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Abstract: In marine seismic surveys to explore seafloor resources, the structure below the seafloor is
estimated from the obtained sound waves, which are emitted by a marine seismic sound source and
reflected or refracted between the layers below the seafloor. In order to estimate the structure below the
seafloor from returned waves, information of the sound source position and the sound speed are
needed. Marine seismic vibrators, which are one of the marine seismic sound sources, have some
advantages such as high controllability of the frequency and phase of the sound, and oscillation at a
high depth. However, when the sound source position is far from the sea surface, it becomes difficult
to specify the exact position. In this paper, we propose a method to estimate the position of a marine
seismic vibrator and the sound speed from obtained seismic data by formulating an optimization
problem via hyperbolic Radon transform. Numerical simulations confirmed that the proposed method
almost achieves theoretical lower bounds for the variances of the estimations.
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1. INTRODUCTION

To explore seafloor resources such as petroleum and

gas, seismic surveys using sound waves are performed

[1–8]. In marine seismic surveys, sound waves are emitted

from a seismic sound source and receivers obtain the

returned waves, which are reflected or refracted between

the layers below the seafloor. Then, the structure below the

seafloor is estimated from the obtained data based on the

positional relations between the sound source and the

receivers, and the sound speed. Therefore, the sound source

position and the sound speed are important information for

accurate estimation of the structure below the seafloor.

For the marine seismic sound sources, airguns [9,10],

which emit sharp pressure pulses by releasing compressed

air, are widely used. However, a concern is that the pulsive

sounds emitted by airguns can harm marine animals

[11,12]. Recently, marine seismic vibrators (MSVs)

[13–16], which can control the frequency and phase of

the sound with high reproducibility, have been studied as

another marine seismic sound source. By producing low-

instantaneous-pressure-level, long-duration oscillating sig-

nals using an MSV, damage to the marine environment can

be reduced in seismic surveys.

Airguns are generally deployed 3–10 m below the

water surface [10]. On the other hand, an MSV can be

operated at 10–250 m below the water surface by adjusting

the internal pressure to the seawater pressure [16]. Thus,

since an MSV can oscillate at a position closer to the

seafloor, it can reduce the transmission loss of sound waves

between the sound source and the seafloor. However, as

the MSV position is deeper and further from the sea

surface, it is more difficult to specify the exact position. As

a current underwater positioning method, an ultra short

baseline (USBL) system [17,18], which is one of the

acoustic positioning systems, is commonly used with an

MSV. Nevertheless, when the sound source position is far

from the transceiver array, the measurement accuracy of

the position decreases owing to the limitation on the size

of the transceiver array [19]. In addition, a USBL system,

or any other positioning system, requires the installation of

other apparatus, which increases the cost and failure risk

even though the source position is not of primary interest.

Therefore, it is desirable that the sound source position can

be estimated from only the obtained signals without adding

any apparatus.
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To estimate the source position only from observed

signals, the time of arrival (TOA) and the time difference

of arrival (TDOA) localization methods have been studied

[20]. However, accurately detecting the travel time is quite

difficult for the situations in which an MSV is employed

because (1) the peak of the waveform is dull owing to

narrowband signal, whose frequency range is limited by a

mechanical issue of the MSV; and (2) the signal-to-noise

ratio (SNR) of the observed signal is low, typically under

0 dB, while the travel time is susceptible to noise. There-

fore, an estimation method must be robust to noise. As

other source localization methods, the beamforming tech-

nique has been studied [21]. In particular, matched field

processing (MFP) methods, which generalize the beam-

former methods by taking the underwater environment

into consideration, are widely used in underwater acoustics

[22,23]. That is, not only the direction and distance to the

sound source but also the sound speed distribution are

simultaneously considered in MFP. However, MFP meth-

ods usually utilized a predetermined sound speed distribu-

tion obtained by measurement or estimation, which can be

a critical source of error in position estimation. Moreover,

they require an enormous number of calculations to obtain

a position because the optimization problem necessary for

position estimation is generally solved by an exhaustive

search, i.e., every candidate source position is calculated

even when the number of sound sources can be assumed to

be one.

In this paper, a method for estimating the position of an

MSV and the sound speed from obtained marine seismic

data is proposed [24]. The important differences between

the proposed method and the other methods above are

threefold: (1) the sound speed is simultaneously estimated

with the position; (2) it is formulated in the time domain to

increase the SNR; and (3) an efficient gridless search is

attained by gradient-based optimization. The proposed

method is formulated as a maximization problem of the

hyperbolic Radon transform, where not only the position

but also the sound speed is considered as the optimization

variable so that the error in the sound speed model is

eliminated. By formulating the problem in the time

domain, the proposed method takes advantage of the

structure of the observed signal, which is pulsive. To

optimize the parameter in the time domain, a functional

approximation of the data is utilized so that a subsample

delay is allowed. Moreover, the gradient of the hyperbolic

Radon transform is directly calculated for efficient opti-

mization. An acceleration technique is also employed to

improve the accuracy.

2. SEISMIC MIGRATION

Seismic migration is the seismic imaging technique that

reveals the subsurface reflector positions [25]. In marine

seismic surveys, sound waves are emitted periodically

from a source towed by a vessel, and receivers obtain

waves reflected from subsurface reflectors below the

seafloor. Seismic migration relocates the obtained energy

of reflected waves energy to the subsurface reflector

positions in the time or space domain based on the

preliminarily estimated velocity distribution and the posi-

tional relationship between the source and the receivers.

In this paper, the sound source localization problem in

two-dimensional marine seismic surveys using an MSV is

considered. Let us assume that the MSV and receivers are

distributed as shown in Fig. 1. It is common to consider

such horizontally arranged receivers in a two-dimensional

marine seismic survey, which aims to image a slice of the

subsurface structure [26]. Furthermore, in a marine seismic

survey in shallow water (0–300 m), which is the range

covered by an MSV, the sound speed can be assumed as a

constant since the change in the sound speed with respect

to the depth is sufficiently small in this range [27]. Thus,

considering the operable depth of an MSV (10–250 m), the

sound speed is set to a constant c. Then, sound waves

emitted from the MSV are assumed to be spherical waves,

and the travel time of a direct wave from the MSV to the

mth receiver is formulated as

�ðhm; �Þ ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs�1 � hmÞ2 þ s2�2

q
; ð1Þ

where s ¼ ½s�1 s�2�T is the position of the MSV, hm is the

horizontal position of the mth receiver, the vertical

positions of the receivers are assumed to be zero, p is the

slowness, denoted as the reciprocal of the sound speed c,

� ¼ ½sT p�T is a parameter to be estimated, and AT denotes

the transpose of A.

3. PROPOSED METHOD

We propose a method to estimate the parameter � by

maximizing the value of the hyperbolic Radon transform.

A diagram of the proposed method is illustrated in Fig. 2,

where the p-axis is omitted for simplification. First, the

parameter estimation problem is formulated as a max-

imization problem of the hyperbolic Radon transform.

VesselReceivers

Marine seismic vibrator

Reflected or refracted waves

Direct waves

Fig. 1 Positional relationship of MSV and receivers.
The vertical positions of the receivers are set to zero.

Acoust. Sci. & Tech. 39, 3 (2018)

216



Then, the maximization problem is solved by a gradient-

based optimization method with interpolation using the

spherical Bessel function of the first kind.

The assumptions behind the proposed method are (1)

observed signals are pulsive; (2) observations are

synchronized; and (3) arrival times of direct and reflected

sounds are different in the majority of received signals. The

first assumption is fulfilled for both an airgun and an MSV

because an airgun naturally emits explosive sounds and the

signal from an MSV is processed by pulse compression to

recover the pulse [28,29]. The second assumption is the

usual situation for seismic surveys, especially for those

using an MSV. The third assumption is that the direct

sound must be distinguishable from the reflected ones,

which is usually the case, particularly for the received

signals near the sound source.

The proposed method can take advantage of these

assumptions by formulating the problem in the time

domain. Since a pulse is a signal whose energy is

concentrated within a certain time interval, its SNR is

high in this interval and low elsewhere. Taking this

characteristic of pulse signals into account is not easy for

methods in the frequency domain because the energy of

a pulse spreads widely along the frequency axis. On the

other hand, a formulation based on the hyperbolic Radon

transform can easily utilize this energy concentration

principle as it is in the time domain. However, a time-

domain formulation has to deal with subsample delays

(delays less than the sampling interval), which can be

handled easily in the frequency domain. The proposed

method solves this difficulty by approximating discrete

data as a continuous function.

3.1. Parameter Estimation via Hyperbolic Radon

Transform

The Radon transform is a transformation via a curvi-

linear integral along curves characterized by parameters,

which was first studied by Johann Radon in 1917 [30].

Since the Radon transform processes multichannel data

simply, it is frequently applied to seismic data analysis

[31–37].

Let dðt; �1Þ be pulse-compressed signals obtained from

a receiver at horizontal position �1. Here, the Radon

transform, which integrates the data dðt; �1Þ along the

hyperbola �ð�1; �Þ, is considered. The hyperbolic Radon

transform R, which maps the data dðt; �1Þ to ðRdÞð�Þ, is

formulated by

ðRdÞð�Þ ¼
Z h1

hM

dð�ð�1; �Þ; �1Þ d�1: ð2Þ

When the data are obtained from M receivers, the

integration of Eq. (2) is approximated by the summation

of the data from each receiver,

ðRdÞð�Þ ’ ðRdÞð�Þ ¼
XM
m¼1

dmð�ðhm; �ÞÞ; ð3Þ

where dmðtÞ ¼ dðt; hmÞ is the pulse-compressed signal

obtained from the mth receiver. Note that although this

formula is similar to that of the delay-and-sum beam-

former, they are not equivalent because the hyperbolic

Radon transform sums only the signals at certain times,

while the delay-and-sum beamformer sums whole signals

with the delay. That is, the delay-and-sum beamformer

includes both the pulse and other noises in its output, while

the hyperbolic Radon transform can only sum the pulses

Channel

Tim
e

Hyperbolic
Radon transform

Maximize              by 
gradient-based optimization methodPulse-compressed signals

Fig. 2 Diagram of the proposed method.
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that result in a higher SNR for the pulsive signal.

When the travel time �ð�1; �Þ is close to the true travel

time, the hyperbolic Radon transform yields a large value

by summing all pulses corresponding to the direct sound. In

other words, ðRdÞð�Þ contains a peak at � corresponding to

a proper parameter. Therefore, the estimation problem of a

suitable parameter �̂ is formulated as the following

maximization problem: find

�̂ 2 arg max
�
ðRdÞð�Þ: ð4Þ

This type of maximization problem often arises in

position estimation such as by beamforming. The standard

method for solving Eq. (4) is an exhaustive search, where

ðRdÞð�Þ is calculated for every candidate value of the

parameters. However, as the sound speed is contained in

the parameters, it is unsuitable for this problem because

of the prohibitively large number of candidate solutions.

Therefore, in the proposed method, a gradient-based

optimization method is chosen to efficiently solve

Eq. (4). Nevertheless, because the obtained signals are

discretized signals, as shown in Fig. 2, the gradient of

ðRdÞð�Þ cannot be derived symbolically from Eq. (3). Thus,

a functional approximation is utilized in order to inter-

polate the discrete signals as a continuous function.

3.2. Continuous Interpolation by Functional Approx-

imation

In the previous subsection, the parameter estimation

problem was formulated as the maximization problem of

ðRdÞð�Þ. While ðRdÞð�Þ is calculated from the continuous

signals dmðtÞ in Eq. (3), the obtained signals are discretized

signals. Therefore, reconstruction of the continuous signal

from the discrete signal by the interpolation is needed in

order to calculate Eq. (3). Additionally, the derivation of

the gradient of ðRdÞð�Þ should be taken into consideration

in the interpolation. In the proposed method, signal

interpolation using the spherical Bessel function of the

first kind is employed since its derivative can be written

simply.

A continuous signal dmðtÞ reconstructed from a discrete

signal bandlimited to the Nyquist frequency is formulated

as [38]

dmðtÞ ’
XN
n¼1

dm
n� 1

fs

� �
sincð fst � nþ 1Þ; ð5Þ

where fs is the sampling frequency and sincðtÞ is the sinc

function defined as

sincðtÞ ¼
sinð�tÞ
�t

(t 6¼ 0)

1 (t ¼ 0)

8<
: : ð6Þ

Here, the spherical Bessel function of the first kind is

introduced, which is denoted as j�ðtÞ and given by

j�ðtÞ ¼
ffiffiffiffiffi
�

2t

r
J�þ1=2ðtÞ; ð7Þ

where J�ðtÞ is the Bessel function of the first kind defined

by

J�ðtÞ ¼
t

2

� ��X1
k¼0

1

k! �ð�þ k þ 1Þ

�
�t2

4

�k

ð8Þ

and �ðtÞ is the gamma function

�ðtÞ ¼
Z 1

0

zt�1e�zdz: ð9Þ

Using the following property of the spherical Bessel

function of the first kind,

j0ð�tÞ ¼ sincðtÞ; ð10Þ

Eq. (5) becomes

dmðtÞ ’
XN
n¼1

dm
n� 1

fs

� �
j0ð�ð fst � nþ 1ÞÞ; ð11Þ

which can be rewritten in a matrix form as

dmðtÞ ’ dT
m j0ðtÞ; ð12Þ

where

dm ¼ dmð0Þ . . . dm
N � 1

fs

� �� �T

;

j�ðtÞ ¼ ½ j�ð� fstÞ . . . j�ð�ð fst � N þ 1ÞÞ�T:

From Eq. (12), the continuous signal dmðtÞ is reconstructed

from the discrete signal dm. When Eq. (12) is substituted

into Eq. (3), ðRdÞð�Þ becomes

ðRdÞð�Þ ¼ dT|0ð�Þ; ð13Þ

where

d ¼ ½dT
1 . . . dT

M�
T;

|�ð�Þ ¼ ½ j�ð�ðh1; �ÞÞT . . . j�ð�ðhM ; �ÞÞT�T:

Therefore, ðRdÞð�Þ can be calculated from the discrete data

d using Eq. (13).

3.3. Maximization by Gradient-based Optimization

Method

In order to solve Eq. (4) by the gradient-based

optimization method, the gradient of ðRdÞð�Þ is derived in

this subsection. Then, a description of Nesterov’s accel-

erated gradient method used to solve Eq. (4) is given.

From Eq. (13), the gradient of ðRdÞð�Þ, denoted as

gradðRdÞð�Þ, is formulated as

gradðRdÞð�Þ ¼ JððRdÞð�Þ; �ÞT

¼ Jð|0ð�Þ; �ÞTd; ð14Þ
where Jð f ;�Þ is the Jacobian matrix defined by
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Jð f ;�Þ ¼

@ f1
@�1

� � �
@ f1
@�N

..

. . .
. ..

.

@ fM
@�1

� � �
@ fM
@�N

2
666664

3
777775
: ð15Þ

The spherical Bessel function of the first kind of order zero

can be derived as follows:

@j0ðtÞ
@t
¼ �j1ðtÞ: ð16Þ

Therefore,

Jð|0ð�Þ; �Þ ¼ �� fs diagð|1ð�ÞÞJð�repð�Þ; �Þ; ð17Þ

where

�repð�Þ ¼ �ð�Þ � 1N ;

�ð�Þ ¼ ½�ðh1; �Þ . . . �ðhM ; �Þ�T;

diagðxÞ is a square diagonal matrix with the elements of x

on the main diagonal, � is the Kronecker product operator,

and 1N is the all-ones column vector of dimension N. That

is, x� 1N is a column vector repeating each element of x

(N times) when x is a column vector. Then, Jð�repð�Þ; �Þ is

given by

Jð�repð�Þ; �Þ ¼ Jð�ð�Þ; �Þ � 1N ;

and each element of Jð�ð�Þ; �Þ is

@

@s�1
�ðhm; �Þ ¼ p

s�1 � hmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs�1 � hmÞ2 þ s2�2

q ;

@

@s�2
�ðhm; �Þ ¼ p

s�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs�1 � hmÞ2 þ s2�2

q ;

@

@p
�ðhm; �Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs�1 � hmÞ2 þ s2�2

q
: ð18Þ

Thus, gradðRdÞð�Þ is calculated by Eqs. (14), (17), and (18).

As the gradient-based optimization method used to

solve Eq. (4), Nesterov’s accelerated gradient method,

which is a first-order optimization method with a better

convergence rate than the gradient descent method, is

chosen [39,40]. In Nesterov’s method, Eq. (4) is solved by

the following iterative procedure:

vkþ1 ¼ �vk þ � gradðRdÞð�k þ �vkÞ

�kþ1 ¼ �k þ vkþ1; ð19Þ

where k is the iteration index, � > 0 is the step size, � 2
½0; 1� is the momentum coefficient, and vi is the velocity

vector. These additional momentum and velocity terms

accelerate the update of parameters, which can improve the

accuracy of the estimation, especially when the objective

function is nearly flat around the optimal value as in this

case. Note that in this algorithm, one does not have to

calculate ðRdÞð�Þ to solve Eq. (4) because gradðRdÞð�Þ is

directly calculated through the functional approximation.

4. NUMERICAL SIMULATION

Two numerical simulation experiments were performed

in order to show the effectiveness of the proposed method.

First, an experiment to investigate the influence of the error

of the sound source position on seismic imaging was

performed. This experiment provides the required accuracy

of source localization in a seismic survey. Then, to confirm

the localization accuracy of the proposed method, it was

applied to simulated data and compared with the Cramér–

Rao lower bound.

4.1. Influence of Localization Accuracy on Seismic

Imaging

In this subsection, an experiment involving seismic

migration was performed to confirm the influence of the

localization accuracy. Because the subsurface reflector

positions are measured from the appearances of migrated

images, the results of the localization should also be

evaluated from the appearances. The experiment provides

an acceptable error for seismic migration evaluated from

migrated images.

Seismic migration using source positions, which de-

viated from the correct positions with different root mean

square errors (RMSEs), was applied to the simulated data.

Then, the SNR of these migrated images was calculated.

The simulation conditions are shown in Table 1. The finite-

difference time-domain (FDTD) method was used for the

calculation, and an upward linear chirp signal with a

duration of 4 s was emitted from the source position. For

the velocity model, part of the Marmousi2 velocity model

[41] was used, and the velocity distribution for the

migration was the same as the velocity model of the

simulation.

To obtain the migrated images, Kirchhoff prestack

depth migration [42,43] was used in the experiment. This is

one of the popular migration methods, which relocates the

energy of reflected waves in the depth domain, on the basis

of the Kirchhoff integral solution of the acoustic wave

equation. The migrated image Ið�1; �2Þ is calculated using

Table 1 Simulation conditions for seismic migration.

Number of receivers M 100
Interval of receivers [m] 12.5

Interval of shots [m] 12.5
Number of shots 81

Recording time [s] 6.5
Sampling rate fs [Hz] 1,000

RMSE of positions [m] 10�3; 10�2:5; . . . ; 101

Type of emitted signal linear chirp signal
Frequency range of signal [Hz] 10–100
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Ið�1; �2Þ ¼
X
i

X
m

dðiÞm ðt
ðiÞ
s ð�1; �2Þ þ tðiÞr ðm; �1; �2ÞÞ; ð20Þ

where dðiÞm is the data obtained by the mth receiver for the

ith shot, ts is the travel time from the source to the point

ð�1; �2Þ, and tr is the travel time from the point ð�1; �2Þ to the

receivers.

Figure 3 shows the velocity model and migration

results. Note that both the left and right edges of the

migrated images are not clear owing to the shortage of

reflected waves. Figure 3(c) was migrated with the correct

source positions, while Figs. 3(d)–3(f) were migrated with

erroneous source positions whose RMSEs were 10�1 m,

100 m, and 101 m, respectively. Here, the errors of the

positions were measured as the RMSE because 81 shots

(thus, 81 source positions) were necessary to construct a

single migrated image for this setting (Table 1). In the

figures, there is little noticeable difference between

Figs. 3(c), 3(d), and 3(e). However, Fig. 3(f) and its error

in Fig. 3(i) indicate that there is an influence on the seismic

migration when the RMSE of the positions is 101 m.

The SNR of migrated images was calculated as

SNRmig ¼ 10 log10

kIck2F
kIc � I	k2F

; ð21Þ

where Ic is the migrated image obtained from the correct

source positions using the simulated data, I	 is the migrated

image obtained from erroneous source positions with

RMSE 	, and k � kF is the Frobenius norm. SNRmig for

each RMSE is shown in Fig. 4. When the RMSE of the

positions is 100 m, SNRmig is approximately 60 dB. In

addition, SNRmig monotonically decreases as the RMSE of

0

500

1000

1500

-15

-10

-5

0

5

10

15

0 500 1000 1500 2000

Po
si

tio
n 

2 [m
]

0

500

1000

1500

Po
si

tio
n 

2 [m
]

0 500 1000 1500 2000

0

500

1000

1500

0 500 1000 1500 2000

0

500

1000

1500

0 500 1000 1500 2000

Position 1 [m]

0

500

1000

1500

Po
si

tio
n 

2 [m
]

0 500 1000 1500 2000
Position 1 [m]

0

500

1000

1500

0 500 1000 1500 2000
Position 1 [m]

0

500

1000

1500

0 500 1000 1500 2000

(a) (c)

(h)(g) (i)

(e)(d) (f)

0

500

1000

1500

1500

2000

2500

3000

3500

0

(b)

500 1000 1500 2000 0 20 40 60 80 100
Channel

0

0.5

1

1.5

2

2.5

Ti
m

e 
[s

]

Direct
waves

}
Reflected

waves
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the positions increases. These results indicate that there is

no visual influence on the seismic migration when the

RMSE of the deviated source position is less than 100 m.

4.2. Estimation Accuracy of Proposed Method

In the previous subsection, the influence of the local-

ization accuracy on seismic migration images was inves-

tigated. In this subsection, the localization accuracy of the

proposed method is shown in order to confirm that the

localization accuracy is sufficient for seismic migration.

The proposed method was applied to simulated data with

different SNRs, and the RMSE of the estimated parameter

�̂ was calculated. Then, the RMSE was compared with the

Cramér–Rao lower bound (CRLB), which is a theoretical

lower bound for the variance of any unbiased estimator

[44,45].

The simulation conditions of the source localization

experiment are shown in Table 2. The emitted signal was

the same as in the previous experiment (linear chirp of 10–

100 Hz). The SNR of obtained signals was calculated as

SNRsignal ¼ 10 log10

XM

m¼1
kxmk22XM

m¼1
kwmk22

; ð22Þ

where xm is the data obtained from the mth receiver

without noise, wm is additive Gaussian noise with variance

	2, and k � k2 is the ‘2 norm.

One example of a slice of ðRdÞð�Þ calculated by

Eq. (13) and distributions of the estimated parameter of

each plane when SNRsignal is 0 dB are shown in Fig. 5. ( )

and ( ) represent the correct estimation parameter and the

estimated parameters �̂, respectively. The mean of jðRdÞð�Þj
integrated along the depth direction for each plane is shown

in Fig. 6, where the absolute value was taken to avoid

cancellation. Note that Fig. 6 illustrates the mean of the

depth information because Fig. 5 is merely a slice of

ðRdÞð�Þ that does not give information in the depth

direction.

From Fig. 5, it can be seen that the value of ðRdÞð�Þ had

a peak around the correct parameter, and the estimated

parameters were concentrated around the correct parame-

ter. The direction of the spread of the estimated parameters

was consistent with the direction of the peaks for the s�1-s�2
and s�1-c slices, but not for the c-s�2 slice. The reason for

this result can be seen from Fig. 6, where the direction of

the spread in the mean value of the c-s�2 plane is different

from that of the single slice in Fig. 5. That is, the spread of

the peak of ðRdÞð�Þ in the c-s�2 plane may occur in several

directions, which resulted in the direction of the spread of

the estimated parameters.

Note that although ðRdÞð�Þ has several local maxima, it

can be determined from the value of ðRdÞð�̂Þ whether the

obtained parameter �̂ is the globally optimal maximum.

Since the hyperbolic Radon transform is simply the

summation of data values, the global maximum of

ðRdÞð�Þ must be close to the summation of each maximal

value of the observed signal. Therefore, because the global

maximum and local maxima have considerably different

values, as shown in Fig. 5, one can decide whether the

obtained parameter is globally optimum by comparing

ðRdÞð�̂Þ and the sum of the maximum values of the

observed signals. If the obtained parameter is suspected of

being a trapped solution of a local maximum, then one can

try another initial value until a likely global solution is

obtained.

For comparison, the results of estimation by the

MUSIC method are shown in Fig. 7. The sound speed

was set to the correct value, and only the position was

estimated from the MUSIC spectrum, which was maxi-

mized by an exhaustive search. The MUSIC method

obtained a reasonably good estimate for the direction as

there was only one sound source. On the other hand,

although the sound speed had no error and all the

frequencies of the signal (10–100 Hz) were utilized, it

had a rather wide dispersion of the distance, which is

known as a general phenomenon [46,47]. This comparison

indicates that this simulation is a difficult situation for

10-3 10-2 10-1 100 101
0

50

100

150

200

RMSE of positions [m]

[d
B

]

Fig. 4 SNR of migrated images versus RMSE of source
positions.

Table 2 Simulation conditions for source localization.

Number of receivers M 100
Interval of receivers [m] 12.5

Correct estimation parameter ½90 60 1;510�T
Initial parameter for estimation ½100 50 1;500�T

Recording time [s] 7.0
Sampling rate fs [Hz] 1,000

SNRsignal [dB] �20;�15; . . . ; 50

Number of trials 1,000 for each SNRsignal

T. KUSANO et al.: LOCALIZATION OF MARINE SEISMIC VIBRATOR

221



accurately localizing the source position even when the

exact sound speed is known.

Then, the proposed method was compared with the

theoretical lower bound. The RMSEs of the estimated

parameters �̂ for each SNRsignal are summarized in Fig. 8,

where the CRLB is also depicted. Each color represents a

different element of the parameter vector. The solid lines

correspond to the RMSE of the estimated parameters, and

the dashed lines indicate the CRLB. As shown in the figure,

the RMSE of each estimated parameter almost reached the

CRLB of each parameter, which indicates that the proposed

method is unbiased. Moreover, even when SNRsignal was

�20 dB, the RMSE of the estimated parameter �̂ was less

than 100 m. Thus, the proposed method provides sufficient

accuracy for the seismic migration according to Fig. 4

since the positional error of 100 can hardly be observed

visually as shown in Fig. 3.

The estimated results for different sampling intervals

were also investigated, as shown in Fig. 9, to test the

proposed method under different conditions. The intervals

of the receivers were halved (6.25 m) and doubled (25 m).

These figures illustrate that the proposed method also

almost reached the CRLB for these sensor intervals. For all

cases in these experiments, the errors of the position were

less than 100 m, which is sufficiently accurate in terms of

migrated images for these situations. We should note,

however, that these results were obtained for an ideal

situation, i.e., additive Gaussian noise. Real data will

contain some non-Gaussian noise, and therefore these

results should be interpreted with that in mind.
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Fig. 6 Mean of jðRdÞð�Þj integrated along the depth direction in Fig. 5.
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5. CONCLUSION

In this paper, a sound source localization method using

seismic data via hyperbolic Radon transform was proposed.

The parameter estimation problem was formulated as a

maximization problem using the hyperbolic Radon trans-

form, which integrates the seismic data along the travel

time, and it was solved by Nesterov’s accelerated gradient

method with continuous interpolation using the spherical

Bessel function of the first kind. The numerical simulations

showed the localization accuracy required for seismic

migration, which is achieved by the proposed method. The

comparison of these results confirmed that the proposed

method is able to achieve the accuracy required in seismic

migration even when the SNR of the observed signal is

�20 dB for additive Gaussian noise.

Although the performance of the proposed method was

confirmed by several simulations, it was only examined for

the case of additive Gaussian noise. In the real measure-

ment in a marine seismic survey, there will be some non-

Gaussian noise, which will reduce the accuracy of the

parameter estimation. Therefore, an evaluation of the

proposed method under real conditions should be per-

formed as a future work. In addition, the sound speed was

assumed to be constant on the basis of the operable depth

of an MSV. The proposed method should be improved so

that it can be utilized at deeper positions where the

shallow-water assumption no longer holds. Therefore, an

extension of the proposed method to a nonconstant sound

speed should be considered with the development of

MSVs.
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