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Abstract: Modeling of elastic boundary support is crucial for simulating realistic vibro-acoustical
behaviors of plate-like structures. In this paper, the mechanical and moment impedances of an elastic
support material are derived in closed form under several assumptions, and three basic studies are
conducted on a vibration system of a thin plate supported with an elastic material. First, bending wave
reflection from the impedance boundary is theoretically analyzed to clarify the incidence angle
dependence of vibration energy absorption coefficient. Second, the proposed impedance model is
validated in comparison with the precise finite element model of the elastic support material. Finally,
as an application of the impedance model, loss factor measurement is numerically modeled, which
reveals that the calculated loss factors are generally greater than the theoretical values for the diffuse
vibration field.
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1. INTRODUCTION

Understanding vibro-acoustical behaviors of plate-like

structures is of great interest in many fields of noise control

engineering. Regarding the acoustic radiation from a

rectangular plate, Berry et al. have made a significant

remark that the radiation mechanism strongly depends on

the boundary condition of the plate [1]. In the paper,

modal radiation efficiencies were provided for the plate

with arbitrary combinations of four kinds of ideal boundary

condition. However, plates are usually supported by elastic

materials, where the actual condition on their joining face

is an intermediate state among the ideal conditions.

Another important aspect is that energy loss occurs in the

reflection of bending waves at the elastic supported edges,

which reduces the radiation from modal vibrations of the

plate [2]. This is also directly related to the airborne sound

insulation performance. Thus, modeling of the elastic

boundary support is crucial for simulating realistic vibro-

acoustical behaviors of plate-like structures.

The elastic boundary support has been usually modeled

with mechanical and moment impedances, but it is not yet

well established how to determine the impedances. Several

papers have dedicated to investigate the effect of transla-

tional and rotational restraint on natural frequencies of

finite plates [3–7], where the analysis was performed with

assuming lumped constants of stiffness, inertance and

resistance for the impedance boundary condition. However,

it is not clear to what extent this lumped model is

applicable, especially, in relation to the size of an elastic

support material and the frequency. Besides, input param-

eters of the boundary impedances are often experimentally

determined by excitation tests. The total loss factor (TLF)

measurement by reverberation method is one of the most

common measurement [8]. However, the measured value

has not been investigated in terms of the discrepancy from

the theoretical value.

Focusing on a thin plate supported by an elastic

material with rectangular cross section, this paper is

dedicated to improve the usability of the impedance

boundary modeling. In Sect. 2, closed-form expressions

of equivalent mechanical and moment impedances are

derived under several assumptions. Then, theoretical

analysis is provided to investigate the behaviors of bending

wave absorption at the impedance boundary. In Sect. 3,

finite element analysis is conducted to clarify the reliable

condition of impedance boundary modeling. The result by
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proposed impedance model are compared with those by the

precise model. Assuming the experimental determination

of the input value for the impedance model, a measurement

of TLF is numerically simulated by using the impedance

model in Sect. 4. The behavior of TLF calculated for a

finite plate is examined in comparison with the theoretical

values for the diffuse field.

2. THEORETICAL ANALYSIS

2.1. Governing Equation

A flat plate is assumed to lie on the x-y plane of the

Cartesian coordinate. ej!t is assumed as the time con-

vention throughout this paper. The time-harmonic equation

of the Kirchhoff-Love thin plate vibration theory is given

as

Br2r2w� �p!
2w ¼ fz þ z

@ fx

@x
þ z

@ fy

@y
; ð1Þ

where r2 is the Laplace operator, w is the out-of-plane

displacement, B and �p are the flexural rigidity and the area

density of the plate. B is given by B ¼ Eptp
3=½12ð1� �2Þ�,

where Ep, � and tp are the Young’s modulus, the Poisson’s

ratio and the thickness of the plate, respectively. fx, fy and

fz are the external stress acting on the plate surface in each

direction. z is the signed distance from the mid-plane of the

plate, which is tp=2 on the upper face and �tp=2 on the

bottom face, respectively. The relation between the bend-

ing–torsional moments and the displacement is described

as follows.

M�� ¼ �B ð1� �Þ
@2w

@�@�
þ ��;��r2w

� �
; ð2Þ

where � and � take x or y. ��;� is the component of the unit

tensor. Throughout this paper, the internal loss factor of the

plate, �p, is set as zero in order to focus on the effect of the

edge damping.

2.2. Impedance Boundary Conditions

As Eq. (1) is the partial differential equation of fourth

order, two conditions should be defined at a boundary: one

is for translational motion and the other is for rotational

motion. Assuming the local reactive boundary, these

conditions can be generally described by using the me-

chanical and moment impedances, ZQ and ZM, as follows.

~Q ¼
@Mn

@n
þ 2

@Ms

@s

� �
¼ �j!ZQw; ð3Þ

Mn ¼ j!ZM

@w

@n
; ð4Þ

where ~Q, Mn, and Ms are the effective shear force, normal

and torsional moments along the boundary, respectively.

@=@n and @=@s are the normal and tangential directional

derivative along the plate’s boundary, respectively.

2.3. Oblique-incidence Reflection Coefficient

As depicted in Fig. 1, let us consider a situation where

the plane propagative bending wave impinges to the

boundary of x ¼ 0 at an incidence angle of �. In this

semi-near field, general solution of the Eq. (1) is given

as [9]

wðx; yÞ ¼ ðAþe� jkBxx þ A�ejkBxx

þ CþekExxÞe� jkByy; ð5Þ

where kBx ¼ kB cos �, kBy ¼ kB sin � and kEx ¼ kBð1þ
sin2 �Þ1=2. kB is the bending wave number on the plate

defined as kB ¼ !1=2ðB=�pÞ1=4. Substituting Eqs. (2) and

(5) into Eq. (3), the following relation is obtained.

ð	��þ � zqÞAþ � ð	��þ þ zqÞA�

� ð j	þ�� þ zqÞCþ ¼ 0; ð6Þ

where zq is the normalized mechanical impedance defined

as zq ¼ !ZQ=ðkB
3BÞ. And the following values are intro-

duced, �� ¼ 1� ð1� �Þ sin2 � and 	� ¼ ð1� sin2 �Þ1=2. In

the same way, substituting Eqs. (2) and (5) into Eq. (4), the

following relation is obtained.

ð�� � zm	�ÞAþ þ ð�� þ zm	�ÞA�

� ð�þ þ jzm	þÞCþ ¼ 0; ð7Þ

where zm is the normalized moment impedance defined as

zm ¼ !ZM=ðkBBÞ.
Combining Eqs. (6) and (7), the oblique-incidence

reflection coefficient is obtained as

rð�Þ ¼
A�

Aþ
¼

	��
2
þ � 2zq þ 	�zqzm
� j	þð�2

� þ zqzm � 2	�zmÞ

 !

	��
2
þ þ 2zq þ 	�zqzm
þ j	þð�2

� þ zqzm þ 2	�zmÞ

 ! : ð8Þ

Furthermore, oblique-incidence vibration absorption coef-

ficient is given as �ð�Þ ¼ 1� jrð�Þj2.

x

y

A+

A– C+ Evanescent

Impedance Boundary

Progressive

Regressive

O

θ

θ

Fig. 1 Problem setting for the analysis of the bending
wave reflection from the impedance boundary.
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2.4. Equivalent Impedances of a Rectangular Elastic

Support Material

Let us consider deformations of a rectangular elastic

support material as depicted in Fig. 2. The three-dimen-

sional displacements of the support material are continuous

to those of the plate on the joining face and fixed at the

opposite face. Furthermore, the other faces are under the

free support. In order to derive the impedances in the

closed form, the following assumptions are introduced:

1. only the one-dimensional longitudinal vibration is

excited in the thickness direction of the support

material,

2. the translational out-of-plane displacement and the

rotational slope of the plate are uniform over the

supporting depth.

The validity of the first assumptions is numerically

investigated in Sect. 3. The second assumption is consid-

ered to be valid when the bending wavelength is suffi-

ciently larger than the supporting depth.

Under the first assumption, the longitudinal modal

stress in the support material of the lower side is expressed

as


zðx; zÞ ¼ k1
~EswðxÞ

cosðk1zÞ
sinðk1hsÞ

; ð9Þ

where wðxÞ is the displacement on the joining face. The

second assumption states that the displacement is wðxÞ ¼
w0 þ �0x with the constant translational displacement w0

and the constant rotational slope �0. hs is the thickness

of the support material, kl is the wave number of the

longitudinal wave in the support material, and ~Es is the

complex Young’s modulus defined as ~Es ¼ Esð1þ j�sÞ
with the loss factor �s. For the translational motion, the

force on the joining face, z ¼ hs, is obtained by integrating


ðx; hsÞ over the supporting depth ds. Considering the

reaction forces of the support materials on both sides, the

mechanical impedance is obtained as follows.

ZQ ¼
2

Z ds=2

�ds=2


zðx; hsÞdx

j!w0

¼
2�s ~c1ds

j tanð!hs= ~c1Þ
ð10Þ

where ~c1 is the speed of longitudinal wave defined as

~c1 ¼ ð ~Es=�sÞ1=2 and �s is the material density of the support

material. For the rotational motion, the moment on the

joining face is obtained by integrating 
ðx; hsÞ � x over

the supporting depth. Considering the reaction moments of

both sides, the moment impedance is obtained as follows.

ZM ¼
2

Z ds=2

�ds=2


zðx; hsÞxdx

j!�0
¼

�s ~c1d
3
s

6j tanð!hs= ~c1Þ
ð11Þ

2.5. Discussions

Vibrational absorption coefficient of the support mate-

rial is investigated according to the above-described theory

and model.

2.5.1. Resonance frequencies

Absorbing mechanisms can be divided into two classes:

one is the global mass-spring resonance composed of the

plate (mass) and the support material (spring), and the other

is local modal vibration of the support material.

First, let us consider the global resonance system in

the low frequency range where !hs= ~c1 � �=2. In the case,

the normalized mechanical and moment impedances of

Eqs. (10) and (11) are reduced to

zq ¼ ẑqð�s � jÞ; ẑq ¼
2Esds

Bk3
Bhs

; ð12Þ

zm ¼ ẑmð�s � jÞ; ẑm ¼
Esd

3
s

6BkBhs

; ð13Þ

respectively. The inertial effect of the support material is

neglected through this approximation. Substituting

Eqs. (12) and (13) and � ¼ 0 into Eq. (8), normal-inci-

dence vibration absorption coefficient is obtained as

�n ¼
4ð�ẑmẑ2q þ �2ẑ2mẑq þ ẑ2mẑq þ 2ẑmẑq þ ẑq þ �ẑmÞ
2½ð�2 þ 1Þẑ2m þ ð�þ 1Þẑm þ 1�ðẑ2q þ ẑq þ 1Þ

��2ẑ2mẑ
2
q � ðẑmẑq � 1Þ2

 ! :

ð14Þ

When the normalized moment impedance is fixed to

extreme value, zero or infinity, the translational mass-

spring resonance frequency, fq, at which Eq. (14) becomes

max leads

fq ¼
1

2�

ffiffiffiffiffiffi
B

�p

s
cMð1þ �2

s Þ
2Esds

Bhs

� �2
" #1

3

; ð15Þ

where cM ¼ 2 for zM ¼ 0 and cM ¼ 1=2 for zM ¼ 1.

Similarly, when the normalized mechanical impedance

is fixed to zero or infinity, the rotational mass-spring

(a) translational motion (b) rotational motion

/2 /2/2 /2

0
0

x

z

O x

z

O

Fig. 2 Assumed deformations of a rectangular support
material for (a) translational and (b) rotational motions.
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resonance frequency, fm, at which Eq. (14) becomes max

leads

fm ¼
1

2�

ffiffiffiffiffiffi
B

�p

s
cQð1þ �2

s Þ
Esd

3
s

6Bhs

� �2

; ð16Þ

where cQ ¼ 2 for ZQ ¼ 0 and cQ ¼ 1=2 for ZQ ¼ 1. For a

solid cross-section plate, fq / 1=tp and fm / 1=t5p. Accord-

ingly, the rotational mass-spring resonance frequency is

strongly dependent on the plate thickness as well as the

supporting depth.

Second, the n-th modal resonance of the support

material occurs around

fL ¼
n

2hs

ffiffiffiffiffiffi
Es

�s

s
:

Both ZQ and ZM approach infinity around fL, which means

the boundary condition becomes the clamped support.

Furthermore, there are the frequencies at which both ZQ and

ZM approach zero, and the free support condition arises.

2.5.2. Normal-incidence vibration absorption coefficient

Figure 3 shows the normal-incidence vibration absorp-

tion coefficient, �n, calculated for the glass plate and

supporting putty. In addition, either ZQ or ZM is set to zero

or infinity, and four combinations of ZQ and ZM are shown

as references. The physical properties for the calculation

are listed in Table 1.

In theory, the vibrational behavior of a mass-spring

system switches from stiffness control to mass control at

the resonance frequency. Then, in the present case where

fm < fq, the cyan (ZQ ¼ 1) and red (ZM ¼ 0) lines give

good approximation to the black thick line around fm and

fq, respectively. The result implies that the support

condition is an intermediate state between simple and

clamped supports around fm and between simple and free

supports around fq. Moreover, the translational mass-spring

resonance of the black line appears at slightly lower

frequency than fq. This is because Eq. (15) is derived by

neglecting the inertial effect of the support material.

Nevertheless, the global resonance frequencies can be

estimated fairly well by Eqs. (15) and (16).

In the modal resonance frequency range, the transla-

tional motion contributes to the energy absorption domi-

nantly because �n calculated for the lossless ZQ are

considerably small. As the rotational constraint become

stronger, absorption due to the longitudinal-mode reso-

nance decreases.

2.5.3. Oblique- and random-incidence vibration absorp-

tion coefficient

Figure 4 shows the oblique-incidence vibration absorp-

tion coefficients, �ð�Þ, calculated for the same plate and

support material. In the incidence angle of 30 and 60
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Fig. 3 Normal-incidence vibration absorption coeffi-
cient calculated with changing Young’s modulus of
the support material: (a) 106 and (b) 108.

Table 1 Physical properties of the plate and supporting
material.

property
plate support

Glass Putty

Young’s modulus [N/m2] Ep ¼ 7:5� 1010 Es ¼ 1:0� 106; 1:0� 108

Poisson’s ratio [ ] � ¼ 0:22 N/A
Loss Factor [ ] �p ¼ 0 �s ¼ 0:5

Material Density [kg/m3] �p=tp ¼ 2;500 �s ¼ 1;000

Thickness [m] tp ¼ 0:01 hs ¼ 0:005

Depth [m] N/A ds ¼ 0:015
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Fig. 4 Oblique- and random-incidence vibration ab-
sorption coefficient calculated with changing Young’s
modulus of the support material: (a) 106 and (b) 108.
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degrees, absorption due to the global resonances decreases,

whereas absorption due to the modal resonance increases.

Furthermore, the resonance frequencies in oblique-inci-

dence appear around at that of the normal incidence. Above

the incidence angle of 60 degree, the translational mass-

spring resonance frequencies are shifted to higher frequen-

cy range, and the absorption peak due to the rotational

mass-spring resonance fades into zero.

Figure 4 also shows the random-incidence vibration

absorption coefficients, �r, calculated for the same plate

and support material by the following statistical average

based on the two-dimensional diffuse field assumption,

�r ¼
1

2

Z �=2

��=2
�ð�Þ cos �d�: ð17Þ

It is obvious from Eq. (17) that values around the normal-

incidence dominantly contribute to the statistical average

one. Then the frequency characteristics of �r show almost

the same tendency as those of normal-incidence. Besides,

the �ð�Þ at 30 degree approximates �r well in quantity, and

this relation moderately holds for other physical parameters

of the plate and support material. This tendency may be

practically useful for experimental estimation of the lamped

constants of the boundary impedances or the physical

parameters of the support material. Because, in the

estimation procedure, measured �r can be directly compared

with the theoretical �ð�Þ at 30 degree obtained by Eq. (8).

3. NUMERICAL INVESTIGATION

This section discusses the validity of the mechanical

and moment impedances given in the previous section

through the finite element analysis (FEA). Figure 5 shows

the problem setting and the domain notation in this section.

The boundary condition of the plate and the elastic material

is free support unless otherwise indicated.

3.1. Weak Formulation for the Finite Element Analy-

sis

In the following, an analysis theory of coupled

vibration fields of a plate and a three-dimensional elastic

body is formulated.

First, the weak form of Eq. (1) is expressed asZ
�pþ�pE

X
�;�¼x;y

@2�w

@�@�
M�� � �p!

2�ww

 !
dS

þ
Z
@�p

@�w

@n
Mn � �w

@Mn

@n
þ 2

@Ms

@s

� �� �
dL

þ
Z

�pE

��wfz þ z
X
�¼x;y

@�w

@�
f�

� �" #
dS ¼ 0; ð18Þ

where �w is the admissible variation of the out-of-plane

displacement. It is noted that the work done by the corner

force is neglected in Eq. (18). The contour integral terms

along @�p represent the works done by the elastic support,

and are rewritten with Eqs. (3) and (4) asZ
@�p

@�w

@n
Mn � �w

@Mn

@n
þ 2

@Ms

@s

� �� �
dL

¼ j!

Z
@�p

@�w

@n
ZM

@w

@n
þ �wZQw

� �
dL:

ZQ and ZM are evaluated by Eqs. (10) and (11), respec-

tively. The surface integral terms in the third line of

Eq. (18) represent the work done by external forces. In

this paper, the ACM quadrangle element is used for the

discretization and interpolation.

Second, the vibration field in the support material is

analyzed according to the three-dimensional elastodynamic

equation div 
 þ �E!
2u ¼ 0 and the constitutive law 
 ¼

� divu1þ 2
", where u is the three-dimensional displace-

ment vector, 
 and " are the stress and strain tensors,

respectively, 1 is the unit tensor, �E is the material density,

and � and 
 are the Lame’s first and second coefficients,

respectively. The weak form of the elastodynamic equation

is given as Z
�E

ð�" : 
 � �E!
2�u � uÞdV

�
Z

�pE

�u � ð
 � npEÞdS ¼ 0; ð19Þ

where �u is the admissible variation of the three dimen-

sional displacement, npE is the outward normal vector on

the boundary �pE. The surface integral term in the second

line of Eq. (19) represents the work done by external

forces. The 27-node 2nd-order hexahedral element is used

for the discretization and interpolation.

Third, the continuity conditions on the interface �pE

between the elastic body and the plate vibration fields are

given as

0

x4 x3 x2 x1

x

y

model (I) : Precise Model

model (II) : Impedance Boundary Model

Γp

ΩE

∂Γp

n

s

Γp

ds/2

Forced

Forced

Fixed

FixedΓpE

npE

100 mm
300 mm

10 mm

Δx = 2.5 mm

hs

hs

(3-Dimensional Elastic Material Model)

Fig. 5 Problem settings and domain notation for calcu-
lating mechanical and moment impedances and vibra-
tion absorption coefficient.
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�
 � npE ¼ f fx; fy; fzg

u ¼ �z
@w

@x
;�z

@w

@y
;w

� �
:

8><
>: ð20Þ

The summation of the surface integral terms related to

external forces in Eqs. (18) and (19) falls into zero under

these conditions. This means that only the second equation

of Eq. (20) is imposed explicitly by using common

unknowns for nodal physical values in the finite element

implementation.

3.2. Analysis Procedure of Normal-incidence Vibra-

tion Indicators

The bending vibration field becomes one-dimensional

in the strip plate, which is described as

wðxÞ ¼ Aþe� jkBx þ A�ejkBx

þ Cþe�kBx þ C�ekBx: ð21Þ

By observing the displacements at four points, x1 to x4,

the following matrix equation can be set according to

Eq. (21).

e� jkBx1 ejkBx1 e�kBx1 ekBx1

e� jkBx2 ejkBx2 e�kBx2 ekBx2

e� jkBx3 ejkBx3 e�kBx3 ekBx3

e� jkBx4 ejkBx4 e�kBx4 ekBx4

2
66664

3
77775

Aþ

A�

Cþ

C�

8>>><
>>>:

9>>>=
>>>;
¼

wðx1Þ
wðx2Þ
wðx3Þ
wðx4Þ

8>>><
>>>:

9>>>=
>>>;

Then, the unknown amplitudes of propagative and evan-

escent waves, fAþ;A�;Cþ;C�gT , are obtained by solving

the above equation. It was confirmed by a preliminary

study that the theoretical impedances best approximate

those of the precise model (I) just at the middle point of

the joining depth: the middle point is set as x ¼ 0 as

depicted in Fig. 5. Then, normalized mechanical and

moment impedances at x ¼ 0 and normal-incidence vibra-

tion absorption coefficient are calculated as follows:

z0q ¼
Aþ � A� þ jCþ � jC�

Aþ þ A� þ Cþ þ C�
;

z0m ¼
Aþ þ A� � Cþ � C�

Aþ � A� � jCþ þ jC�
;

�n ¼ 1�
A�

Aþ

				
				2:

3.3. Results and Discussions

FEA for the model (I) is performed under shear limp

and elastic conditions for the support material. The former

condition corresponds to the presented impedance model,

and the shear stress is neglected in the FEA. The default

physical properties are the same as those investigated in the

previous section. Calculation is done at the 1/12 octave

center frequency from 16 to 4,000 Hz. The wavelength of

the bending wave on the plate at 4,000 Hz is 0.16 m, and

enough larger than ds. Then, the second assumption stated

in Sect. 2.4 is acceptable in this point.

Figure 6 shows calculation results: ratio of the absolute

impedance of the model (II) to that of the model (I). For

the shear limp condition, the theoretical model presented

in Sect. 2 well approximates the mechanical and moment

impedances around and below fq. Above fq, the support

material can no longer be considered as a lumped constant

system, which causes the pronounced discrepancy. Re-

garding the shear elastic model, the mechanical impedance

is almost the same as those of the shear limp model.

However, the moment impedance is underestimated in the

entire frequency range by neglecting the shear stress of the

support material. In particular, the ratio is constant below

fq. Note that these tendencies are also observed when

changing plate thickness and the support material thickness

and depth.

Figure 7 shows the calculation results of vibration

absorption coefficient. Around and above fq, shear limp

and elastic models show almost the same value. Then the

shear motion hardly contributes to the absorption. How-

ever, the rotational spring-mass resonance is shifted to

higher frequency range by introducing the reaction to the

shear motion. Furthermore, vibration absorption coeffi-

cients around and above the fq in Fig. 7(a) approach those

of the characteristics under the rigid moment impedance

assumption (zM ¼ 1). These tendencies are the direct

consequence of the underestimation of the moment

impedance shown in Fig. 6.

101 102 1030
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Frequency [Hz]

R
at

io
 o

f A
bs

ol
ut

e 
im

pe
da

nc
es

 []

(b) Es = 108

(a) Es = 106

zM = ∞
zM = 0

fq

zQ = 0

fm

Shear ElasticShear Limp

Fig. 6 Ratio of the absolute mechanical (moment)
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4. NUMERICAL MODELING OF A TOTAL
LOSS FACTOR MEASUREMENT

The TLF measurement by the reverberation method is

often performed to get or to estimate input values for

theoretical or numerical calculations. However, it is not

clear how measured values involve discrepancies from the

theoretical values for the diffuse field, which increases the

uncertainty of subsequent calculations. In this section, the

TLF measurement is numerically modelled to understand

the behavior of measured values. This practical information

is valuable for experimental verification of the proposed

impedance model in future work.

4.1. Theoretical Foundation

From the definition, the exponential decay rate, 	, of

a system with a total loss factor �tot is

	 ¼ �tot!: ð22Þ

Thus, when the 60 dB decay time, T60, is measured, the

total loss factor is obtained as

�tot ¼
6 ln 10

!T60

: ð23Þ

In the two-dimensional diffuse vibration field, the

mean-free path is given as �S=ltot with the plate area S and

the total perimeter length ltot. Then the exponential decay

rate, 	DF, is

	DF ¼
cgltot�r

�S
; ð24Þ

where cg is the group velocity of the bending wave defined

as cg ¼ d!=dkB, and �r is the vibration absorption

coefficient for 2-D random-incidence. By comparing

Eqs. (22) and (24), the total loss factor in the diffuse

vibration field is given as

�tot ¼
cgltot�r

�!S
: ð25Þ

4.2. Numerical Analysis Conditions

Following the reference [10], calculation arrangement

is set as illustrated in Fig. 8. In the FEA, all perimeters are

set as impedance boundaries because this measurement is

usually performed for specimens in normal service con-

dition. The impedance values are given by Eqs. (10) and

(11). Calculation is executed in 0.5 Hz intervals from 0

to 2,000 Hz. Subsequently, the transfer function of the

acceleration response is converted to the transient response

by the inverse Fourier transform. The reverberation time,

T60, is determined by the least square regression of the

energy decay curve obtained by the backward integration

of the filtered transient response. The total loss factor is

determined by Eq. (23) and the 5-point-average of T60.

4.3. Preliminary Study on the Band Analysis

It is well known that the reverberation of the band-pass

filter (BPF) itself affects the reverberation time (RT) of the

filtered response. In order to design the appropriate BPF,

exponentially-decaying white noise (EDWN) is analyzed

by using the FIR filters truncated by the hamming window.

In order to approximately equalize the cut-off character-

istics among the different bands, the order of the 1/3-

octave band FIR filter of the center frequency fc is set as

N � 2M, where N is the order at 1 kHz and M is calculated

by

M ¼ blog2ð fc=1;000Þ þ 0:5c:

Changing the N and the decay rate of the EDWN, RTs of

the filtered responses are calculated.

Figure 9 shows the relation between the RTs of BPFs

and filtered EDWNs, where these RTs are normalized by

101 102 103
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Frequency [Hz]

V
ib

ra
tio

n 
A

bs
or

pt
io

n 
C

oe
ff

ic
ie

nt
 []

(b) Es = 108

(a) Es = 106

Shear Elastic
Shear Limp

Impedance model

Precise model

zM = ∞
zM = 0

fq

zQ = 0

fm

ZQ = Eq. (10),  ZM = Eq. (11)

ZQ = Eq. (10),  ZM = ∞

Fig. 7 Normal-incidence vibration absorption coeffi-
cient calculated for precise model (I). The Young’s
moduli of the support material are (a) 106 and (b)
108.

Receiving points

Excitation point

559 Unit: [mm]
10 50 100

300
625

1250

354

1250

1500

300

Fig. 8 A default geometry for the calculation of the
total loss factor.

N. INOUE and T. SAKUMA: ON THE PLATE’S ELASTIC SUPPORT

393



the decay rate given to the EDWN. This figure demon-

strates that the RT of the BPF must be less than the RT of

the target response. Figure 10 compares RT of a system

with total loss factor � and that of the FIR-BPF with taps of

N � 2M. In the following calculation, the theoretical total

loss factor of a system is less than 0.2 at maximum. Then,

the taps of the FIR filter are set as 64� 2M .

4.4. Results and Discussions

4.4.1. Effect of the plate size

It is obvious from Eq. (25) that TLF of a vibration

system depends on the area and the total perimeter length.

The TLF are calculated for three sizes of the plates: 40%

smaller and larger plates than the default size.

Figure 11 compares calculated results with the theo-

retical values for the diffuse vibration field. The calculated

results appear to capture the frequency trends of the

theoretical values. Furthermore, TLFs for the smaller plate

fluctuate more than those for larger plates do. However,

the calculated values are two to four times larger than the

theoretical values in the entire frequency range.

In general, the measurement of the sound absorption

coefficient by reverberation room method involves two

main error factors that cause the discrepancy from the

theoretical value under the diffuse field assumption. One

is the lack of the diffusivity. The diffuse field assumption

becomes less effective to the rooms with parallel walls, and

the grazing incidence to a boundary rarely arises. Then,

non-diffuse effect usually appears as the underestimation of

the sound absorption coefficient. The other is the diffrac-

tion at the edge of the finite specimen, which increase

the effective incidence power. Then, the diffraction effect

usually appears as the overestimation of the sound

absorption coefficient. Similarly, the TLF measurement

on the rectangular plate involves the non-diffuseness and

the diffraction effects, and the latter seems to be predom-

inant. Although all perimeters are impedance boundaries in

the present study, the diffraction effect is considered to

occur at the plate’s corners. Besides, Fig. 9 demonstrates

that the RT of the filtered response is determined more

precisely when it is enough longer than the RT of a filter,

which may also contribute to the overestimation. As a

result, a large discrepancy can be seen in the frequency

range at which the TLF is high.

4.4.2. Effect of the support material’s properties

Figure 12(a) shows the calculated TLF with changing

the support material’s loss factor and fixing the Young’s
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modulus to 1:0� 106 N/m2. Figure 12(b) shows the

calculated TLF with changing the Young’s modulus of

the support material and fixing the loss factor to 0.5. As

discussed in the above, the discrepancy between calculated

and theoretical values appears to be large around the mass-

spring resonance frequency at which the TLF becomes

high.

Inverse estimation of the support material’s physical

parameters or equivalent resistance, stiffness and inertance

constants is often performed in order to obtain the input

parameters for theoretical and numerical calculations [11].

As noted in Sect. 2, the theoretical oblique-incidence

vibration absorption coefficient at 30 degree can be used

instead of random-incidence vibration absorption coeffi-

cient. However, from the above observations, the support

material’s damping parameter such as the loss factor and

equivalent resistance constant can be overestimated.

5. CONCLUSION

In this paper, mechanical and moment impedances of

a rectangular supporting elastic material were derived in

closed form with the following assumptions:

1. only the one-dimensional longitudinal vibration is

excited in the thickness direction of the support

material,

2. the translational out-of-plane displacement and the

rotational slope of the plate are uniform over the

supporting depth.

Theoretical analysis was provided to investigate the

behaviors of bending wave absorption at the impedance

boundary. The translational and rotational mass-spring

resonance systems are composed of the plate and the

support material below the first longitudinal modal reso-

nance frequency in the thickness direction of the support

material. These resonance frequencies were also derived in

the closed form. Furthermore, incidence angle dependency

of the vibration absorption coefficient was confirmed to be

weak until about 60-degree-incidence.

The proposed impedances were compared with those

of the precise support material model by the finite element

analysis. This study confirmed that the presented mechani-

cal impedance agreed well with the precise model around

and below the translational mass-spring resonance fre-

quency. On the other hand, the presented moment

impedance was underestimated in entire frequency range

due to neglecting the shear reaction of the support material.

Furthermore, above the translational mass-spring resonance

frequency, the support material can no longer be replaced

as a lumped constant system. Thus the impedance

boundary model does not sufficiently simulate the behavior

of the precise model in particular at high frequencies.

However, compared to the three dimensional elastic

material model, the impedance boundary model can reduce

the computational cost and the human effort to input

calculation geometries. Furthermore, it is worth noting that

numerical procedures employed in Sect. 3 can evaluate

the mechanical and moment impedances even when three

dimensional elastic support materials have complex shape

and physical property. Thus, when we calculate the

vibration field of a plate with relatively complex supporting

systems, we may split the calculation into two processes. In

the preliminary step, the mechanical and moment impe-

dances are determined by the problem as depicted in Fig. 5.

Once the impedances are obtained, they can be input to

the calculation geometry of which the supporting system is

simplified as the impedance boundary.

Numerical modeling of the loss factor measurement

was performed in order to investigate the difference

between the theoretical and measured values. Compared

with the theoretical TLF under the diffuse field assumption,

the calculated values were overestimated due to the

diffraction effect and the self-reverberation of the band

pass filter. This tendency should be kept in mind when

conducting inverse estimation of the support material’s

physical parameters or equivalent resistance, stiffness and

inertance constants.
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