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APPROXIMATION BY SUBLINEAR OPERATORS

G. A. ANASTASSIOU

Abstract. In this paper, we study the approximation of functions by positive sub-

linear operators under differentiability. We produce general Jackson type inequali-

ties under initial conditions. We apply them to a series of well-known Max-product
operators. So our approach is quantitative by producing inequalities with their

right hand sides involving the modulus of continuity of a high order derivative of

the function under approximation.

1. Introduction

The main motivation here is the monograph by B. Bede, L. Coroianu, and S. Gal
[4], 2016.

Let N ∈ N, the well-known Bernstein polynomials ([6]) be positive linear op-
erators, defined by the formula

(1) BN (f)(x) =

N∑
k=0

(
N

k

)
xk(1− x)N−kf

( k
N

)
, x ∈ [0, 1] , f ∈ C([0, 1]).

T. Popoviciu in [6] 1935 proved for f ∈ C([0, 1]) that

(2) |BN (f)(x)− f(x)| ≤ 5

4
ω1

(
f,

1√
N

)
for all x ∈ [0, 1],

where

(3) ω1(f, δ) = sup
x,y∈[0,1]:
|x−y|≤δ

|f(x)− f(y)|, δ > 0,

is the first modulus of continuity.
G. G. Lorentz in [5, p. 21, 1986] proved for f ∈ C1([0, 1]) that

(4) |BN (f)(x)− f(x)| ≤ 3

4
√
N
ω1

(
f ′,

1√
N

)
for all x ∈ [0, 1].
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In [4, p. 10], the authors introduced the basic Max-product Bernstein operators

(5) B
(M)
N (f)(x) =

∨N
k=0 pN,k(x)f

(
k
N

)
∨N
k=0 pN,k(x)

, N ∈ N,

where
∨

stands for maximum, pN,k(x) =
(
N
k

)
xk(1− x)N−k and f : [0, 1]→ R+ =

[0,∞).
These operators are nonlinear and piecewise rational.
The authors [4] studied similar nonlinear operators such as: the Max-product

Favard-Szász-Mirakjan operators and their truncated version, the Max-product
Baskakov operators and their truncated version, and also many other similar spe-
cific operators. The study [4] is based on presenting the general theory of sublinear
operators. These Max-product operators tend to converge faster to the on hand
function.

So as mentioned in [4, p. 30] for f : [0, 1]→ R+ continuous, we have the estimate

(6) |B(M)
N (f)(x)− f(x)| ≤ 12ω1

(
f,

1√
N + 1

)
for all N ∈ N, x ∈ [0, 1].

Also from [4, p. 36], we mention that for f : [0, 1] → R+ being concave function,
we get

(7) |B(M)
N (f)(x)− f(x)| ≤ 2ω1

(
f,

1

N

)
for all x ∈ [0, 1],

a much faster convergence.
In this article, we expand the study [4] by considering smoothness of functions,

which is not done in [4]. So our inequalities are with respect to ω1

(
f (n), δ

)
, δ > 0,

n ∈ N.
At first,we present general related theory of sublinear operators, and then we

apply it to specific as above Max-product operators.

2. Main Results

Let I ⊂ R be a bounded or unbounded interval, n ∈ N, and

(8)
CBn+(I) =

{
f : I → R+ : f (i) is continuous and bounded on I,

for all i = 0, 1, . . . , n
}
.

Let f ∈ CBn+(I) and any x, y ∈ I. By Taylor’s formula, we have

(9) f(y) =

n∑
i=0

f (i)(x)
(y − x)i

i!
+

1

(n− 1)!

∫ y

x

(y − t)n−1
(
f (n)(t)− f (n)(x)

)
dt.

We define for

f ∈ CB+(I) = {f : I → R+ : f is continuous and bounded on I} ,
the first modulus of continuity

ω1(f, δ) = sup
x,y∈I:
|x−y|≤δ

|f(x)− f(y)| ,
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where 0 < δ ≤ diameter(I).
We call the remainder of (9)

(10) Rn (x, y) =
1

(n− 1)!

∫ y

x

(y − t)n−1
(
f (n)(t)− f (n)(x)

)
dt for all x, y ∈ I.

By [1, p. 217] and [2, Chapter 7, (7.27), p. 194], we get

(11) |Rn(x, y)| ≤ ω1(f (n), δ)

n!
|x− y|n

(
1 +

|x− y|
(n+ 1)δ

)
for all x, y ∈ I, δ > 0.

We may rewrite (11) as

(12) |Rn(x, y)| ≤ ω1(f (n), δ)

n!

[
|x− y|n +

|x− y|n+1

(n+ 1)δ

]
for all x, y ∈ I, δ > 0.

That is,

(13)
∣∣∣f(y)−

n∑
i=0

f (i)(x)
(y − x)i

i!

∣∣∣ ≤ ω1(f (n), δ)

n!

[
|x− y|n +

|x− y|n+1

(n+ 1)δ

]
for all x, y ∈ I, δ > 0.

Furthermore, it holds

(14) |f(y)− f(x)| ≤
n∑
i=1

∣∣∣f (i)(x)
∣∣∣ |y − x|i

i!
+
ω1(f (n), δ)

n!

[
|x− y|n +

|x− y|n+1

(n+ 1)δ

]
for all x, y ∈ I, δ > 0.

In case of f (i)(x) = 0 for i = 1, . . . , n, for a specific x ∈ I, we get

(15) |f(y)− f(x)| ≤ ω1(f (n), δ)

n!

[
|x− y|n +

|x− y|n+1

(n+ 1)δ

]
for all y ∈ I δ > 0.

In case of n = 1, we derive

(16) |f(y)− f(x)| ≤ |f ′(x)||y − x|+ ω1(f ′, δ)
[
|x− y|+ (x− y)2

2δ

]
for all x, y ∈ I, δ > 0.

In case of n = 1 and f ′(x) = 0, for a specific x ∈ I, we get

(17) |f(y)− f(x)| ≤ ω1(f ′, δ)
[
|x− y|+ (x− y)2

2δ

]
for all y ∈ I, δ > 0.

Call C+(I) = {f : I → R+ : f is continuous on I}.
Let LN : C+(I)→ CB+(I), n,N ∈ N, be a sequence of operators satisfying the

following properties (see also [4, p. 17]):
(i) (positive homogeneous)

(18) LN (αf) = αLN (f) for all α ≥ 0, f ∈ C+(I),

(ii) (Monotonicity)

(19) if f, g ∈ C+(I) satisfy f ≤ g, then LN (f) ≤ LN (g) for all N ∈ N,

and
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(iii) (Subadditivity)

(20) LN (f + g) ≤ LN (f) + LN (g) for all f, g ∈ C+(I).

We call LN positive sublinear operators.
In particular, we study the restrictions LN |CBn

+(I) : CBn+(I)→ CB+(I).

As in [4, p. 17], we get that for f, g ∈ CB+(I),

(21) |LN (f)(x)− LN (g)(x)| ≤ LN (|f − g|)(x) for all x ∈ I.
Furthermore, also from [4, p. 17], we have
(22)
|LN (f)(x)− f(x)| ≤ LN (|f(·)− f(x)|)(x) + |f(x)||LN (1)(x)− 1| for all x ∈ I.

Using (14) in (22), we obtain
(23)
|LN (f)(x)− f(x)|

≤ f(x)|LN (1)(x)− 1|+
n∑
i=1

|f (i)(x)|
i!

LN (| · −x|i)(x)

+
ω1(f (n), δ)

n!

[
LN (| · −x|n)(x) +

LN (| · −x|n+1)(x)

(n+ 1)δ

]
for all x ∈ I, δ > 0.

If LN (1) = 1 and f (i)(x) = 0, i = 1, . . . , n, x is fixed in I, we derive that

(24) |LN (f)(x)− f(x)| ≤ ω1(f (n), δ)

n!

[
LN (| · −x|n)(x) +

LN (| · −x|n+1)(x)

(n+ 1)δ

]
,

δ > 0.
We assume and choose

(25) δ =
(
LN (| · −x|n+1)(x)

) 1
n+1 > 0.

Therefore, we get

(26)
|LN (f)(x)− f(x)| ≤

ω1

(
f (n),

(
LN

(
| · −x|n+1

)
(x)
) 1

n+1
)

n!

×
[
LN (| · −x|n) (x) +

(
LN

(
| · −x|n+1

)
(x)
) n

n+1

(n+ 1)

]
.

Using (16) in (22), we also obtain

(27)

|LN (f)(x)− f(x)| ≤ f(x)|LN (1)(x)− 1|+ |f ′(x)|LN (| · −x|)(x)

+ ω1(f ′, δ)

[
LN (| · −x|)(x) +

LN
(
(· − x)2

)
(x)

2δ

]
for all x ∈ I, δ > 0.

Assuming LN (1) = 1 and f ′(x) = 0, for a specific x ∈ I, we get from (27) that
(n = 1 case)

(28) |LN (f)(x)− f(x)| ≤ ω1(f ′, δ)

[
LN (| · −x|)(x) +

LN
(
(· − x)2

)
(x)

2δ

]
, δ > 0.
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Assume and choose

(29) δ =
√
LN
(
(· − x)2

)
(x) > 0,

then it holds
(30)

|LN (f)(x)− f(x)| ≤ ω1

(
f ′,
√
LN
(
(· − x)2

)
(x)
)

×
[
LN (| · −x|)(x) +

√
LN
(
(· − x)2

)
(x)

2

]
for all N ∈ N.

We present Hölder’s inequality for positive sublinear operators.

Theorem 1. Let L : C+(I) → CB+(I) be a positive sublinear operator and
f, g ∈ C+(I). Furthermore let p, q > 1 : 1

p + 1
q = 1. Assume that L ((f (·))p) (s∗) ,

L ((g (·))q) (s∗) > 0 for some s∗ ∈ I. Then

(31) L(f(·)g(·))(s∗) ≤ (L((f(·))p)(s∗))
1
p (L ((g(·))q) (s∗))

1
q .

Proof. Let a, b ≥ 0, p, q > 1 : 1
p + 1

q = 1. The Young’s inequality says

(32) ab ≤ ap

p
+
bq

q
.

Then

(33)

f (s)

(L ((f(·))p) (s∗))
1
p

· g (s)

(L ((g(·))q) (s∗))
1
q

≤ (f (s))
p

p (L ((f(·))p) (s∗))
+

(g (s))
q

q (L ((g(·))q) (s∗))
for all s ∈ I.

Hence it holds

(34)

L (f(·)g(·)) (s∗)

(L ((f(·))p) (s∗))
1
p (L ((g(·))q) (s∗))

1
q

≤ (L ((f(·))p)) (s∗)

p (L ((f(·))p) (s∗))
+

(L ((g(·))q)) (s∗)

q (L ((g(·))q) (s∗))
=

1

p
+

1

q
= 1 for s∗ ∈ I,

proving the claim. �

By (25), (31), and LN (1) = 1, we obtain

(35) LN (| · −x|n) (x) ≤
(
LN

(
| · −x|n+1

)
(x)
) n

n+1 .

In case of n = 1 we derive

(36) LN (| · −x|)(x) ≤
√(

LN ((· − x)2)(x)
)
.

We have proved the following result.
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Theorem 2. Let (LN )N∈N be a sequence of positive sublinear operators from
C+(I) into CB+(I), and f ∈ CBn+(I), where n ∈ N and I ⊂ R a bounded or

unbounded interval. Assume LN (1) = 1 for all N ∈ N, and f (i)(x) = 0, i =
1, . . . , n, for a fixed x ∈ I. Furthermore, assume that LN

(
| · −x|n+1

)
(x) > 0 for

all N ∈ N.
Then

(37)
|LN (f)(x)− f(x)| ≤

ω1

(
f (n), (LN (| · −x|n+1)(x))

1
n+1
)

n!

×
[
LN (| · −x|n)(x)+

(LN (| · −x|n+1)(x))
n

n+1

(n+ 1)

]
for all N ∈ N.

We give (n = 1 case).

Corollary 3. Let (LN )N∈N be a sequence of positive sublinear operators from

C+(I) into CB+(I), f ∈ CB1
+(I), and I ⊂ R a bounded or unbounded interval.

Assume LN (1) = 1 for all N ∈ N, and f ′(x) = 0 for a fixed x ∈ I. Furthermore,
assume that LN

(
(· − x)2

)
(x) > 0 for all N ∈ N.

Then

(38)

|LN (f)(x)− f(x)| ≤ ω1

(
f ′,
√(

LN ((· − x)2)(x)
))

×

[
LN (|· − x|) (x) +

√(
LN ((· − x)2)(x)

)
2

]
for all N ∈ N.

Remark 4.
(i) to Theorem 2: Assuming f (n) is uniformly continuous on I, and

LN (| ·−x|n+1)(x)→ 0 as N →∞, using (35), we get that (LN (f))(x)→ f(x)
as N →∞.

(ii) to Corollary 3: Assuming f ′ is uniformly continuous on I, and
LN ((· − x)2)(x)→ 0 as N →∞, using (36), we get that (LN (f)) (x)→ f(x)
as N →∞.

(iii) The right hand sides of (37) and (38) are finite.

We also give the basic result (n = 0 case).

Theorem 5. Let (LN )N∈N be a sequence of positive sublinear operators from
C+(I) into CB+(I), and f ∈ CB+(I), where I ⊂ R a bounded or unbounded
interval. Assume that LN (| · −x|) (x) > 0 for some fixed x ∈ I and for all N ∈ N.
Then: 1)

(39)
|LN (f)(x)− f(x)| ≤ f(x) |LN (1)(x)− 1|

+ [LN (1)(x) + 1]ω1 (f, LN (| · −x|) (x))

for all N ∈ N.
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2) When LN (1) = 1, we get

(40) |LN (f)(x)− f(x)| ≤ 2ω1 (f, LN (| · −x|) (x)) for all N ∈ N.

Proof. From [4, p. 17], we get

(41)

|LN (f)(x)− f(x)| ≤ f(x) |LN (1)(x)− 1|

+
[
LN (1)(x) +

1

δ
LN (| · −x|)(x)

]
ω1(f, δ),

where δ > 0.
In (41), we choose δ = LN (| · −x|) (x) > 0. �

Remark 6. (to Theorem 5) Here x ∈ I is fixed.
(i) Assume LN (1)(x)→ 1 as N →∞, and LN (| · −x|) (x)→ 0 as N →∞, given

that f is uniformly continuous we get that Ln(f)(x)→ f(x) as N →∞ (use
of (39)). Notice here that LN (1)(x) is bounded.

(ii) Assume that LN (1) = 1, LN (| · −x|) (x)→ 0 as N →∞, and f is uniformly
continuous on I, then Ln(f)(x)→ f(x) as N →∞ (use of (40)).

(iii) The right hand sides of (39) and (40) are finite.

(iv) Variants of Theorem 5 have been applied extensively in [4] and [3].

3. Applications

Here we give applications to Theorem 2 and Corollary 3.

Remark 7. We start with the Max-product Bernstein operators

(42) B
(M)
N (f)(x) =

∨N
k=0 pN,k(x)f

(
k
N

)∨N
k=0 pN,k(x)

for all N ∈ N,

pN,k(x) =
(
N
k

)
xk(1−x)N−1, x ∈ [0, 1],

∨
stands for maximum, and f ∈C+([0, 1])=

{f : [0, 1]→ R+ is continuous}.
Clearly B

(M)
N is a positive sublinear operator from C+([0, 1]) into itself with

B
(M)
N (1) = 1. Furthermore, we notice that

(43) B
(M)
N (| · −x|m) (x) =

∨N
k=0 pN,k(x)

∣∣ k
N − x

∣∣m∨N
k=0 pN,k(x)

> 0

for all x ∈ (0, 1) and any m ∈ N, N ∈ N.
By [4, p. 31], we have

(44) B
(M)
N (| · −x|) (x) ≤ 6√

N + 1
for all x ∈ [0, 1], N ∈ N.

Notice that |· − x|m−1 ≤ 1, therefore,

| · −x|m = | · −x|| · −x|m−1 ≤ | · −x|, m ∈ N,

hence by (19),

B
(M)
N (| · −x|m)(x) ≤ B(M)

N (| · −x|)(x),
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that is,

(45) B
(M)
N (| · −x|m) (x) ≤ 6√

N + 1
for all x ∈ [0, 1], m,N ∈ N.

Denote

Cn+([0, 1]) = {f : [0, 1]→ R+, n-times continuously differentiable} , n ∈ N.

We get

Theorem 8. Let f ∈ Cn+([0, 1]), a fixed x ∈ (0, 1), such that f (i)(x) = 0,
i = 1, . . . , n. Then

(46)

∣∣∣B(M)
N (f)(x)− f(x)

∣∣∣ ≤ω1

(
f (n),

(
6√
N+1

) 1
n+1

)
n!

×
[

6√
N + 1

+
1

(n+ 1)

(
6√
N + 1

) n
n+1

]
for all N ∈ N. We get B

(M)
N (f)(x)→ f(x) as N →∞.

Proof. By Theorem 2. �

The case n = 1 follows.

Corollary 9. Let f ∈ C1
+([0, 1]), a fixed x ∈ (0, 1), such that f ′(x) = 0. Then

(47)

∣∣∣B(M)
N (f)(x)− f(x)

∣∣∣ ≤ ω1

(
f ′,

√
6

4
√
N + 1

)
×
[

6√
N + 1

+

√
6

2
(

4
√
N + 1

)] for all N ∈ N.

Remark 10. Let f ∈ C2 ([a, b],R+), then

(48) |f(x)− f(y)| ≤ ‖f ′‖∞ |x− y| for all x, y ∈ [a, b],

and

(49) |f ′(x)− f ′(y)| ≤ ‖f ′′‖∞ |x− y| for all x, y ∈ [a, b].

That is, f, f ′ are Lipschitz type functions.
Next, we provide examples so that

(50) ‖f ′′‖∞ ≤ ‖f
′‖∞ .

i) Let f(x) = sinx, f ′(x) = cosx and f ′′(x) = − sinx, here ‖f ′′‖∞ = ‖f ′t‖∞ =
1 for x ∈ [0, π]. Notice also that for x = π

2 , we have f ′
(
π
2

)
= cos π2 = 0.

ii) Let x ∈ [0, π], f(x) = (x − 1)3 + 1, f ′(x) = 3(x − 1)2, f ′′(x) = 6(x − 1)
and f ′(1) = 0. Notice that ‖f ′‖∞ = 3(π − 1)2 and ‖f ′′‖∞ = 6(π − 1) by
|x− 1| ≤ π − 1. Because 6(π − 1) ≤ 3(π − 1)2, we get that ‖f ′′‖∞ ≤ ‖f ′‖∞.
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So over Lipschitz classes of functions with Lipschitz derivatives, we would like to
compare (6) to (47).

Thus some calculations, we get

(51)

√
6

4
√
N + 1

[
6√
N + 1

+

√
6

2
(

4
√
N + 1

)] ≤ 12√
N + 1

,

true for all N ∈ N, N ≥ 7.
Similarly, we get

(52)
1

n!

( 6√
N + 1

) 1
n+1

[
6√
N + 1

+
1

(n+ 1)

(
6√
N + 1

) n
n+1

]
≤ 12√

N + 1
,

for large enough N ∈ N.
Therefore, (46) and (47), over differentiability, can give better estimates and

speeds than (6).

We continue with the following remark.

Remark 11. Now, we focus on the truncated Favard-Szász-Mirakjan operators
(53)

T
(M)
N (f)(x) =

∨N
k=0 sN,k(x)f

(
k
N

)∨N
k=0 sN,k(x)

for all x ∈ [0, 1], N ∈ N, f ∈ C+([0, 1]),

sN,k(x) = (Nx)k

k! , see also [4, p. 11].
By Theorem 3.2.5, [4, p. 178], we get

(54)
∣∣∣T (M)
N (f)(x)− f(x)

∣∣∣ ≤ 6ω1

(
f,

1√
N

)
for all N ∈ N, x ∈ [0, 1].

Also from [4, p. 178–179], we get
(55)

T
(M)
N (| · −x|) (x) =

∨N
k=0

(Nx)k

k!

∣∣ k
N − x

∣∣∨N
k=0

(Nx)k

k!

≤ 3√
N

for all x ∈ [0, 1], N ∈ N.

For m ∈ N, clearly, it holds

T
(M)
N (| · −x|m) (x) ≤ T (M)

N (| · −x|) (x)

and

(56) T
(M)
N (| · −x|m) (x) ≤ 3√

N
for all x ∈ [0, 1], N ∈ N, m ∈ N.

The operators T
(M)
N are positive sublinear from C+([0, 1]) into itself with

T
(M)
N (1)=1. Also it holds

(57) T
(M)
N (| · −x|m) (x) =

∨N
k=0

(Nx)k

k!

∣∣ k
N − x

∣∣m∨N
k=0

(Nx)k

k!

> 0

for all x ∈ (0, 1], m ∈ N, N ∈ N.

We get the following theorem.



246 G. A. ANASTASSIOU

Theorem 12. Let f ∈ Cn+([0, 1]), x fixed in (0, 1], such that f (i)(x) = 0,
i = 1, . . . , n. Then

(58)

∣∣∣T (M)
N (f)(x)− f(x)

∣∣∣ ≤ ω1

(
f (n),

(
3√
N

) 1
n+1

)
n!

·

×
[

3√
N

+
1

(n+ 1)

( 3√
N

) n
n+1

]
for all N ∈ N.

Proof. By Theorem 2. �

The case n = 1 follows.

Corollary 13. Let f ∈ C1
+([0, 1]), x ∈ (0, 1], and f ′(x) = 0. Then

(59)
∣∣∣T (M)
N (f)(x)− f(x)

∣∣∣ ≤ ω1

(
f ′,

√
3

4
√
N

)[
3√
N

+

√
3

2 4
√
N

]
for all N ∈ N.

From (58) and/or (59), we get T
(M)
N (f)(x)→ f(x) as N →∞.

We make some remarks.

Remark 14. We compare (58) and (59) to (54). We have

(60)

√
3

4
√
N

[
3√
N

+

√
3

2 4
√
N

]
≤ 6√

N
⇐⇒ 1

4
√
N
≤ 3
√

3

6
,

true for large enough N ∈ N.
Also we find that

(61)
1

n!

( 3√
N

) 1
n+1

[
3√
N

+
1

(n+ 1)

(
3√
N

) n
n+1

]
≤ 6√

N

⇐⇒

(62)
1

2(n+1)
√
N
≤

2n!− 1
(n+1)

n+1
√

3
,

true for large enough N ∈ N.
Therefore, (58) and (59), over differentiability, give better estimates and speeds

than (54).

Remark 15. Next, we study the truncated Max-product Baskakov operators
(see [4, p. 11])

(63) U
(M)
N (f)(x) =

∨N
k=0 bN,k(x)f

(
k
N

)∨N
k=0 bN,k(x)

, x ∈ [0, 1], f ∈ C+([0, 1]), N ∈ N,

where

(64) bN,k(x) =

(
N + k − 1

k

)
xk

(1 + x)N+k
.
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From [4, pp. 217–218], we get (x ∈ [0, 1])

(65)

(
U

(M)
N (| · −x|)

)
(x) =

∨N
k=0 bN,k(x)

∣∣ k
N − x

∣∣∨N
k=0 bN,k(x)

≤
2
√

3
(√

2 + 2
)

√
N + 1

, N ≥ 2, N ∈ N.

Let f ∈ C+([0, 1]), then (by [4, p. 217]).

(66)
∣∣∣U (M)
N (f)(x)− f(x)

∣∣∣ ≤ 24ω1

(
f,

1√
N + 1

)
, N ∈ N, N ≥ 2, x ∈ [0, 1].

See here that ∣∣∣ k
N
− x
∣∣∣ ≤ 1 for all x ∈ [0, 1].

Let m ∈ N, then it holds

(67)
(
U

(M)
N (| · −x|m)

)
(x) ≤

2
√

3
(√

2 + 2
)

√
N + 1

, N ≥ 2, N ∈ N.

Also it holds U
(M)
N (1)(x) = 1 and U

(M)
N are positive sublinear operators from

C+([0, 1]) into itself. Also it holds

U
(M)
N (| · −x|m) (x) > 0

for all x ∈ (0, 1], m ∈ N, N ∈ N.

We give the following theorem.

Theorem 16. Let f ∈ Cn+([0, 1]), x ∈ (0, 1] fixed, such that f (i)(x) = 0,
i = 1, . . . , n, n ∈ N. Then

∣∣∣U (M)
N (f)(x)− f(x)

∣∣∣ ≤ ω1

(
f (n), ( 2

√
3(
√
2+2)√

N+1

) 1
n+1
)

n!

×
[

2
√

3
(√

2 + 2
)

√
N + 1

+
1

(n+ 1)

(2
√

3
(√

2 + 2
)

√
N + 1

) n
n+1

]
− {1}(68)

for all N ∈ N.

Proof. By Theorem 2. �

The case n = 1 follows.

Corollary 17. Let f ∈ C1
+([0, 1]), x ∈ (0, 1] fixed f ′(x) = 0. Then∣∣∣U (M)

N (f)(x)− f(x)
∣∣∣ ≤ ω1

(
f ′,
(2
√

3
(√

2 + 2
)

√
N + 1

) 1
2

)
×
[

2
√

3
(√

2 + 2
)

√
N + 1

+
1

2

(2
√

3
(√

2 + 2
)

√
N + 1

) 1
2

]
(69)

for all N ∈ N− {1}.

From (68) and/or (69), we get U
(M)
N (f)(x)→ f(x) as N →∞.
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Remark 18. Next we compare (68) and (69) to (66). We notice that(2
√

3(
√

2 + 2)√
N + 1

) 1
2

[
2
√

3(
√

2 + 2)√
N + 1

+
1

2

(2
√

3(
√

2 + 2)√
N + 1

) 1
2

]
≤ 24√

N + 1

(70) ⇐⇒

1
4
√
N + 1

≤ 24−
√

3(
√

2 + 2)√
2
√

3(
√

2 + 2)
(
2
√

3
(√

2 + 2
)) ,

true for large enough N ∈ N− {1}.
We also observe that

(71)
1

n!

(2
√

3(
√

2 + 2)√
N + 1

) 1
n+1

[
2
√

3(
√

2 + 2)√
N + 1

+

(
2
√
3(
√
2+2)√

N+1

) n
n+1

(n+ 1)

]
≤ 24√

N + 1

⇐⇒

(72)
1

2(n+1)
√
N + 1

≤ n!

n+1

√
2
√

3(
√

2 + 2)

[
12−

√
3(
√
2+2)

(n+1)!√
3(
√

2 + 2)

]
,

true for large enough N ∈ N− {1}.
Therefore, (68) and (69), over differentiability, give better estimates and speeds

than (66).

We continue with the following remarks.

Remark 19. Here we study Max-product Meyer-Köning and Zeller operators
(see [4, p. 11)] defined by

(73) Z
(M)
N (f)(x) =

∨∞
k=0 sN,k(x)f

(
k

N+k

)
∨∞
k=0 sN,k(x)

for all N ∈ N, f ∈ C+([0, 1]),

sN,k(x) =
(
N+k
k

)
xk, x ∈ [0, 1].

By [4, p. 248], we obtain

(74)
∣∣∣Z(M)
N (f)(x)− f(x)

∣∣∣ ≤ 18ω1

(
f,

(1− x)
√
x√

N

)
, N ≥ 4, x ∈ [0, 1].

By [4, p. 253], we get

(75) Z
(M)
N (| · −x|) (x) ≤ 8(1 +

√
5)

3

√
x(1− x)√

N
for all x ∈ [0, 1].

Let m ∈ N, then

(76) Z
(M)
N (| · −x|m) (x) =

∨N
k=0 sN,k(x)

∣∣ k
N+k − x

∣∣m∨N
k=0 sN,k(x)

≤ Z(M)
N (| · −x|) (x),
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so that

(76) Z
(M)
N (| · −x|m) (x) ≤ 8(1 +

√
5)

3

√
x(1− x)√

N
=: ρ(x)

for all x ∈ [0, 1], N ≥ 4, m ∈ N.

Also it holds that Z
(M)
N (1) = 1, and Z

(M)
N are positive sublinear operators from

C+([0, 1]) into itself. Also it holds that

(77) Z
(M)
N (| · −x|m) (x) > 0

for all x ∈ (0, 1), m ∈ N, N ∈ N.

Theorem 20. Let f ∈ Cn+([0, 1]), n ∈ N, x ∈ (0, 1), and f (i)(x) = 0, i =
1, . . . , n. Then

(78)
∣∣Z(M)
N (f)(x)− f(x)

∣∣ ≤ ω1

(
f (n), (ρ(x))

1
n+1

)
n!

[
ρ(x) +

(ρ(x))
n

n+1

(n+ 1)

]
for all N ≥ 4, N ∈ N.

Proof. By Theorem 2. �

The case n = 1 follows.

Corollary 21. Let f ∈ C1
+([0, 1]), x ∈ (0, 1), and f ′(x) = 0. Then

(79)
∣∣Z(M)
N (f)(x)− f(x)

∣∣ ≤ ω1

(
f ′,
√
ρ(x)

)[
ρ(x) +

√
ρ(x)

2

]
for all N ≥ 4, N ∈ N.

From (78) and (79), we get that Z
(M)
N (f)(x)→ f(x) as N →∞.

We finish with the remark.

Remark 22. Next we compare (78) and (79) to (74).
We notice that √

ρ(x)

[
ρ(x) +

√
ρ(x)

2

]
≤ 18(1− x)

√
x√

N

(80) ⇐⇒
1√
N
≤ 3

8(1 +
√

5)
√
x(1− x)

(27− 2(1 +
√

5)

4(1 +
√

5)

)2
,

true for large enough N ≥ 4, N ∈ N, x ∈ (0, 1).
We also observe that

(81)
(ρ(x))

1
n+1

n!

[
ρ(x) +

(ρ(x))
n

n+1

n+ 1

]
≤ 18(1− x)

√
x√

N

⇐⇒

(82)
1√
N
≤ 3

8
(
1 +
√

5
)√

x(1− x)

( 27n!

4
(
1 +
√

5
) − 1

n+ 1

)n+1

,

true for large enough N ≥ 4, N ∈ N, x ∈ (0, 1).
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Therefore, (78) and (79), under differentiability, perform better than (74).
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