + p°R5 + p°Rg) (mod p?).

Substituting this into the congruence (3.10), we obtain

6

2p — 1 3p 7p* 9p° p 8
=1+ —= — — d .
(p—1> + 2R1 R2+ 12R 20 R5+12R6 (mod p°)

Further, from (iv) of Lemma 3.5 we see that

2
p°Re = —5p535 (mod p®).

The substitution of this into the previous congruence immediately gives

2p —1 7 5
P =1+ Rl__R2+iR3+iR5 (mod p®),
p—1 12

as desired. O

Remark 3.1. Proceeding in the same way as in the previous proof and using
(3.11), we can eliminate Ry to obtain

2p —1 5p° p* 17p°
<p—1>'_ 6 BTy 30 s (mod 7).

Remark 3.2. If we suppose that there exists a prime p such that (2p 1) =1
(mod p°), then by Lemma 2.2, for such a p we must have B; = 0 (mod p*) and
Ry = 0 (mod p?). Starting with these two congruences, in the same manner as in
the proof of Lemma 2.7, it can be deduced that for n = 2,3,4,5,6,7,8,

4 Ra .
H,=(-1)" 17 (mod p°),
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where e; = 8, e3 =7, e4 =6, e5 =5, eg =4, e; =3 and eg = 2. Since as in the
proof of Proposition 1.1 we have

2p—1
(;_ ) ) = 1+pH, +p*Hy+p*Hs + p* Hy + p° Hs + p° He + p” H7 +p® Hg (mod p'°),

then substituting the previous congruences into the right hand side of the above
congruence and setting H; = R;, we obtain

2p—1 p2 p3 p4 p5 pﬁ p7 p8 10
=14pR1——Ro+—=—Rs——R4+—Rs5——Rg+—=R7——Rs (mod p™).
(p—l) ! 2 2 3 3 4 4 5 5 6 6 7 7 8 8 ( )

Since by Lemma 2.4, p? | R7 and p | Rg, from the above we get

3 4 5 6

2p—1 p? p p p p 9
=1 R — —R —R3; — —R —Rs — —R d .
(p—l) Trhi =5 2+3 377 4+5 57 % 6 (mod p”)

Then as in the above proof, using (3.11) and the fact that by (iv) of Lemma 3.5,
pSRe(p) = —(2/5)p° Rs(p) (mod p?), we can find that

2p—1 3p p2 7p3 5p5 9
=1+—Ry ——Ry+—R3+ — d .
<p—1> 2R1 4R2 12R3 12R5 (mod p”)

Proof of Corollary 1.1.  In view of the fact that by Lemma 2.4, p? | Rs, the
congruence from Proposition 1.2 immediately yields

2p —1 3p p? 3 7
3.12 =1+—R; ——R —R d .
(3.12) (p_l) + 5B — R + 15 Ry (mod pf)

Lemma 3.6 with » = 5 and the fact that by Lemma 2.4, p? | R5 and p | Rg imply
2R = —pRy — p*R3 — p* Ry (mod p°).

From (ii) and (iii) of Lemma 3.5 we see that pRy = —2R3 (mod p?), so that p*Ry =

—%pQRg (mod p%). Substituting this into the previous congruence, we obtain

1
2R1 +pRsy = —§p2R3 (mod 106)7
whence we have

(3.13) p>R3 = —6pR; — 3p°Ry (mod p").
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Substituting this into (3.12), we get
2p—1
(;_ ) ) =1-2pR; —2p*Ry (mod p*),
which is actually the first congruence from Corollary 1.1. Finally, from (3.13) we

have g
p?’Ro = —2pRy — §p3R3 (mod 107)7

and substituting this into (3.12) gives
2p—1 2
(3.14) (;_ ) > =1+2pRy + §p3R3 (mod p”).

This completes the proof. O
Proof of Corollary 1.2. By (ii) of Lemma 3.5, we have

P’R3(p) = —(3/2)p° Bys_ps_4 (mod p).

Substituting this into (3.14), we obtain

2p—1
(3.15) (;_ 1 > =1+2pR1 — p°Bpr_p3_4 (mod p").

By Lemma 2.3, p | B,_3 so that p° | (p®/6)B,_3, and hence from (i) of Lemma 3.5

we obtain

5 6

2pR1(p) = —p*Bpa_ps 5 — %sz_p_4 + f—OBp,g) (mod p”).

Furthermore, by the Kummer congruences (3.2), since p* —p® — 2 # 0 (mod p — 1)
and p* — p? —2 = p? — p—2 (mod ¢(p?)), we have

4 _ 3 4 4
LA ——" = By, 4= (1 — g)sz_p_4 (mod p?).

B 4= ——
pPP-p—4 T T ptd

pt—p3—4 =

The substitution of the above two congruences into (3.15) immediately gives

m—1 3 5 6 6
(3.16) (;’_ 1) =1-p*Byi_s_ %sz_,,_4+7f—03p,5+%3,,2_,,_4 (mod p7).

Finally, since by the Kummer congruences (3.2),

2
p°—p—4 4
p2—p—4 = pTBp,5 = ng75 (mod p),

B
after substitution of this into (3.16) we obtain
2 — 1 5 3p° 3p° 7
(317) (p 1 ) = ]. — Bp p _ 73102_;0_4 + 1—0Bp75 (mod P )
This is the required congruence. O

250



Proof of Corollary 1.3. As noticed in [9], congruence (3) on page 494, combining
the Kummer congruences (3.2) and (3.3) for m = ¢(p™) — s, n,s € N with s # 0
(mod p — 1), we obtain

Bn_n-1_ " n Bk —1)—
1 p"—p s — 1)kl (p—1)—s d ™).
(3.18) T ;( ) w1 s (med 1)

Now (3.18) with n = 2 and s = 4 gives

Bp27p74 _ 2Bp,5 B ng,e, (mod p2),
pP—p—4 p—-5 2p—6

or equivalently,

2(p+4) p+4

p—5 By 5+ 2(p7—3)B2p76 (mod p2).

Bp2_p_4 = —

Substituting 1/(p—5) = —(5+p)/25 (mod p?) and 1/(p—3) = —(3+p)/9 (mod p?),
the above congruence becomes

_ 18p+40

Tp+ 12
(3.19) Bp_p 4= 5 R

L2285 (mod ).

Bp_s —

Similarly, (3.18) with n =4 and s = 2 yields

Bp4_p3_2 ! k 4 Bk( ~1)-2
) ;( ) k k:(p—l)—Z (HlO p )a

whence, multiplying by p® + 2, we get

4B,_3 6Bgp_4 4Bz, 5 Bapg
9 “Boa s o= (13 2( p—3 p p—5  Dap )
3:20) By =00+ 2)( - Pty Pus Do

— p3(4Bp—3 _ 6Bgp—y n 4Bsp—5 B4p—6)

-3 —4 -5 —6
4B, _ B, 4Bs3,_ Byp—

+2( p3_6 2p—4 | 4Bsp-5  Dap 6>(m0dp4).
p—3 2p —4 3p—5 4p—6

As by the Kummer congruences (3.2),

Bap6 _ Bsps _ Byp-a _ Bps (mod p)
4p—6 3p—-5 2p—4 p-3 "

we have
) 4
B4p—6 = ZBp_g (mod p), B3p_5 = g Bp_g (mod p), ng_4 = g Bp_g (mod p)
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Substituting this into the first term on the right-hand side in the congruence (3.20),
we obtain

4B, 682, 4B3,_ By,_ 3
3 p—3 bD2p—4 3p—5 4p6):_p_B =0 d pt
p( -3 SR 5 ) = 3 Bra =0 (modp),
where we have used the fact that by Lemma 2.3, p divides the numerator of Bj_3.

Further, as for all integers a, b, n such that b Z 0 (mod p) we have

1 1 > a*p 4

applying this to 1/(p—3), 1/(2p—4) and 1/(3p—5), the second term on the right-hand
side in the congruence (3.20) becomes

4 2 3 2
—Bpi_ps o = 2(—— (1 +Py p—)Bp_g += (1 + 2y p—)ng_4

3 3 9 2 2 4
4 3p 9 1 2p  4p? 4
5 (145 + 95 )Bums + g (1 3+ ) Buo) (mod ).

Muptiplying by p?, the above congruence becomes

8 pt PP pt PP
By = =5 (0P + 5+ ) Boma 4308 + 5+ ) B
8/ 4 3pt 9p5> 1/ 5 2pt  4p .
- = L )B,, —( = —)B _ d p").
5(p+5+25 sp—s5 + 5 (P + 5+ 4p—6 (mod p*)

Finally, substituting this and the congruence (3.19) into (3.17), we obtain the con-
gruence from Corollary 1.3. 0
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