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Abstract. We prove that the associate space of a generalized Orlicz space L#0) s given by
the conjugate modular ¢* even without the assumption that simple functions belong to the
space. Second, we show that every weakly doubling ®-function is equivalent to a doubling
®-function. As a consequence, we conclude that L0 is uniformly convex if ¢ and ¢* are
weakly doubling.
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1. INTORDUCTION

Generalized Orlicz spaces L¥() have been studied since the 1940s. A major syn-
thesis of functional analysis in these spaces, based on work, e.g. of Hudzik, Kaminska
and Musielak, is given in the monograph [16]. Following ideas of Maeda, Mizuta,
Ohno and Shimomura (e.g. [15]), we have studied these spaces from a point-of-view
which emphasizes the possibility of choosing the ®-function generating the norm
in the space appropriately [5], [9], [10], [12]. From this perspective, some classical
concepts, like convexity of the ®-function, are too rigid.

Renewed interest in the topic has arisen recently from studies of PDE with non-
standard growth, including the variable exponent case p(z,t) = t?(*) and the double
phase case ¢(z,t) = t? + a(x)t?. Such problems have been studied e.g. in [2], [3], [4],
[8], [17]. For a detailed motivation of our context and additional references we refer
to the introduction of [11].

In this note, we tie up some loose ends concerning the basic functional analysis
of generalized Orlicz spaces in our monograph [6]. In the book we relied on the
assumption that all simple functions belong to our space. This excludes for instance
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the case ¢(z,t) := |x| "¢, where n is the dimension. We can now remove this
assumption from the following result (cf. [6], Theorem 2.7.4). For simplicity, we
consider only the Lebesgue measure on subsets of R™. See the next sections for
definitions.

Theorem 1.1. Let A C R™ be measurable. If p € ®,,(A), then (L¥) = L¥",
i.e. for all measurable f: A — R

£l ~  sup / F(@)g()|de.
[lgllgx <1/ A

The proof relies among other things on upgrading the weak ®-function to a strong
®-function based on our earlier work. The next result is of the same type, upgrading
weak doubling to strong doubling.

Theorem 1.2. Let A C R" be measurable. If p € ®,,(A) satisfies AY and VY,
then there exists ¢ € ®,,(A) with ¢ ~ 1) satisfying Ao and Vs.

Recall that a vector space X is uniformly convez if it has a norm ||-|| such that
for every € > 0 there exists § > 0 with

le—yl>e or [z+yl<2(1-9)

for all unit vectors « and y. In the Orlicz case, it is well known that the space L¥ is
reflexive and uniformly convex if and only if ¢ and ¢* are doubling [18], Theorem 2,
page 297. Hudzik in [13] showed in 1983 that the same conditions are sufficient for
uniform convexity (see also [7], [14]). With the equivalence technique, we are able
to give a very simple proof of this result.

Theorem 1.3. Let A C R™ be measurable and ¢ € ®,,(A). If ¢ satisfies AY
and VY, then L¥() is uniformly convex and reflexive.

2. O-FUNCTIONS

By A C R™ we denote a measurable set. The notation f < g means that there
exists a constant C' > 0 such that f < Cg. The notation f ~ g means that f < g < f.
By ¢ we denote a generic constant whose value may change between appearances.
A function f is almost increasing if there exists a constant L > 1 such that f(s) <
Lf(t) for all s < ¢ (abbreviated L-almost increasing). Almost decreasing is defined
analogously.
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Definition 2.1. We say that ¢: A x [0,00) — [0, 00] is a weak ®-function, and
write ¢ € ®,,(A), if the following conditions hold:

> For every t € [0,00) the function z — @(x,t) is measurable and for every z € A
the function t — ¢(z,t) is non-decreasing and left-continuous.
> p(z,0) = lim ¢(x,t) =0 and lim @(z,t) = oo for every = € A.
t—0+ t—o0
> The function ¢t — ¢(x,t)/t is L-almost increasing for ¢ > 0 uniformly in A. “Uni-
formly” means that L is independent of x.

If ¢ € ®,(A) is convex, then it is called a ®-function, and we write ¢ € ®(A). If
¢ € ®(A) is continuous as a function into the extended real line [0, cc], then it is
a strong ®-function, and we write p € ®,4(A).

We say that ¢, ¢ € ®,,(A) are weakly equivalent, ¢ ~ 1, if there exist D > 1 and
h € L'(A) such that

o(x,t) <Yz, Dt) + h(z) and ¢(z,t) < o(x, Dt) + h(x).

Two functions ¢ and ¥ are equivalent, ¢ ~ 1), if the previous conditions hold with

h = 0. Note that ¢ ~ ¢ if and only if L¥() = L¥(). In the case ¢,v € ®, this has

been proved in [6], Theorem 2.8.1. For the weak ®-functions the proof is the same.
We define the doubling condition As and the weak doubling condition AY by

o(z,2t) S p(x,t), @(=,2t) S p(z,t) + h(z),

respectively, where h € L' and the implicit constant are independent of z. If ¢ €
®,,(A), then we define a conjugate ®-function by

©*(x,t) := sup(st — p(z, 5)).
520
We say that ¢ satisfies Vo or V¥ if ¢* satisfies Ay or AY, respectively. All these
assumptions are invariant under equivalence, ~, of ®-functions.

In some situations, it is useful to have a more quantitative version of the Ay and
V3 conditions. It can be shown that (aDec) is equivalent to Ay and (alnc) to Vg
(cf. [11], Lemma 2.6, and [5], Proposition 3.6), where (alnc) and (aDec) means the
following:

(alnc) There exist v~ > 1 and L > 1 such that ¢ — ¢(z,t)/t7 is L-almost increas-
ing in (0, 00).

(aDec) There exist v > 1 and L > 1 such that t — ¢(z, t)/t7+ is L-almost decreas-
ing in (0, 00).

Note that the optimal v~ and v correspond to the lower and upper Matuszewska-
Orlicz indexes, respectively.
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Let us start by showing that weak doubling can be upgraded to strong doubling
via weak equivalence of ®-functions. For this we will use the left-inverse of a weak
®-function, defined by the formula

o Na,7) = inf{t > 0: p(x,t) > 7}
We point out that if ¢ € ®4(£2), then by [9], page 4, we have for every ¢ that
(2.1) oz, 07 (z,1) =t

Proof of Theorem 1.2. By [10], Proposition 2.3, we may assume without loss
of generality that ¢ € ®,(A). By assumption,

¢(x,2t) < Dp(z,t) + h(z), ¢ (2,2t) < Dp*(z,t) + h(z)
for some D > 2, h € L' and all z € A and ¢t > 0. Using ¢ = ¢** (see [6],

Corollary 2.6.3), and the definition of the conjugate ®-function, we obtain from the
second inequality that

ol 2t) = sup(2tu — " (z,u)) < sup (20— (" (¢, 20) — h(z) )

u>=0 u=0
1 1 1 1
= sup (2tu — —¢*(z,2u) ) + =h(x) = — sup(Dt2u — ©*(x,2u)) + —h(x
sup (2t = 75" (,20)) & T5h(z) = 5 sup(Dizu = ¢ (w,20)) + ()
1 1
= — D h— .
Define t, := ¢ !(z,h(z)) and suppose that t > t, so that h(z) < ¢(z,t). By

convexity, we conclude that Dh(z) < Dp(z,t) < ¢(x, Dt). Hence in the case t > t,
we have
D+1
Let p :=log,(D + 1) and
 log(D*/(D+1))
= D)

Note that ¢ > 1 since D?/(D + 1) > D/2. Divide the first inequality by (2¢)? and
the second one by (2t)?:

p@,2t)  DA1pt) _ plt)
2ty = 20t tp ]
p(@,2t) (D4 1)D? oz, Dt) _ p(z, Di)
(2t)a = D224 (Dt)ya — (Dt)? °

1014



Let s >t > t,. Then there exists k € N such that 2t < s < 25t1¢. Hence

k+1 k+1 k
o(x,s) < o, 2"71) (e, 28T < » (T, 2%) <. <o (Jzt)’
s (2Ft)P (2 11y (2Ft)P t

so ¢ satisfies (aDec) with v+ = p for ¢ > t,. Similarly, we find that ¢ satisfies (alnc)
with v~ =gq for t > t,.
Define

cat? otherwise,

f 2 tg,
Bat) = { p(z,t) fort >t

where ¢, is chosen so that 1 is continuous at ¢;. Then 1 satisfies (aDec) on [0, t,]
and [t;,00), hence on the whole real axis with v+ = max{p, 2}, similarly for (alnc)
with v~ = min{q, 2}.

Furthermore, o(z,t) = (x,t) when t > ¢,, and so it follows that |p(x,t) —
¥(x,t)| < p(z,t,) = h(x), where (2.1) is used for the last step. Since h € L', this
means that ¢ ~ 9, so ¥ is the required function. ([

Remark 2.2. From the proof of the previous theorem, we see that the two
conditions are not interdependent, i.e. if ¢ € ®,,(A) satisfies AY, then there exists
Y € ®,(A) with ¢ ~ 1 satisfying As; similarly for only V¥ and Va.

3. ASSOCIATE SPACES

We denote by L°(A) the set of measurable functions in A.
Definition 3.1. Let ¢ € ®,,(A) and define the modular o, for f € L°(A) by

oir (1) = [ pla|fa)) do.
The generalized Orlicz space, also called Musielak-Orlicz space, is defined as the set
LPO(A) = {f € L°(A): 1 JAf) =0
(A) = {f € L°A): lim, 0,0, (M) =0}
equipped with the (Luxemburg) quasinorm
: f
Ilfllgc) := inf {/\ >0: g¢(.)(x> < 1}.

Let us start with a lemma which shows that we can approximate the function 1

with a monotonically increasing sequence of functions in the generalized Orlicz space.

Note that the next lemma is trivial if L C L¥(), as was assumed in [6] when dealing
with associate spaces.

Lemma 3.2. Let ¢ € ®,(A). There exists positive hy € L¥)(A), k € N, such
that hy /1 and {hy =1} S/ A.
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Proof. For k > 1 we define

={xz: gp(x,Q‘k) < 1}

Since ¢(-,t) is assumed to be measurable, Ej is a measurable set. Since

lim o(x,t) = 0, there exists for every z € A an index k, such that x € Ej,.
-0+

And since ¢ is non-decreasing, it follows that Fy A as k — co. We define

)= 27" xm(x)
=0

Then h(z) € (0, 1] for every z, and h is measurable. Suppose that © € Ej41 \ E) for
some k£ € N. Then

oo

hiz)= > 2771 =270,

i=k+1
Hence, by the definition of Ejy1, we find that ¢(x, h(z)) < 1. Since A = | Ex, we
k
have p(x,h(z)) < 1 in A. (The function h can alternatively be constructed using

the left-inverse of ¢, as in the previous section.)
Let us define hy, := min{khxp(0,r)na,1}. Then

0oy (K i) < / o(z,h)dz < [B(0, k)| < oo,
B(0,k)NA

so that hy € L¥()(A). Since h > 0, it follows that khxB(,k)na /* oo for every x,
and so hy 1, as required. O

We define the associate space by (L¥)) (A) := {f € L°(A): [ fll ey < oo},
where

||f||(Lq,), = sup /fgdx

lgllocy <1

If g € (L¥) and f € L¥, then fg € L' by the definition of the associate space. In
particular, the integral [ 4 Jgdz is well defined and

o

Holder’s inequality holds in generalized Orlicz spaces with constant 2, without

< lgllczey I flloc)-

restrictions on the ®,,-function ([6], Lemma 2.6.5):

(3.1) /A gl dz < 20 ol
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Here ¢* is the conjugate ®-function defined in the previous section. Furthermore,
we can define a conjugate modular on the dual space by the formula

(00())*(J) == sup (J(f) = ()

feLe®)

for J € (L¥0)* ie. J: L¥() — R is a bounded linear functional. By J; we denote
the functional g — [ fgdz.

Proof of Theorem 1.1. We follow the outlines of [6], Theorem 2.7.4, but use
Lemma 3.2 to get rid of the extraneous assumption that simple functions belong to
the space. The inequality || f||(z¢) < 2| f|,+(.) follows from (3.1).

Let then f € (L¥) and € > 0. Let {¢1, g2, ...} be an enumeration of non-negative
rational numbers with g; = 0. For k € N and =z € A define

ri(w) = max gl f(2)] — (. q;).
The special choice ¢; = 0 implies r,(x) > 0 for all z > 0. Since Q is dense in [0, o)

and p(z, ) is left-continuous, ri(x) 7 ¢*(x,|f(x)|) for every x € A as k — oo.
Since f and ¢(-,t) are measurable functions, the sets

Eip:={z e A: ¢|f(z)| — plz,q) = j_rrllaxk(qjlf(w)l —¢(r,q5))}

=1,...,

are measurable. Let F; j := E; ; \ (E15U...UE;_1 ). Define

k
Gk =D GiXF, ,-
=1

Then g, is measurable and bounded and

ru(x) = gr(@)[f(2)| = »(z, k()

for all x € A.
Let hy, € L¥()(A) be as in Lemma 3.2, i.e. {hy =1} /' Aand 0 < hy < 1. Since g
is bounded, it follows that w := sgn f hxgr € L¥"). Denote E := {fw > ¢(x,w)}.

Since the conjugate modular is defined as a supremum over functions in L#(), we
get a lower bound by using the particular function wyg. Thus

(0p()) (Jf) = Jp(wxE) — 0p()(WXE) = /Efw — ¢(z,w)dz
> [ il pteade= [ ngey i
{hk=1} A
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Since rxx{n, =13 /" ¢*(2,]f]), it follows by monotone convergence that (o,.))*(Jy) =
04+ () (f). From the definitions of (0,(.))* and gg-(.),

(0p())"(Jg) = sup /fg p(z,g)d / ©*(z, f)daz = 0px((f).
geLw( )
Hence (04(.)"(J5) = 0p+(-(f)-

Since f +— Jy is linear, it follows that (0,(.))*(AJy) = 0+ (Af) for every A > 0
and therefore || f[l,-() = 17¢ (o, ) < ¢l zecrys = [Ifll(ecry, Where the second
step follows from [6], Theorem 2.2.10.

Taking into account that ¢** ~ ¢, we have shown that L¥() = (L¥ ())’. By the
definition of the associate space norm, this means that

£y~ sw [ 17]lgls
[[gll % (<1

for f € L¥(). In the case f € L°\ L¥"), we can approximate hy, min{|f|,k} * |f|
with hy as before. Since hy min{|f|,k} € L¥(), the previous result implies that the
formula holds, in the form oo = oo, when f € L°\ L#(), (]

4. UNIFORM CONVEXITY

The function ¢ € ®,,(R™) is uniformly convez if for every € > 0 there exists § > 0
such that

t 4
go(x,s+ )g(l_(s)@(%s)ﬂa(:ﬁ, )
2 2
for every x € R™ whenever |s — t| > e max{|s|, |¢|}.

Theorem 4.1. The function ¢ € ®,(A) is equivalent to a uniformly convex
®-function if and only if it satisfies (alnc).

Proof. Assume first that ¢ satisfies (alnc) with v~ = p > 1. By [10],
Lemma 2.2, there exists ¢ € ®(A) such that ¢ ~ ¢ and Y'/P is convex for some
p > 1. The claim follows once we show that 1 is uniformly convex. Let ¢ € (0,1)
and s —t > es with s > ¢t > 0. Since '/ is convex,

s+ NP _ p(w, 8)V/P 4 1p(x,t)'/P
w(x, 2 ) S 2 '

Since t < (1—¢)s and ¥ is convex, we find that ¢ (x,t) < ¢¥(z, (1—¢)s) < (1—)¥(x, s).
Therefore 1(z,t)'/? < (1—¢')ib(x, s)/P for some &’ > 0. Since t? is uniformly convex,
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we obtain that

x,s)4/P x, t)/P\p T, 8 T
(Pt e bt

Combined with the previous estimate, this shows that v is uniformly convex.

Assume now conversely that ¢ ~ 1 and v is uniformly convex. Choose ¢ = % and
t = 0 in the definition of uniform convexity:

1/1(% 8/2) < %(1 - 5)1/)(% S)'
Divide this equation by (s/2)P, where p is chosen so that 2P~(1 — §) = 1:

Pz, 5/2)
(s/2)P

< 2p—1(1 _5)¢($75) _ w(%s).
spP sp

The previous inequality holds for every s > 0. If 0 < ¢t < s, then we can choose
k € N such that 2%t < s < 2¥*1¢. Then by the previous inequality and monotonicity

of 1,

Yl t) o2t o Y(z,2M) <2pw(fcvs)
tr T (2 T (2kp T sp

Hence, 1 satisfies (alnc) with v~ = p. Since this property is invariant under equiv-
alence, it holds for ¢ as well. (]

We can now prove the uniform convexity of the space.

Proof of Theorem 1.3. By Theorem 1.2, AY and V¥ imply Az and Va. If ¢
satisfies (alnc), then it follows from Theorem 4.1 that it is equivalent to a uniformly
convex ®-function ¥. By (aDec), also 1 is doubling. Hence by [16], Theorem 11.6
(see also [6], Theorem 2.4.14), L¥() is uniformly convex. Since ¢ =~ ¢, L¥() = L¥(),
and hence we have proved L*(") is uniformly convex. Furthermore, every uniformly
convex Banach space is reflexive [1], Chapter 1. O
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