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Abstract: This paper proposes a method for constructing text-to-speech (TTS) systems for
languages with unknown pronunciations. One goal of speech synthesis research is to establish a
framework that can be used to construct TTS systems for any written language. Generally, language-
specific knowledge is required to construct TTS systems for a new language. However, it is difficult
to acquire language-specific knowledge in each new language. Therefore, constructing a TTS system
for a new language entails huge costs. To address this problem, we investigate a framework for
automatically constructing a TTS system from a target language database consisting of only speech
data and corresponding Unicode texts. In the proposed method, pseudo phonetic information of the
target language with unknown pronunciation is obtained by a speech recognizer of a rich-resource
proxy language. Then, a grapheme-to-phoneme converter and a statistical parametric speech
synthesizer are constructed based on the obtained pseudo phonetic information. The proposed method
was applied to Japanese and was evaluated in terms of objective and subjective measures.
Additionally, we challenged the construction of TTS systems for nine Indian languages using the
proposed method, and TTS systems were evaluated in the Blizzard Challenge 2014 and 2015.

Keywords: Text-to-speech system, Statistical parametric speech synthesis, Unknown pronunciation
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1. INTRODUCTION

A number of studies on text-to-speech (TTS) systems

have been conducted. Consequently, the quality of syn-

thetic speech has improved, and TTS systems are now used

in various applications, such as in-car navigation, spoken

dialogue, and speech translation systems. Accordingly, the

demand for TTS systems offering high-quality synthetic

speech, various speaking styles, and various languages is

increasing. There are thousands of active written languages

in the world [1]. Construction of a TTS system for a new

language leads to increased use of applications. TTS

systems for low-resource languages are in great demand

because speech translation systems are very useful appli-

cations for low-resource languages. However, conventional

methods of constructing corpus-based TTS systems for a

new language not only require preparation of training

corpus but also require language-specific knowledge.

Especially, to marshal language-specific knowledge about

pronunciation for each new language requires high cost.

Therefore, a goal of the speech synthesis research is to

establish a language-independent framework that can be

used to construct TTS systems for any written language.

TTS systems can be examined as a text-to-speech

mapping problem. Phoneme, the simplest abstract class of

speech sounds, is a widely used intermediate representation

for mapping. Thus, TTS systems have two main compo-

nents: text analysis (text-to-phoneme) and speech wave-

form generation (phoneme-to-speech). In the text analysis

part, a phoneme of an input text is estimated by using a

lexicon which contains phonetic information. Additionally,

some phonetic contextual factors, e.g., accents and parts-

of-speech, are also estimated. These phoneme and phonetic

contextual factors are used linguistic features. Since this

part is highly dependent on the target language, it is costly

to construct a TTS system for someone not familiar with

the target language. In the speech waveform generation

part, a speech waveform is generated from the linguistic

features estimated by the text analysis part. Corpus-based

speech synthesis approaches such as unit-selection [2] and�e-mail: swdkei@sp.nitech.ac.jp
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statistical parametric speech synthesis (SPSS) have been

proposed for the speech waveform generation part. SPSS,

e.g., hidden Markov model (HMM)- and deep neural

network (DNN)-based speech synthesis [3,4], has been

actively researched and the quality of synthetic speech has

greatly improved. An SPSS system has several advantages:

1) within its statistical training framework, it can train the

statistical properties of speakers, speaking styles, emotions,

etc. from a training corpus; 2) many techniques that were

developed for HMM/DNN-based speech recognition can

be applied to speech synthesis; and 3) multiple languages

can easily be supported because the language-dependent

element is the only set of linguistic features to be used.

To construct a TTS system for a new language, it is

necessary to marshal language-dependent elements, e.g., to

define a phoneset and linguistic features, such as accents

and parts-of-speech, for each language. However, doing

so requires language-specific knowledge. Therefore, a low

language-dependency framework is needed in order to

construct TTS systems for new languages. In this study, we

focus on automatic construction of a TTS system without

knowledge specific to the language with the unknown

pronunciation. We construct a TTS system from a database

consisting of the only speech data and Unicode [5] texts

corresponding to speech data. The problem in this situation

is that a phoneset, phonetic information corresponding to

speech data, and a lexicon do not exist. To solve these

phoneset and phonetic information problems, speech

recognition is carried out by using the speech recognizer

of a rich-resource proxy language. Pseudo phoneme

sequences of the target language speech data are obtained

from the speech recognition results. An SPSS-based speech

synthesizer of the target language is then trained from

speech data and pseudo phoneme sequence pairs. To solve

the lexicon problem, we train a grapheme-to-phoneme

converter based on joint-sequence models [6] from text

and pseudo phoneme sequence pairs. The joint-sequence

model is a N-gram model that models a joint-sequence in

which grapheme and phoneme sequences are aligned. The

model can estimate a phoneme sequence with the highest

likelihood from a grapheme sequence. In addition, in order

to improve quality of synthesized speech, we propose

improvement of the speech recognizer and estimation of

the phoneme sequence considering phoneme duration.

With these processes, it becomes possible to construct a

TTS system automatically without specific knowledge on

the target language.

In another way to address language-dependency,

several low language-dependency frameworks have been

proposed [7–9]. Grapheme-based speech synthesis treat

every single graphemes as separate phoneme [7,8].

Methods of constructing a TTS system based on UniTran

[8], a transliteration framework to convert Unicode text

into a guessed phoneme [10], and vector space models

(VSMs) [9] have also been proposed. Unlike these low

language-dependency methods, the proposed method can

utilize the obtained pseudo phonetic information by the

speech recognizer of a proxy language. Therefore, not only

grapheme information but also phonetic information can be

utilized to construct TTS systems in the proposed method.

We applied the proposed method to Japanese. The

results of objective and subjective experiments are dis-

cussed and the impacts of components are analyzed.

Comparing the proposed and grapheme-based TTS system,

a subjective preference test was conducted. Additionally,

we challenged the construction of TTS systems for nine

Indian languages (Assamese, Bengali, Gujarati, Hindi,

Malayalam, Marathi, Rajasthani, Tamil, and Telugu) using

the proposed method in the Blizzard Challenge 2014 and

2015 [11,12]. The results of the Blizzard Challenge 2015

were shown that the proposed TTS system was more

natural sounding than the baseline TTS system for many

languages.

The rest of this paper is organized as follows. Section 2

describes the construction of TTS systems for languages

with unknown pronunciations. The experimental conditions

and results are given in Sects. 3 and 4. Section 5 presents

the Blizzard Challenge 2015 evaluation results. Concluding

remarks and an outline of future work are presented in the

final section.

2. TEXT-TO-SPEECH SYSTEM
CONSTRUCTION

2.1. Language-dependent Text-to-speech System Con-

struction

Phonemes are widely used by text-to-speech (TTS)

systems as intermediate representations for mapping a text

to speech. The following language-dependent operations

are needed in order to construct a TTS system of a new

language.

. Define a phoneset and linguistic features.

. Construct a lexicon or grapheme-to-phoneme con-

verter for the text analysis part.

Normally, the phoneset is defined based on the phonology

of the target language. Linguistic features are designed

based on pronunciation information obtained from texts

of each language. Additionally, the lexicon for converting

from graphemes to phonemes is manually created.

2.2. Constructing a Text-to-speech System for a

Language with an Unknown Pronunciation

In this paper, we propose a method for constructing

TTS systems that uses a target language database consist-

ing of speech data and Unicode texts corresponding to

speech data. In the case of an unknown-pronunciation

language, it is difficult to define a phoneset and even more
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difficult to construct a hand-made lexicon, because they

require manual operations used language-specific knowl-

edge. Furthermore, it is hard to obtain a phoneme sequence

corresponding to the speech data. To solve these problems,

a speech recognizer of a rich-resource proxy language, e.g.,

English, for the target language can be used for automatic

acquisition of phoneme sequences. The phoneset of the

proxy language speech recognizer is then used as the

phoneset of the target language. Although the phoneset is

different from the appropriate phoneset of the target

language, similar phonemes are assigned to speech data

in this approach. To overcome the lexicon problem, a

grapheme-to-phoneme converter based on a statistical

model is used instead of a hand-made lexicon. In this

way, entire TTS systems can be constructed within a

statistical framework.

Figure 1 shows an overview of the proposed TTS

system construction method for a language with an

unknown pronunciation. This method consists of a speech

recognizer (SR), word aligner (WA), grapheme-to-pho-

neme converter (G2P), and speech synthesizer (SS). The

details of each component are described in the following

sections.

2.2.1. Speech recognizer (SR)

In the case of SPSS, phoneme sequences corresponding

to the speech data are necessary for acoustic modeling. To

obtain phoneme sequences, speech recognition is carried

out by using a proxy language speaker-independent SR (PL-

SI-SR). For the target language recognition, a lexicon and

language model are not used, and a phoneme network is

designed so that each phoneme connects to every phoneme.

In this way, the PL-SI-SR can work without being affected

by a proxy-language-dependent phoneme sequence.

Since the accuracy of the phoneme sequences affects

the latter components, i.e., the WA, G2P, and SS, it is

important to estimate phoneme sequences accurately. To

do so, a speaker-dependent SR (SD-SR) is constructed

from initial phoneme sequences obtained by the PL-SI-SR.

Furthermore, the phoneme sequence estimation and SD-SR

training are iterated in order to adapt an acoustic model to

training data. These iterations are acoustic-driven unsuper-

vised training of speech units that uses the phoneset of the

proxy language as an initial value.

Modeling of phoneme durations is important compo-

nent for the SS. It is expected that phoneme sequences that

are suitable for the SS can be obtained by taking account

of phoneme duration. However, a hidden Markov model

(HMM)-based SR has trouble accounting for phoneme

duration because an HMM does not have explicit state

duration information. Therefore, phoneme sequences are

rescored using an alignment likelihood of a hidden semi-

Markov model (HSMM) that has explicit state duration

probability distributions. The phoneme sequence with the

highest HSMM alignment likelihood in the N-best hypoth-

eses of the HMM speech recognition result is selected as

the pseudo phoneme sequence corresponding to the speech

data.

2.2.2. Word aligner (WA)

Since many languages, e.g., English and Spanish, are

written with spaces between words, a word-level G2P is

suitable for the text analysis part. Furthermore, word

boundary information is useful as linguistic features of the

SS. However, a phoneme sequence obtained by the SR

does not include word boundaries. Therefore, we construct

a WA based on a joint-sequence model [6] for estimating

word boundaries.

The optimal grapheme and phoneme pair alignment ŵ

is estimated as follows:

ŵ ¼ arg max
w2W

PðwÞ: ð1Þ

Here, w is a alignment of grapheme and phoneme pairs and

W denotes the set of alignments of all possibly different

grapheme and phoneme pairs. The parameters of the joint-

sequence models are estimated by using the expectation-

maximization (EM) algorithm. Pairs of texts with word

boundaries and phoneme sequences obtained by the speech

recognition are used for training. The WA is trained by

providing a constraint condition such that a pause in the

recognition results must be a word boundary. The Viterbi

algorithm is used to align the grapheme and phoneme pairs.

Fig. 1 Overview of the proposed TTS system construc-
tion method for a language with an unknown pronun-
ciation (PL-SI-SR: proxy language speaker-independ-
ent speech recognizer, SD-SR: speaker-dependent
speech recognizer, WA: word aligner, G2P: gra-
pheme-to-phoneme converter, SS: speech synthesizer).
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The word boundary of the phoneme sequence are estimated

by the phoneme corresponding to the grapheme with the

word boundary.

2.2.3. Grapheme-to-phoneme converter (G2P)

To synthesize an arbitrary text, an input text needs to

be converted into a phoneme sequence. However, in a

language with an unknown pronunciation, it is difficult to

construct a hand-made lexicon for converting input texts

into phonemes. To overcome this problem, a G2P based on

a joint-sequence model [6] is used instead of a hand-made

lexicon. The G2P is trained from word-level pairs of text

and phoneme sequences obtained by the SR and WA.

Insertion of appropriate pauses is important for natural

synthesized speech. To estimate pauses by the G2P, word-

level phoneme sequences of training data contain pauses in

the speech recognition results. This makes it possible to

estimate pauses when converting a phoneme sequence by

the G2P.

2.2.4. Speech synthesizer (SS)

In the case of SPSS, context-dependent models are used

to capture a variety of phonetic contextual factors. To

generate naturally sounding synthesized speech, appropri-

ate phonetic contextual factors (linguistic features) need

to be defined. Here, we can use linguistic features of

phoneme, syllable, word, phrase, and utterance. The details

of these hierarchical linguistic features are as follows.

. Phoneme:

– the current phoneme;

– preceding and succeeding two phonemes;

– the position of the current phoneme within the

current syllable.

. Syllable:

– the number of phonemes within preceding, current,

and succeeding syllables;

– the position of the current syllable within the

current word and phrase;

– the vowel identity within the current syllable.

. Word:

– the number of syllables within preceding, current,

and succeeding words;

– the position of the current word within the current

phrase.

. Phrase:

– the number of syllables and words within preced-

ing, current, and succeeding phrases;

– the position of the current phrase within the

utterance.

. Utterance:

– the number of syllables, words, and phrases in the

utterance.

A linguistic feature related to phoneme is obtained by

the results of the SR. A syllable which is normally defined

as C�VC� is useful as linguistic features of the SS. Here, C

is a consonant, V is a vowel, and C� indicates there may be

none or more consonants. The consonant or vowel of a

phoneme is dependent on the phoneset of the language

used in the PL-SI-SR. A linguistic feature related to word is

obtained by the results of the WA. A pause in the speech

recognition results is defined as a phrase boundary. The

SS can be constructed using the same procedure as the

standard one from speech data and linguistic features

corresponding to speech data.

3. EXPERIMENTAL CONDITIONS

3.1. Target Language Database Conditions

Objective and subjective experiments were conducted

to evaluate the effectiveness of the proposed method. Since

we can easily gather Japanese native subjects, listening

tests for Japanese synthesized speech are desirable. Thus,

Japanese was chosen as the target language. Of the 503

phonetically balanced sentences in the ATR Japanese

speech database B-set [13] that were uttered by a male

speaker MHT, 450 sentences were used for training and the

remaining 53 sentences were used for testing.

Since there are a large number of graphemes in

Japanese, e.g., hiragana, katakana, romaji, and kanji, a

large amount of training data is needed to construct a G2P.

Katakana, romaji and kanji can be represented by using

hiragana in Japanese. Only hiragana was used as the

graphemes in the experiments. Furthermore, assuming

languages written with spaces between words, e.g., English

and Spanish, a bunsetsu boundary which is a boundary of

basic grammatical unit in Japanese was assumed as a word

boundary in linguistic features. Table 1 shows an example

of Japanese text for the experiments.

3.2. Speech Recognizer Conditions

An English SI-SR was used as the PL-SI-SR. The CMU

pronunciation dictionary [14] and the WSJ0, WSJ1 [15],

and TIMIT [16] databases were used to train the English

SI-SR. The phoneset of English SI-SR has 40 phonemes.

Speech signals were sampled at a rate of 16 kHz and

windowed by a 25-ms Hamming window with a 10-ms

shift. The acoustic feature vector consisted of 39 compo-

nents comprised of 12-dimensional mel-frequency cepstral

coefficients (MFCCs) including the 0th energy coefficient

with the first- and second-order derivatives. A triphone

three-state left-to-right Gaussian mixture model (GMM)-

HMM without skip transitions was used as an acoustic

model. The trained GMMs had 32 mixtures for pause and

16 mixtures for the other phonemes. The HTK [17] was

used to construct the SR. The training procedures and

model structures were the same as that of the HTK Wall

Street Journal Training Recipe [18].

To consider phoneme duration, a five-state left-to-right

monophone multi-stream multi-space probability distribu-
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tion (MSD)-HSMMs [19–22] without skip transitions

was trained from the TIMIT database. The other model

structure and acoustic feature vector were the same as the

SS.

3.3. Word Aligner and Grapheme-to-phoneme Con-

vert Conditions

A joint-sequence model based WA was constructed

from texts with word boundary and phoneme sequences

without word boundary. The WA considered the context

independent joint uni-gram.

A G2P based on the joint-sequence model was

constructed from word-level pairs of text and phoneme

sequence obtained by the SR and WA. As a result of a

preliminary experiment, a joint eight-gram was used for the

G2P structure. The G2P was trained by using the Sequitur

G2P [23].

3.4. Speech Synthesizer Conditions

The speech signals were sampled at 16 kHz and

windowed with a fundamental frequency ( fo)-adaptive

Gaussian window with a 5-ms shift. The acoustic feature

vectors were comprised of 183 dimensions: 39-dimension

STRAIGHT [24] mel-cepstral coefficients including the 0th

coefficient, log fo, 19-dimension mel-cepstral analysis

aperiodicity measures including the 0th coefficient, and

their first- and second-order derivatives. A five-state left-

to-right context-dependent multi-stream MSD-HSMMs

[19–22,25] without skip transitions was used as the

acoustic model. Each state output distribution was com-

posed of a spectrum, fo, and aperiodicity streams. The

spectrum and aperiodicity streams were modeled using

single multi-variate Gaussian distributions with diagonal

covariance matrices. The fo stream was modeled using

an MSD consisting of a Gaussian distribution for voiced

frames and a discrete distribution for unvoiced frames.

State durations were modeled using a 1-dimensional

Gaussian distribution. A parameter generation algorithm

considering the global variance (GV) was applied [26]. The

HTS [27] was used for constructing the SS.

A syllable is normally defined as C�VC� in the

phonology. However, it is difficult to construct a lan-

guage-independent method for estimating syllables. There-

fore, in this experiment, a syllable is defined as C�V

assuming a Japanese mora which is basically one hiragana

grapheme.

4. EXPERIMENTAL RESULTS

4.1. Effect of Speech Recognizer

First, the effect of SR was experimentally evaluated. In

the proposed method, speech recognition results affect

components in the latter part. Therefore, the phoneme

sequences obtained from the SR have a big impact on the

quality of the synthetic speech.

To objectively evaluate the effect of rescoring using

HSMM alignment likelihood, mel-cepstral distortions

(MCDs) were calculated [28]. The PL-SI-SR (English SI-

SR) was used to estimate pseudo phoneme sequences.

Table 2 shows the results of MCDs in open data. 1-best

system did not apply HSMM-based rescoring process, i.e.,

speech recognition results with HMMs were used as the

phoneme sequences of the training data. On the other hand,

50-best system rescored the 50-best hypotheses, which

were obtained from HMM-based speech recognition

system, using the HSMM alignment likelihoods. From

Table 2, since 50-best system achieved lower average

MCD than 1-best system, the effectiveness of rescoring

using HSMM alignment likelihood was confirmed. Con-

sequently, 50-best system was used to estimate phoneme

sequences in the following experiments.

The effects of the phoneme insertion penalty and the

number of iterations of training and recognition were

investigated. A speech recognition score is calculated by

using an acoustic model likelihood and a phoneme

insertion penalty. The acoustic model likelihood tends to

increase with a sequence of multiple short phonemes. The

phoneme insertion penalty is a penalty parameter to control

the number of phonemes included in speech recognition

results. Figure 2 shows the average number of phonemes

per sentence in each system. In Fig. 2, PL-SI-SR means

Table 1 Example of Japanese text in the experiment.

Original Japanese text
Japanese text for the experiment

Table 2 MCD for synthesized speech obtained various
insertion penalty in 1-best and 50-best.

Insertion penalty
MCD [dB]

1-best 50-best

�25 6.27 6.26
�20 6.28 6.22
�15 6.33 6.20
�10 6.27 6.27
�5 6.36 6.22
0 6.32 6.37

Average 6.31 6.26
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systems using phoneme sequences obtained by the English

SI-SR, SD-SR i means systems using phoneme sequences

obtained by the SD-SR (i denotes iteration count), and IP p

means the phoneme insertion penalty ( p denotes value of

phoneme insertion penalty). It is confirmed that the number

of phonemes was influenced by the phoneme insertion

penalty. The average number of phonemes increased with

each iteration i. In the proposed method, since the acoustic

model was adapted to training data by iterations of training

and recognition, the acoustic model likelihood increased

with each iteration. Therefore, the influence of the

phoneme insertion penalty relatively decreased and the

average number of phonemes increased.

To objectively evaluate the effect of the phoneme

insertion penalty and the number of iterations of training

and recognition, MCDs were calculated. Figure 3 shows

the results of MCDs in closed and open data. It can actually

be seen in Fig. 3 that SD-SR i systems achieved signifi-

cantly lower MCDs than the PL-SI-SR system. For the SD-

SR i systems, MCD decreased as the number of iterations

i increased. Despite the convergence of the MCDs in the

closed data, the MCDs of the SD-SR 6 systems became

higher than those of the SD-SR 5 systems in the open data.

This is because the SD-SR 6 systems had an overfitting

problem.

A five-point mean opinion score (MOS) listening test

with SD-SR 5 having various insertion penalties was

conducted in order to subjectively evaluate the naturalness

of the synthesized speech. The subjects were ten Japanese

students in our research group. All experiments were

carried out using headphones in a soundproof room. For

comparison, 20 sentences were chosen at random from the

53 test sentences. Speech samples were presented in

random order for each test sentence. The scale of natural-

ness ran from 5 for ‘‘completely natural’’ to 1 for

‘‘completely unnatural’’ in the MOS test. The results of

the MOS listening test are depicted in Fig. 4. It can be seen

from the figure that IP –15 performed best. From Fig. 2,

the number of phonemes in IP –15 was larger than the

correct number of phonemes using the Japanese phoneset.

These results suggest that the proposed system compen-

sated for the differences in the phoneset by acoustic-driven

short speech units. However, IP –10, IP –5, and IP 0 did

not obtain a higher MOS than the system IP –15, though
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these systems included the large number of phonemes.

Therefore, appropriate setting of phoneme insertion penalty

is required to obtain high natural speech. Table 3 shows an

example of phoneme sequences with word boundaries in

training data obtained by SD-SR 5 systems. It is confirmed

that the pseudo phoneme sequence of the system with little

influence of phoneme insertion penalty, such as IP 0 and

IP –5, was composed of acoustic-driven short speech units.

In addition, it can be seen that IP –20, IP –10, and IP 0

contained errors in second word boundary in the example.

4.2. Comparing the Proposed and Grapheme-Based

Systems

Grapheme-based speech synthesis system is often used

as a baseline system for language-independent methods.

Comparing the proposed and grapheme-based systems, a

subjective preference listening test was conducted. The

condition of preference listening test was the same as the

MOS test. Table 4 shows the preference test result.

Grapheme means a system which uses graphemes as

speech unit instead of phonemes, and E-SI-SR means a

system using the 50-best, SD-SR 5, and IP –15 in

Sect. 4.1. It can be seen from Table 4 that E-SI-SR was

preferred to Grapheme. For this reason, the proposed

method (E-SI-SR) may be useful for constructing a TTS

system of a language with an unknown pronunciation

without using language-specific knowledge. Since map-

pings from grapheme to phoneme are mostly unique in

Japanese hiragana, Grapheme was able to synthesize

speech with small pronunciation errors. In a language in

which it is difficult to map from grapheme to phoneme, the

proposed method is more expected to improve the perform-

ance compared to Grapheme.

4.3. Impact of Components

The proposed method estimates all linguistic features in

the training and synthesis parts. To analyze the impact of

each component, systems using correct linguistic features

were compared. Additionally, a Japanese SI-SR was

constructed by using the JNAS database [29] for compar-

ison with the English SI-SR. The phoneset of Japanese SI-

SR has 35 phonemes. The acoustic feature vector and

model structure were the same as the English ones. Table 5

summarizes the compared systems and the following is a

description of the compared systems.

. Oracle: system using correct linguistic features in the

training and synthesis parts.

. PhonemeWB: system using correct linguistic features

in the training part.

. Phoneme: system using correct phoneme sequences

in the training part.

. J-SI-SR: system using a Japanese SI-SR, 50-best, SD-

SR 5, and IP –25. The phoneme insertion penalty

was set approximately to the correct number of

phonemes.

To objectively evaluate the impact of components,

MCD and root mean squared error (RMSE) of log fo were

used. Table 6 lists the results of the objective evaluation. In

terms of MCD, the systems closer to Oracle obtained a

lower MCD. There was a large difference in MCD between

Oracle and PhonemeWB. Phoneme error rate (PER) of the

G2P in PhonemeWB can be calculated because it uses

correct phoneme sequences and word boundaries in the

training part. To evaluate pause insertion accuracy, PER

excluding pauses was also calculated. The G2P in

PhonemeWB obtained a PER of 3.40% and a PER

excluding pauses of 0.31%. Most of phoneme estimation

errors of the G2P in PhonemeWB were caused by pause

insertion errors. This result suggests that pause insertion

errors have strong impacts on MCD and improvement of

the G2P, especially pause insertion, is necessary to improve

MCD. Error rates of the WA can be also calculated in

Phoneme. The number of error boundaries included in the

training data was one and the word boundary error rate was

0.04%. Therefore, the impact of the WA was not large

comparing with the G2P in this experiment. From MCDs in

Table 6, it can be seen that there was also a difference

between Phoneme and J-SI-SR. This result indicates that

Table 3 An example of phoneme sequences with word boundaries in training data ( ).
Where, | represent a word boundary.

System Phoneme sequence with word boundaries

IP –25 n b l iy s ih l ay | n eh n n ey n | f r ih p dh iy sp k uw
IP –20 n b w iy zh ih l aa | n eh n n ey ng f r | ih p dh iy t k uw
IP –15 n b uh ey s jh ih l aa | n eh n n ey n | f r ih p dh iy t k uw
IP –10 n b uh ey s jh ih l ay | n eh n n ey ng d f r | ih p dh ey iy t k uw p
IP –5 n b w oy iy s jh ih l aa | n eh n n ey ng | f r iy eh p dh iy iy t p g uw t
IP 0 n b uh ey ng z s jh ih l aa | n ey eh n n ey ng v f r | ey eh p dh iy iy t p g uw ih p

Table 4 Subjective preference scores.

Grapheme E-SI-SR Neutral p-value

41.5% 57.0% 1.5% 0.0325
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there is a difference between the correct phoneme sequence

and pseudo phoneme sequence. Accordingly, improving

speech recognition accuracy is necessary. Comparing J-SI-

SR with E-SI-SR, there was a relatively large gap of

MCDs. Figure 5 shows MCD for synthesized speech

obtained E-SI-SR and J-SI-SR. Although speaker adapta-

tion was applied from PL-SI-SR to SD-SR 1 in J-SI-SR,

the improvement of MCD was small. On the other hand,

in E-SI-SR, speaker and language adaptation was applied

from PL-SI-SR to SD-SR 1, and the MCD was signifi-

cantly improved. This indicates that language adaptation is

more effective than speaker adaptation in the proposed

method. Additionally, from Table 6, RMSE showed the

similar tendency as MCD.

To subjectively evaluate the impact of components, a

five-point MOS listening test was conducted. Figure 6

shows the MOS of naturalness. As in the case of the

objective evaluation in Table 6, the systems closer to

Oracle obtained a higher MOS. There was a large

difference in MOS between Phoneme and J-SI-SR and

between J-SI-SR and E-SI-SR. These results indicate that

speech recognition accuracy and phoneset of speech

recognizer affect naturalness of synthetic speech in the

proposed method.

Moreover, to evaluate intelligibility, intelligibility test

was conducted. The subjects were asked to transcribe

semantically unpredictable sentences (SUSs) by typing in

the sentence they heard. 100 SUSs with each four words

from the JEITA standard [30] were used for the evaluation.

The subjects were ten Japanese students in our research

group. Each subject typed 100 SUSs of a system chosen

randomly. The average grapheme error rate (GER) was

calculated from these transcripts. Table 7 lists the results

of the intelligibility test in terms of GER. Oracle,

PhonemeWB, and Phoneme, which used the phoneset

based on the phonology, achieved low GER. Like the MOS

evaluation in Fig. 6, there was a large difference in GER

Table 5 Systems using correct linguistic features.

System Phoneset
Training part Synthesis part Language Construction

Phoneme seq. Word boundary Phoneme seq. of PL-SI-SR component

Oracle Japanese Correct Correct Correct — SS
PhonemeWB Japanese Correct Correct Estimate — G2P, SS

Phoneme Japanese Correct Estimate Estimate — WA, G2P, SS
J-SI-SR Japanese Estimate Estimate Estimate Japanese SR, WA, G2P, SS
E-SI-SR English Estimate Estimate Estimate English SR, WA, G2P, SS

Table 6 MCD and RMSE for synthesized speech of
systems using correct linguistic features.

System MCD [dB] RMSE [log Hz]

Oracle 5.01 0.140
PhonemeWB 5.35 0.189

Phoneme 5.35 0.193
J-SI-SR 5.49 0.196
E-SI-SR 5.58 0.198
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Fig. 6 MOS of naturalness with 95% confidence inter-
vals for systems using correct linguistic features.

Table 7 GER of systems using correct linguistic fea-
tures.

System GER [%]

Oracle 5.73
PhonemeWB 6.69

Phoneme 5.54
J-SI-SR 22.52
E-SI-SR 33.33
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between Phoneme and J-SI-SR and between J-SI-SR and

E-SI-SR. Ambiguous pronunciations had a bad influence

on the GER. In E-SI-SR, several words were partially

missing phonemes due to estimation errors in the G2P. The

cause of these errors was the G2P training with training

data including word boundary errors, such as word

boundary errors in Table 3. In the case of Phoneme which

used correct phoneme sequences, GER (5.54%) and word

boundary error rate (0.04%) were low. Therefore, it is

necessary to develop a noise-robust WA and improve the

SR. It is considered that the low intelligibility influenced

the low naturalness of J-SI-SR and E-SI-SR. In the future,

we should investigate methods to improve intelligibility.

5. BLIZZARD CHALLENGE 2015
EVALUATION

The Blizzard Challenge was started in order to better

understand and compare research techniques in construct-

ing corpus-based speech synthesizers with the same data

in 2005 [31]. The task of the Blizzard Challenge 2015 is

constructing TTS systems for six Indian languages

(Bengali, Hindi, Malayalam, Marathi, Tamil, and Telugu)

[32]. These Indian languages have millions of speakers.

However, these languages do not have a lot of resources for

constructing a TTS system. The challenge is to construct

TTS systems in each Indian language from the provided

speech data sampled at 16 kHz and the corresponding

Unicode text. About four or two hours of speech data in

each of the six Indian languages are provided. To evaluate

the synthesized speech, large-scale subjective evaluation

tests were conducted by organizers of the Blizzard

Challenge 2015. Table 8 summarizes the number of native

paid listeners. We participated in the Blizzard Challenge

2015 [12] using the proposed method in this paper.

Table 9 shows results of five-point MOS tests in the

read text task of the Blizzard Challenge 2015. In Table 9,

Base means a baseline system used language-specific

knowledge which was constructed by organizers using the

FestVox [33] in the unit selection framework and NITech

means our system. NITech systems were constructed

without using language-specific knowledge based on

Sect. 2.2. and system conditions were the same as

Sects. 3.2., 3.3., and 3.4. Iteration count i and phoneme

insertion penalty were adjusted for each language. Since

Hindi has relatively rich-resource for constructing a TTS

system in Indian languages, Base achieved higher MOS of

naturalness than NITech. By contrast, NITech obtained

higher MOSs of naturalness than Base in Bengali,

Malayalam, Tamil, and Telugu. Furthermore, NITech

achieved higher MOSs of speaker similarity than Base in

all languages. For this reason, the proposed method is

useful for constructing a TTS system of low-resource

languages.

6. CONCLUSIONS

This paper has presented automatic construction of a

text-to-speech (TTS) system from a target language data-

base consisting of only speech data and corresponding

Unicode texts. A grapheme-to-phoneme converter and

speech synthesizer were constructed from speech recog-

nition results of a proxy language speech recognizer. We

applied this method to Japanese and evaluated the natural-

ness of its output. Experimental results showed that an

appropriate phoneme insertion penalty and iteration count

for training and recognition were important for the

proposed method. The proposed TTS system that does

not use language-specific knowledge could synthesize

more natural speech compared with that from a gra-

pheme-based TTS system. To improve the proposed

method, the impact of each component was analyzed.

The results suggest that pause insertion accuracy, speech

recognition accuracy, and phoneset of speech recognizer

affected objective measures.

Additionally, we applied the proposed method to six

Indian languages. Subjective experiments of the Blizzard

Challenge 2015 showed that the proposed system achieved

higher naturalness than a baseline system of unit selection

framework in four languages out of six languages. In terms

of speaker similarity, the proposed system outperformed

the baseline system in all languages.

Future work will include a multilingual speaker-

independent speech recognizer based on the international

phonetic alphabet (IPA) [34] or GlobalPhone [35] to obtain

accurate phoneme sequences. Furthermore, investigations

Table 8 Number of native paid listeners.

Language Number of native paid listeners

Bengali 48
Hindi 69

Malayalam 72
Marathi 69
Tamil 70
Telugu 70

Table 9 MOS of naturalness and speaker similarity in
the Blizzard Challenge 2015.

Language
MOS of naturalness MOS of similarity

Base NITech Base NITech

Bengali 2.2 2.5 2.5 3.1
Hindi 3.2 2.3 2.6 2.8

Malayalam 1.6 1.7 1.8 2.3
Marathi 2.7 2.2 2.3 2.5
Tamil 2.2 2.4 1.8 2.3
Telugu 1.9 2.1 2.1 3.1
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of prosodic attributes, e.g. accent, stress, and tone, and

languages not written with space between words, e.g.

Mandarin, Japanese, and Thai, will be needed in order to

establish a more language-independent method. Addition-

ally, we will perform experiments on various written

languages.
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