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Abstract. Let K be a field and S = Klz1,...,Zm,Y1,---,Yn] be the standard bigraded
polynomial ring over K. In this paper, we explicitly describe the structure of finitely gener-
ated bigraded “sequentially Cohen-Macaulay” S-modules with respect to Q = (y1,...,Yn)-
Next, we give a characterization of sequentially Cohen-Macaulay modules with respect
to @ in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially
Cohen-Macaulay with respect to ) are considered.
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INTRODUCTION

Let K be a field and S = Klz1,...,Zm,¥1,-..,Yn] be the standard bigraded
K-algebra with degz; = (1,0) and degy; = (0,1) for all ¢ and j. Consider the
bigraded irrelevant ideals P = (z1, ..., %) and @ = (y1,...,Yn). Let M be a finitely
generated bigraded S-module. The largest integer k for which HC’“?(M ) # 0 is called
the cohomological dimension of M with respect to @ and denoted by cd(Q,M).
A finite filtration D: 0 =Dy & D1 & ... & D, = M of bigraded submodules of M is
called the dimension filtration of M with respect to @ if D;_1 is the largest bigraded
submodule of D; for which ¢d(@,D;—1) < ¢d(Q,D;) for all i = 1,...,r, see [6]. In
Section 1, we explicitly describe the structure of the submodules D; that extends [§],

Proposition 2.2. In fact, it is shown that D, = (| N, fori=1,...,r —1 where
s p;€Bi.q
0= () N, is a reduced primary decomposition of 0 in M where N; is p;-primary for
j=1
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j=1,...,s and
Biq ={p € Ass(M): cd(Q,S/p) < cd(Q, Di)}.

In [7], we say M is Cohen-Macaulay with respect to @ if grade(Q, M) = c¢d(Q, M).
A finite filtration 7: 0 = My & My & ... & M, = M of M by bigraded submod-
ules of M is called a Cohen-Macaulay filtration with respect to @ if each quotient
M;/M;_; is Cohen-Macaulay with respect to @@ and

0 < ed(Q, My /M) < ¢d(Q, Mo/ M) < ... < cd(Q, My /M, _1).

If M admits a Cohen-Macaulay filtration with respect to @, then we say M is se-
quentially Cohen-Macaulay with respect to @, see [6]. Note that if M is sequentially
Cohen-Macaulay with respect to @, then the filtration F is uniquely determined
and it is just the dimension filtration of M with respect to @, that is, 7 = D. In
Section 2, we give a characterization of sequentially Cohen-Macaulay modules with
respect to @ in terms of local cohomology modules which extends [4], Corollary 4.4,
and [3], Corollary 3.10. We apply this result and the description of the submod-
ules M; mentioned earlier, showing that S/I is sequentially Cohen-Macaulay with
respect to P and () where I is the Stanley-Reisner ideal that corresponds to the
natural triangulation of the projective plane P2. Here S = K|[z1, %2, 3, Y1, Y2, Y3),
P = (z1,22,23) and @ = (y1,y2,y3). Note that S/I is Cohen-Macaulay of dimen-
sion 3 if char K # 2.

In [7] we have shown that if M is a finitely generated bigraded Cohen-Macaulay
S-module which is Cohen-Macaulay with respect to P, then M is Cohen-Macaulay
with respect to . Inspired by this fact and the above example we have the fol-
lowing question: Let I C S be a monomial ideal. Suppose S/I is Cohen-Macaulay.
If S/I is sequentially Cohen-Macauly with respect to P, is S/I sequentially Cohen-
Macaulay with respect to Q7 We do not know the answer to this question yet,
however in the last section, we obtain some properties of a Cohen-Macaulay filtra-
tion with respect to @ in general provided that the module itself is Cohen-Macaulay,
see Propositions 3.3 and 3.4. Inspired by Proposition 3.4, we pose the following
question: Let M be a finitely generated bigraded Cohen-Macaulay S-module such
that HC’“?(M) # 0 for all grade(Q,M) < k < cd(Q,M). Is HL(M) # 0 for all
grade(P, M) < s < c¢d(P, M)? Of course the question has affirmative answer in the
case that M has only one (two) non-vanishing local cohomology with respect to Q.
The projective plane P? would also be the case as module with three non-vanishing
local cohomology.
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1. THE DIMENSION FILTRATION WITH RESPECT TO Q

Let K be a field and S = K[21,...,Zm, Y1, -.,Yn] the standard bigraded polyno-
mial ring over K. In other words, degxz; = (1,0) and degy; = (0,1) for all ¢ and j.
Consider the bigraded irrelevant ideals P = (z1,...,2,) and @ = (y1,...,Yn), and
let M be a finitely generated bigraded S-module. We denote by c¢d(Q, M) the coho-
mological dimension of M with respect to (Q which is the largest integer ¢ for which
H§(M) # 0. Notice that 0 < ¢d(Q, M) < n.

We recall the following facts which will be used in the sequel.

Fact 1.1. If M is Cohen-Macaulay, then
grade(P, M) < dim M — cd(Q, M),

and the equality holds, see [7], Formula 5.

Let ¢ € 7. In [7], we say M is relative Cohen-Macaulay with respect to @ if
H&(M) =0 for all ¢ # ¢. In other words, grade(Q, M) = cd(Q, M) = q. From now
on, we omit the word “relative” for simplicity and say M is Cohen-Macaulay with
respect to Q.

Fact 1.2. If M is Cohen-Macaulay with respect to @ with |K| = oo, then
cd(P, M) + cd(Q, M) = dim M,

see [7], Theorem 3.6.
Fact 1.3. The exact sequence 0 — M’ — M — M" — 0 of finitely generated
bigraded S-modules yields

cd(Q, M) = max{cd(Q, M"),cd(Q, M")},

see the general version of [2], Proposition 4.4.

Fact 1.4.
cd(Q, M) = max{cd(Q, S/p): p € Ass(M)},

see the general version of [2], Corollary 4.6.

For a finitely generated bigraded S-module M, there is a unique largest bigraded
submodule N of M for which ¢d(Q, N) < cd(Q, M), see [6], Lemma 1.6. We recall
the following definition from [6].
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Definition 1.5. We call a filtration D: 0 = Dy & D1 & ... & D, = M of
bigraded submodules of M the dimension filtration of M with respect to Q if D; 1
is the largest bigraded submodule of D; for which ¢d(Q, D;—1) < cd(Q, D;) for all
t=1,...,7r.

Remark 1.6. Let D be the dimension filtration of M with respect to Q). For all i,
the exact sequence 0 — D;_; — D; — D;/D;_1 — 0 by using Fact 1.3 yields
cd(Q, D;) = max{cd(Q, Di-1),cd(Q, Di/D;—1)} = cd(Q, D;/D;_1).

Thus, Cd(Q, Di—l/Di—Q) < Cd(C)7 Di/Di—l) for all 1.
Let D be the dimension filtration of M with respect to ). We set

Big={p € Ass(M): cd(Q,S/p) <cd(@Q,Di)}, Lig= [ »

PEB;.Q

and
Aig={peAss(M): peV(lig)} for i=1,...,r

Lemma 1.7. Let the notation be as above. Then the following statements hold
A; o =Big=Ass(D;) fori=1,...,r

Consequently,
Supp(D;) C V(1) fori=1,...,r

Proof. In order to show the first equality, we note that B; o C A;¢ for
it=1,...,r. Nowlet p € A;. Then p € Ass(M) with I, o C p. Hence q C p
for some q € Ass(M) with c¢d(Q,S/q) < ¢d(Q,D;). The canonical epimorphism
S/q — S/p yields cd(Q, S/p) < cd(Q, S/q) by Fact 1.3. It follows that p € B; ¢ and
hence Ai7Q - Bi,Q.

To show the second equality, let p € B; . Then there is a submodule N C M
such that N = S/p and c¢d(Q, S/p) < cd(Q, D;). Using Fact 1.3 we have

Cd(Qa N+ D’L) = ma’X{Cd(Qa Di)vcd(Qv N/(N N Dl))} = Cd(Qv D’L))

and hence N C D;. This shows that p € Ass(D;) and therefore B; o C Ass(D;).
Now let p € Ass(D;). Then p € Ass(M) and cd(Q, S/p) < cd(Q, D;) by Fact 1.4.
This shows that p € B; ¢ and hence Ass(D;) C B; ¢. O

In the following we describe the structure of the submodules D; in the dimension
filtration of D with respect to () which extends [8], Proposition 2.2.
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Proposition 1.8. Let D be the dimension filtration of M with respect to Q.
Then
D,=H) )= () N
pi€Bi.q

S
fori=1,...,7—1 where 0 = (| Nj is a reduced primary decomposition of 0 in M
j=1
with Nj, p;-primary for j =1,...,s.

Proof. In order to prove the first equality, we have V (Ann(D;)) = Supp(D;) C
V(li,g) fori=1,...,r —1 by Lemma 1.7. Since I, ¢ is finitely generated, it follows
that IfQ C Ann(D;) for some integer k; and hence IfbDi = 0 for some k;. Thus
D; :HRQ(Di) C HRQ(M) fori=1,...,r—1.

Now we prove the equality by decreasing induction on i. For i = r — 1, we assume
that D1 & H?r—l Q(M ) C D, = M. It follows from the definition of dimension
filtration that cd(Q, HY | _(M)) = cd(Q, M). Note that

1.Q
ASSH?LQ(M) =A;o=Ass(D;) fori=1,...,r—1
by [5], Proposition 3.13, (c) and Lemma 1.7. It follows that cd(Q, H} | o M) =

cd(Q, Dr_1,0), and hence cd(Q,D,_1,9) = cd(Q,M), a contradiction. Thus
D,_109 = HY (M). Now let 1 < ¢ < r —1, and assume that D; = H%Q(M).

In_1,0
We show that D;_y = H}, | (M). Assume D;_y G Hy | (M). As Hy | (M) C
H?i,Q(M) = D;, we have cd(Q,H?FLQ (M)) > cd(Q, D;). Since AssH?FLQ(M) =

Ass(D;_1), it follows that c¢d(Q,D;_1) = Cd(QaH?,;_lQ(M)) > cd(Q, D;), a con-

tradiction. Therefore, D; 1 = HR_lQ(M ). The second equality follows from
Lemma 1.7 and [5], Proposition 3.13 (a). O

Remark 1.9. Let D be the dimension filtration of M with respect to Q with
cd(Q, M) = q. We call the submodule

D= (] N= ] N
p;i€Br_1,Q cd(Q,S/p;j)=q

the unmixed component of M with respect to ) and denote it by ug ar(0). Notice
that um,ar(0) = upr(0) was introduced by Schenzel in [8]. If M is relatively unmixed
with respect to @, that is, cd(Q, M) = cd(Q,S/p) for all p € Ass(M), then by
Proposition 1.8 we have

Di= () Nj=[)N;=0 foralli<r.
pi€Biq Jj=1
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Corollary 1.10. Let D be the dimension filtration of M with respect to ). Then
fori=1,...,r we have

Ass(M/D;) = Ass(M) — Ass(D;).

Proof. The assertion follows from Proposition 1.8, Lemma 1.7 and the fact
that Ass M/HY o (M) = Ass(M) — A q, see [5], Proposition 3.13 (c). O

2. SEQUENTIALLY COHEN-MACAULAY WITH RESPECT TO (@

We recall the following definition from [6].

Definition 2.1. Let M be a finitely generated bigraded S-module. We call a fi-
nite filtration F: 0 = My & M1 & ... & M, = M of M by bigraded submodules M
a Cohen-Macaulay filtration with respect to @ if

(a) each quotient M;/M;_; is Cohen-Macaulay with respect to Q;

(b) 0 < cd(Q, My/My) < cd(Q, Mzy/M;) < ... <cd(Q,M,/M,_1).
We call M to be sequentially Cohen-Macaulay with respect to @ if M admits
a Cohen-Macaulay filtration with respect to Q.

Note that if M is sequentially Cohen-Macaulay with respect to @, then the filtra-
tion F in the definition above is uniquely determined and it is just the dimension
filtration of M with respect to @ defined in Definition 1.5, see [6], Proposition 1.9.

We have the following characterization of sequentially Cohen-Macaulay modules
with respect to @ in terms of local cohomology modules which extends [4], Corol-
lary 4.4, and [3], Corollary 3.10.

Proposition 2.2. Let D: 0 = Dy & D1 & ... & D, = M be the dimension
filtration of M with respect to Q. Then the following statements are equivalent:
(a) M is sequentially Cohen-Macaulay with respect to Q;
(b) HE(M/D;i—1) =0 fori=1,...,r and k < cd(Q, D;);
(c) grade(Q,M/D;_1) =cd(Q,D;) fori=1,...,r.

Proof. (a) = (b): We proceed by decreasing induction on i. As D,;/D;_; is
Cohen-Macaulay with respect to @ for all i, for ¢ = r we have Hg(M/Dr,l) =0
for £ < cd(@,M). Now let 1 < i < r, and assume that HC%(M/Di,l) = 0 for
k < cd(Q, D;). The exact sequence

0— Difl/Di,Q — M/Di,Q —)M/Di,1 — 0,
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induces the following long exact sequence
(1) oo = HY(Dio1/Di—g) = HE(M/Dji—s) — H(M/Dj—q) — ...

As D;_1/D;_5 is Cohen-Macaulay with respect to @, we have Hg (Di—1/Di—2) =0
for k < ¢d(Q, D;—1). By Remark 1.6, we have ¢cd(Q, D;—1) = c¢d(Q, D;_1/D;_3) <
cd(Q, D;). So, by using (1) and the induction hypothesis, we have Hg (M/D;_5)=0
for k < cd(Q, D;—1), as desired.

(b) = (a): By Remark 1.6 we have c¢d(Q, D;/D;_1) < ¢d(Q, D;+1/D;) for all 4.
Thus it suffices to show that D;/D,_; is Cohen-Macaulay with respect to @ for all 4.
We prove this statement by decreasing induction on . In condition (b), we first
assume ¢ = r. It follows that M/D,_; is Cohen-Macaulay with respect to Q. Now
let 1 < i < r, and assume that D;/D;_;1 is Cohen-Macaulay with respect to ). The
exact sequence

0— Di/Di,1 — M/Di,1 — ]\4—/.Dz — 0,

induces the following long exact sequence
(2) o= HE N (Di/Diy) = HE N (M/Diy) — HE (M D) — ...

Suppose k < ¢d(Q,D;—1). Induction hypothesis and our assumption say that
HYN(Di/Diy) = HE(M/D;) = 0. Hence Hy '(M/Di1) = 0 by (2). We
have Hg(M/Di,g) = 0 for k¥ < cd(Q, D;_1) because of our assumption again.
Thus Hg(Di_l/Di_g) = 0 for k < ¢d(Q,D;—1) by (1). Therefore D;_1/D;_o is
Cohen-Macaulay with respect to @, as desired.

(b) = (c): We set ¢cd(Q, D;) = c¢d(Q, D;/D;—1) =gq; for i = 1,...,r. Our assump-
tion says that grade(Q,M/D;_1) > ¢; for i = 1,...,r. We only need to show that
H{ (M/D;—1) # 0. Consider the long exact sequence

(3) .= HEH(M/D;) = HE(Di/Di—y) — HE(M/Di_y) — ...

Since ¢; — 1 < q; < ¢i+1, it follows from our assumption that Hg'_l(M/Di) =0. If
H&(M/Di—1) = 0, then by (3) we have H} (D;/D;—1) = 0, a contradiction. The
implication (c) = (b) is obvious. O

As an application of Proposition 1.8 and Proposition 2.2 we have

Example 2.3. Let I be the Stanley-Reisner ideal that corresponds to the natural
triangulation of the projective plane P2. Then
I = (12923, T172Y1, T173Y2, T1Y1Y3, T1Y2Y3, T2T3Y3, T2Y1Y2, T2Y2Y3, T3Y1Y2, T3Y1Y3)-
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We set R = S/I where S = Klx1,29,23,Y1,Y2,¥3], P = (21,22,23) and Q =
(y1,y2,y3). Our aim is to show that R is sequentially Cohen-Macaulay with respect
to P and . Note that R is Cohen-Macaulay of dimension 3 if char K # 2. The ideal I
has the minimal primary decomposition I = H p; where p1 = (x3,y1,¥3), P2 =
i=1

(T1,91,93), P3 = (22,91,92), Pa = (T3,91,92), P5s = (21,92,¥3), Pe = (22,92,¥3),
pr = (2,23,93), ps = (21,22,41), Po = (21,23, ¥2), Pro = (21,22,23). Since
P = pyp € Ass(R), we have grade(P, R) = 0. By Fact 1.4 we have cd(P, R) = 2 and
cd(@, R) = 3. As R is Cohen-Macaulay, it follows from Fact 1.1 that grade(@, R) = 1.
We first show that R is sequentially Cohen-Macaulay with respect to P. By Propo-
sition 1.8, R has the dimension filtration

0=RyG R G Ry G Rs =R,

with respect to P where

9 6
Rlzﬂpi/f and R2:ﬂpi/1.
=1

i=1

By Corollary 1.10 we have
Ass(Ry) = Ass(R) — Ass(R/R1) = {p10}

and
ASS(RQ) = ASS(R) — ASS(R/RQ) = {1377138713971310}-

It follows that cd(P, R1) = 0 and cd(P, Rz) = 1. We set I} =

9
1=

6
pi and Iy = ) pi.
1 i=1
In view of Proposition 2.2, we need to show that

grade(P, R3/Ry) = grade(P, R) = cd(P, Ry) = 0,
grade(P, R3/R;) = grade(P, S/I1) = cd(P,Ry) =1

and
grade(P, R3/R2) = grade(P, S/I3) = cd(P,R) = 2.

The first equality is obvious. As P € p; fori =1,...,9, we have grade(P, S/I;) > 1.
On the other hand, grade(P,S/I1) < dim S/} — c¢d(Q,S/I;) = 3 —2 = 1. Thus
the second equality holds. In order to show the third equality, we note that S/I,
has dimension 3 and, by using CoCoA [1], depth 2. Thus Fact 1.1 can not be used
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to compute grade(P, S/I2). We set q1 = p1 N p2 = (123,Y1,¥Y3), g2 = P3 Nps =
(xaws,y1,y2) and g3 = ps N ps = (z122,y2,ys3). Consider the exact sequence

0—>S/qlﬂq2 —)S/ql@S/qQ —)S/(q1+q2)—>0

Since grade(P, S/q1®S/qz2) = 2 and grade(P, S/(q1+q2)) = 1, it follows that grade(P,
S/(q1 N qz2)) = 2. Since cd(P,S/(q1 Nq2)) = 2, we have grade(P, S/(q1 N gqz2)) = 2.
Consider the exact sequence

(4) 0—S/I,— S/q1Nqga®S/q3 = S/(q1 +93) N (g2 + q3) — 0.
The exact sequence

0= 5/(a1+a3) N (a2 +d3) — 5/(q1 +4d3) & 5/(d2 +q3) = 5/ (a1 + 42 +d3) = 0
yields that grade(P, S/(q1+4q3)N(q2+93)) = 1. So, by (4) we have grade(P, S/I2) > 2.
As cd(P,S/I3) = 2, we conclude that grade(P, S/I2) = 2, as desired.

Next, we show that R is sequentially Cohen-Macaulay with respect to Q. By
Proposition 1.8, R has the dimension filtration 0 = Ry & Ry & Ry & R3 = R

10
with respect to @ where Ry = (] p;/I and Ry = p19/I. By Corollary 1.10 we have
=7

10
cd(Q, R1) =1 and ¢d(Q, R2) = 2. We set J = (] p;. In view of Proposition 2.2, we
i=T7

(3

need to show that

grade(Qa R3/R0) = grade(Qa R) = Cd(Qa Rl) = ]-7
grade(Q, Rs/R1) = grade(Q, S/J) = ¢d(Q, R2) = 2

and

grade(@v RJ/R2) = grade(Qa S/pIO) = Cd(Qv R) =3.

The first and the third statements are obvious. In order to prove the second equality,
consider the exact sequence

9 9
(5) 0 8/J =8/ (pi@ /oo — 5/ () (bs +p10) = 0.
=7 =7

An exact sequence argument shows that

9 9
grade (Q,S/ ﬂ pi) = grade(Q, S/ ﬂ(pz + Pm)) =2.
i=7 i=7
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Thus it follows from (5) that grade(Q, S/J) > 2. On the other hand,
grade(Q, S/J) < dim S/J —cd(P,S/J) =3—-1=2.

Therefore, grade(Q, S/J) = 2, as desired.

3. COHEN-MACAULAY MODULES THAT ARE SEQUENTIALLY COHEN-MACAULAY
WITH RESPECT TO ()

In [7] we have shown that if M is a finitely generated bigraded Cohen-Macaulay
S-module which is Cohen-Macaulay with respect to P, then M is Cohen-Macaulay
with respect to (. Inspired by this fact and Example 2.3 we have the following
question.

Question 3.1. Let I C S be a monomial ideal. Suppose S/I is Cohen-Macaulay.
If S/I is sequentially Cohen-Macauly with respect to P, is S/I sequentially Cohen-
Macaulay with respect to Q7

We do not know the answer to this question yet, however in this section, we obtain
some properties of a Cohen-Macaulay filtration with respect to @) in general provided
that the module itself is Cohen-Macaulay.

Fact 3.2. For a Cohen-Macaulay filtration F with respect to @) we recall the
following fact from [6], Fact 2.3,

grade(Q, M;) = grade(Q, M) fori=1,...,r

Proposition 3.3. Let M be a finitely generated bigraded Cohen-Macaulay
S-module with |K| = co. Suppose M is sequentially Cohen-Macaulay with respect
to Q with the Cohen-Macaulay filtration 0 = My & My & ... & M, = M with
respect to Q. Then

(a) cd(P,M;) =cd(P,M) fori=1,...,r;
(b) grade(Q, M;) + cd(P,M;) =dim M; fori=1,...,r.

Proof. In order to prove (a), since M; is Cohen-Macaulay with respect to @,
it follows from Fact 1.2 that cd(P, M1) + cd(Q, M) = dim M;. By Fact 3.2 we have
cd(Q, M;) = grade(Q, My) = grade(Q, M). Since M is Cohen-Macaulay, it follows
from [6], Lemma 1.8, that dim M; = dim M and c¢d(P, M) = dim M — grade(Q, M)
by Fact 1.1. Thus we conclude that c¢d(P, M;) = cd(P, M). As by Fact 1.3 we have
cd(P, M;_1) < c¢d(P, M;) for all 4, the first equality follows.

For the proof (b), by [6], Lemma 1.8, we have dim M; = dim M for i = 1,...,r.
Thus the second equalities follow from Fact 1.1, Fact 3.2 and part (a). O

1020



Proposition 3.4. Let the assumptions and the notation be as in Proposition 3.3.
Then the following statements are equivalent:

(a) cd(P,M)+cd(Q, M) =dim M +r —1;
(b) HS(M) # 0 for all grade(Q, M) < s < cd(Q, M).

Proof. We first assume that r = 1. As M is Cohen-Macaulay, by Fact 1.1 and
Fact 1.2 we have cd(P, M) + c¢d(Q, M) = dim M if and only if M is Cohen-Macaulay
with respect to ). Thus the claim holds in this case. Now let » > 2. By Fact 1.1 we
have cd(P, M) +cd(Q, M) = dim M +r —1 if and only if cd(Q, M) — grade(Q, M) =
r—1. This is equivalent to saying that cd(Q, M;11) = cd(Q, M;)+1fori=1,...,7—1
by Fact 3.2. By [6], Lemma 2.2, this is equivalent to saying that H¢, (M) # 0 for all
grade(Q, M) < s < cd(Q, M). O

The following example shows that the condition that “M is Cohen-Macaulay” is
required for Proposition 3.4.

Example 3.5. We set K[z]| = K[z1,...,zy] and K[y] = K[y1,...,yn]. Let L be
a nonzero finitely generated graded K [z]-module of depth 0 and dimension 1, and N
a nonzero finitely generated graded K [y]-module of depth 0 and dimension 1. We set
M = L ®k N and consider it as S-module. One has depth M = 0 and dim M = 2.
Hence M is not Cohen-Macaulay. On the other hand, grade(Q, M) = depth N = 0
and ¢d(Q, M) =dimN =1 =dim L = cd(P, M). Hence M is sequentially Cohen-
Macaulay with respect to @ which satisfies condition (b) in Proposition 3.4, while
the equality (a) does not hold.

The following question is inspired by Proposition 3.4.

Question 3.6. Let M be a finitely generated bigraded Cohen-Macaulay S-module
such that HC’“?(M) # 0 for all grade(Q, M) < k < cd(Q,M). Is HE(M) # 0 for all
grade(P, M) < s < cd(P, M)?

Remark 3.7. Of course the question has affirmative answer in the following cases,
namely, if M has only one(two) non-vanishing local cohomology with respect to Q.
This immediately follows by Fact 1.1. The projective plane P? given in Example 2.3
is also the case as module with three non-vanishing local cohomology.
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