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Abstract. Let (L, A, V) be a finite lattice with a least element 0. AG(L) is an annihilating-
ideal graph of L in which the vertex set is the set of all nontrivial ideals of L, and two distinct
vertices I and J are adjacent if and only if I A J = 0. We completely characterize all finite
lattices L whose line graph associated to an annihilating-ideal graph, denoted by £(AG(L)),
is a planar or projective graph.
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1. INTRODUCTION

In the last twenty years, the study of algebraic structures, using the properties of
graph theory, tends to an exciting research topic. Associating a graph to an algebraic
structure has been the interest of many researchers. For example see [2], [4], and [13].
The notion of an annihilating-ideal graph AG(R) of a commutative ring R was intro-
duced by Behboodi and Rakeei in [5] and [6]. However, they let all annihilating-ideals
of R be vertices of the graph AG(R), and two distinct vertices I and J be adjacent
if and only if IJ = 0. In [1], Khashyarmanesh et al. introduced and studied the
annihilating-ideal graph of a lattice L, denoted by AG(L). Graf AG(L) is a graph
whose vertex set is the set of all nontrivial ideals of L and two distinct vertices I and
J are joined by an edge if and only if I A J = 0.

First we review some definitions and notation from lattice theory.

Recall that a lattice is an algebra L = (L, A, V) satisfying the following conditions:
for all a,b,c € L:

(1) aha=a,aVa=a,

(2) anb=bAa,avVb=0bVa,
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3) (anb)Ac=an(bAc),aV (bVec)=(aVDb)Vec, and
(4) aV(anb)=aAN(aVd)=a.

There is an equivalent definition for a lattice (see for example [15], Theorem 2.1).
To do this, for a lattice L, one can define an order on L as follows: For any a,b € L,
we set a < b if and only if a A b = a. Then (L, <) is an ordered set in which every
pair of elements has a greatest lower bound (g.1.b.) and a least upper bound (L.u.b.).
Conversely, let P be an ordered set such that, for every pair a,b € P, g.1.b.(a,b) and
l.u.b.(a,b) belong to P. For each a and b in P, we define a A b := g.l.b.(a,b) and
aVb:=1lub.(a,b). Then (P,A,V) is a lattice. A lattice L is said to be bounded if
there are elements 0 and 1 in L such that 0Aa = 0 and aV1 =1 for all a € L. Clearly,
every finite lattice is bounded. Let (L, A, V) be a lattice with a least element 0 and
let I be a nonempty subset of L. I is called an ideal of L, denoted by I < L, if and
only if the following conditions are satisfied:

(1) For alla,beI,aVbel.
(2) fo<a<bandbel, thenacl.

For two distinct ideals I and J of a lattice L, we put INJ := {xAy: z €I,y € J}.

In a lattice (L, A, V) with a least element 0, an element a is called an atom if a # 0
and, for an element x in L, the relation 0 < x < a implies that either z = 0 or z = a.
We denote the set of all atoms of L by A(L). For terminology in lattice theory we
refer to [10].

Now, we recall some definitions and notation on graphs. We use the standard
terminology of graphs following [7]. Let G be a simple graph with vertex set V(G)
and edge set E(G). In a graph G, for two distinct vertices a and b in G, the notation
a — b means that a and b are adjacent. Also, the degree of a vertex a, denoted by
deg(a), is the number of edges incident to a, and an isolated vertez is a vertex with
zero degree. A graph with no edges (but at least one vertex) is called an empty
graph. The graph with no vertices and no edges is the null graph. For a positive
integer r, an r-partite graph is one whose vertex set can be partitioned into r subsets
so that no edge has both ends in any one of the subsets. A complete r-partite graph
is one in which each vertex is joined to every vertex that is not in the same subset.
For notation, we let K, represent the complete graph on n vertices, and K, ,, the
complete bipartite graph with part sizes m and n. A complete bipartite graph K
is called star (see [7] and [12]). A graph G is said to be contracted to a graph H
if there exists a sequence of elementary contractions which transforms G into H,
where an elementary contraction consists of deletion of a vertex or an edge or the
identification of two adjacent vertices. A subdivision of a graph is any graph that
can be obtained from the original graph by replacing edges by paths. The line graph
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of a graph G is the graph £(G) with the edges of G as its vertices, and two edges
of G are adjacent in £(G) if and only if they are incident in G.

Recall that a simple graph is said to be planar if it can be drawn in the plane or
on the surface of a sphere so that its edges intersect only at their ends. A remark-
able characterization of the planar graphs was given by Kuratowski in 1930 (cf. [7],
page 153). In 1962, Sedlicek characterized the planarity of a line graph £(G) by
using the planarity of G and its vertex degrees. In the sequel, we give the following
theorem from [18] which will be used later.

Theorem 1.1 ([18], Lemma 2.6). A nonempty graph G has a planar line graph
£(Q) if and only if

(i) G is planar,
(ii) A(G) <4, and

)

(iii) if deg(v) =4, then v is a cut vertex in the graph G.

By a surface, we mean a connected compact 2-dimensional real manifold without
boundary, that is a connected topological space such that each point has a neighbor-
hood homeomorphic to an open disc. It is well-known that every compact surface is
homeomorphic to a sphere, or to a connected sum of g tori (Sy), or to a connected
sum of k projective planes (Ny) (see [14], Theorem 5.1). This number k is called the
crosscap number of the surface. The projective plane can be thought of as a sphere
with one crosscap. This means that the crosscap number of the projective plane is 1.

The canonical representation of a projective plane.

A graph G is embeddable in a surface S if the vertices of G are assigned to distinct
points in S so that every edge of G is a simple arc in S connecting the two vertices
which are joined in G. A projective graph is a graph that can be embedded in
a projective plane. The least number k that G can be embedded in Ny, is called the
crosscap number of G. We denote the crosscap number of a graph G by 7(G). One
easy observation is that ¥(H) < 7(G) for any subgraph H of G. If G cannot be
embedded in S, then G has at least two edges intersecting at a point which is not
a vertex of G. We say a graph G is irreducible for a surface S if G does not embed
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in S, but any proper subgraph of G embeds in S. The set of 103 irreducible graphs
for the projective plane has been found by Glover, Huneke and Wang in [11], and
Archdeacon in [3] proved that this list is complete. This list also has been checked
by Myrvold and Roth in [17]. Hence a graph embeds in the projective plane if and
only if it contains no subdivision of 103 graphs in [11]. Also, a complete graph
K, is projective if n = 5 or 6, and the only projective complete bipartite graphs
are K33 and K34 (see [8] or [16]). Note that a planar graph is not considered as
a projective graph. For more detailes on the notions concerning embedding of graphs
following [19].

In this paper, we assume that L is a finite lattice and A(L) = {aq,az,...,an} is the
set of all atoms of L. We denote the line graph associated with AG(L) by £(AG(L))
and we denote wr_; for the vertices I, J € AG(L), where I and J are adjacent vertices
in AG(L). In the second section of this work, we completely characterize all finite
lattices L such that the line graphs associated with their annihilating-ideal graphs
AG(L), are planar or projective.

2. ON THE PLANARITY AND PROJECTIVITY OF £(AG(L))

In this section, we explore the planarity and projectivity of the line graph asso-
ciated with the graph AG(L), which is denoted by £(AG(L)). If |A(L)| = 1, then
AG(L) is an empty graph, and hence £(AG(L)) is a null graph. We begin this section
with the following notation, which is needed in the rest of the paper.

Notation. Let i1,19,...,4, be integers with 1 < i1 < 92 < ... < i < n. The

notation U; ,,. ;, stands for the set

L
{I <L: {a;,ai,,...,0;, } CTand a;j ¢ [ for j € {1,...,n}\{i1,...,ix}}.

Note that no two distinct elements in U;,4,.. 4, are adjacent in AG(L). Also, if the
index sets {i1,42,... i} and {j1, jo, ..., jw} of Ui i,..i, and Uy j,. ., , respectively,
are distinct, then one can easily check that U ,..5, N Ujjy..j,, = (). Moreover,
V(AG(L)) = UUiyiy..ip, for all 1 < iy < i < ... < i < n. Suppose that L has n
atoms. We denote the ideal {0, a;} € U;, where a; is an atom and U, is an ideal, with
1 <i < n, by u;. Note that Ui, consist of isolated vertices. Clearly, the isolated
points do not affect planarity and projectivity. Hence, we ignore the set of isolated
vertices from the vertex-set of £(AG(L)), and so we do not show these points in our
figures.

Now, we state the following lemma.
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Lemma 2.1. If £(AG(L)) is planar or projective, then the size of A(L) is at most
four.

Proof. Assume on the contrary that |A(L)| > 5. Then the graph AG(L) contains
a copy of K5 with vertices u; € Uy, us € Us, ug € Us, ugy € Uy and us € Us. So
the contraction of the graph £(AG(L)) contains a subdivision of K3 3 (see Figure 1).
Therefore it is not a planar graph, which is a contradiction.

Wuy,ug  Wugus  Wug,uy

wu4,u5 wul»uz wusﬂ%

Figure 1.

Also, the contraction of the graph £(AG(L)) contains a copy of Esg, one of the
graphs listed in [11] (see Figure 2). Therefore £(AG(L)) is not a projective graph,

which is again a contradiction. (I
lw1t2,us
Wug,us Wag us Wz, uy
Wuy,ug Wrg,uy = Wug,ug

Iwuhuz

Figure 2.

By Lemma 2.1, it is sufficient for us to investigate the planarity and projectivity
of the graph £(AG(L)) in the cases in which the size of A(L) is 2, 3, or 4.

First we state necessary and sufficient conditions for the planarity and projectivity
of the graph £(AG(L)), when [A(L)| = 2.

Theorem 2.1. Suppose that |A(L)| = 2. Then £(AG(L)) is a planar graph if
2
and only if ‘ U Uj‘ < 5.
j=1
Proof. First, assume that £(AG(L)) is planar and assume on the contrary that
2
‘ U Uj| = 6. By [1], Theorem 2.6, we know that as |A(L)| = 2, the graph AG(L)
j=1

is a complete bipartite graph. If AG(L) is a star graph, then the graph £(AG(L))
contains a subgraph isomorphic to K5, which is not planar. Otherwise, AG(L) is
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not a star graph. Then it contains a subgraph isomorphic to Ks 4 or K3 3. In these
two cases, £(AG(L)) contains a subdivision of K3 3. Hence £(AG(L)) is not planar,
which is a contradiction.

2 2
Conversely, suppose that ‘ U Ujl <5. If ‘ U Uj| = 2, then £(AG(L)) is isomor-
2
phic to £(K3), which is an ernpty graph Wlth one vertex. Also, if | |J U;

2 j=1
L(AG(L)) = £(K1,2) = Ky. In addition, if | |J U;| = 4, then AG(L) is isomorphic
=1

= 3, then

to K13 or Koo. Hence £(AG(L)) is isomorphic to K3 or Ks 2, respectively. Fi-
2

nally, assume that ‘ U Uj| = 5. If AG(L) is a star graph, then £(AG(L)) = Ku.
j=1

Otherwise, the graph AG(L) is isomorphic to K2 3 with vertices uy, I1,I] € Uy and
ug, Is € Us. In this case, the graph £(AG(L)) is pictured in Figure 3.

Wy, Iy Wry,1y
o

5
Wy ug Wry ,ug

Figure 3.
In all of the above situations, £(AG(L)) is a planar graph. O
Theorem 2.2. Suppose that |A(L)| = 2. Then £(AG(L)) is a projective graph
if and only if one of the following conditions holds:
(1) ‘f}lUj = 6 and |U;| = 1 for some unique i € {1,2} or |U;| = |U;| = 3 for
j=

i,7 € {1,2}.
2
(ii) ‘ U Uj‘ =7 and |U;| =1 for some unique i € {1,2}.
j=1

Proof. First, assume that the graph £(AG(L)) is projective and on the contrary,
2
‘ U Uj‘ < 5. Then, by Theorem 2.1, the graph £(AG(L)) is planar, which is not
j=1

projective. Now, assume that ’ U Uj| = 6 and AG(L) = K5 4. By [9], Example 2.14,
F(£(K2,4)) = 2, and so the graph S(AG( )) is not prOJectlve Hence, if U U; ‘ =6,
then the statement (i) holds. Now, suppose that ‘ U U, ‘ =7.If AG(L) 1js not a star
graph, then it is isomorphic to K3 5 or K3 4. By [ ] Corollary 2.11, 7(£(Kz,5)) = 2
and, by [9], Example 2.14, 7(£(K3 4)) = 2. So if

2
U Uj‘ =7, then the statement (ii)
j=1
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2
holds. Finally, we may assume that ‘ U U;| > 8. If AG(L) is a star graph, then
j=1

the graph £(AG(L)) contains a subgraph isomorphic to K7, which is not projective.
Otherwise, AG(L) is not a star graph. Then it contains a subgraph isomorphic
to K26, K35 or Kq4. In these cases, AG(L) contains a copy of K3 4. Clearly,
Y(L(AG(L))) = 7(L(K2,4)), and we have J(£(K24)) = 2. It means that the graph
L(AG(L)) is not projective. Therefore, if £(AG(L)) is projective, then one of the
conditions (i) or (ii) holds.

2
Conversely, suppose that ‘ U Uj‘ = 6, and the graph AG(L) is a star graph. Then
j=1

L(AG(L)) = K5, and so it is a projective graph. Now, suppose that AG(L) = K3 3.
By [9], Example 2.12, 7(£(K33)) = 1, and so the graph £(AG(L)) is projective.

2

Finally, suppose that } U Uj| = 7, and the graph AG(L) is a star graph. Then
j=1

L(AG(L)) = Kg, and so it is a projective graph. O

3
Now, we investigate the planarity of £(AG(L)), when |A(L)| = 3. Let ‘ U Uj‘ > 5.
j=1

It is easy to see that AG(L) contains a subgraph isomorphic to a complete 3-partite
graph K311 or Ky 21. Therefore the graph £(AG(L)) contains a subdivision of K3 3
or a subdivision of K5, respectively. Hence it is not planar, and so we have the
following lemma.

3
Lemma 2.2. If £(AG(L)) is planar, then ‘ U Uj‘ < 4.
j=1

Theorem 2.3. Suppose that |A(L)| = 3. Then £(AG(L)) is a planar graph if
and only if one of the following conditions holds:

3

(i) \U Uj‘=3and|Uij|<2for1<i,j<3.
j=1
3

(ii) ’U Uj’=4and|Uij|Slforlgi,jg?).
j=1

Proof. First, assume that one of the conditions (i) or (ii) holds. Suppose that
3
U Uj‘ = 3 and |Ui2| = |Uis| = |Uzs| = 2. The graph AG(L) with vertices u; € Uy,
j=1

Uoy € UQ, us € Ug, 1127112 S U12, 1137113 € Uiz and Igg,Ié?) € Ussz is pictured
in Figure 4.
Ingauy p 153

I3 Io
U us
/ !
Iig I,

Figure 4.
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Hence the graph £(AG(L)) pictured in Figure 5 is planar.

p Wuy,Ios

Wug, T2

Figure 5.

3
Now, suppose that | | Uj‘ =4, |U1| = 2 and |Us2| = |Uis| = |U2s| = 1. The
j=1

graph AG(L) with vertices ui, Iy € Uy, ug € Us, ug € Us, 1o € Uio, 13 € Uss and
Iz3 € Uas is pictured in Figure 6 and £(AG(L)), which is a planar graph is pictured
in Figure 7.

Figure 7.

3
Conversely, suppose that £(AG(L)) is a planar graph. By Lemma 2.2, } U Uj} < 4.
j=1
Hence we have the following cases.
3
Case 1. |J U;
j=1

exists at least a vertex of degree 5 in the graph AG(L). Hence the graph £(AG(L))
contains a subgraph isomorphic to K5, and so it is not planar, which is a contradic-

= 3. If Uyq, Uiz or Uss has at least three elements, then there

tion.
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3
Case 2. | U Uj‘ = 4. Without loss of generality, we may assume that |U;| = 2. If
=1

U2 or Uiz has at least two elements, then there exists at least a vertex of degree 5 in
the graph AG(L). Hence the graph £(AG(L)) contains a copy of K, and so it is not
planar, which is a contradiction. In addition, if Us3 has at least two elements, then
the contraction of AG(L) contains a subgraph isomorphic to K3 4. Therefore AG(L)
has a vertex of degree 4 which is not a cut vertex. By Theorem 1.1, £(AG(L)) is not
a planar graph, which is a contradiction. O

Now, we investigate the projectivity of £(AG(L)), when |A(L)| = 3.
3
Suppose that ‘ U Uj| > 6. Then the graph AG(L) contains a subgraph isomorphic
j=1

to K411, K321 or Ka99. If AG(L) contains a subgraph isomorphic to K4 11, then
one can easily find a copy of A;, one of the listed graphs in [11], in the graph
L(AG(L)), which is not projective. Also, if AG(L) contains a subgraph isomorphic
to K321, then one can easily find a copy of Es, one of the graphs listed in [11],
in the contraction of £(AG(L)), which is not projective. Now, if AG(L) contains
a subgraph isomorphic to Kz 3 2, then the contraction of £(AG(L)) contains a copy
of E3, one of the listed graphs in [11], which is not projective. Therefore £(AG(L))
is not a projective graph.

As a consequence of the above discussion, we state the following lemma.
Lemma 2.3. If £(AG(L)) is projective, then ‘ U Uj‘ < 5.

Theorem 2.4. Suppose that |A(L)| = 3. Then £(AG(L)) is a projective graph
if and only if one of the following conditions holds:
(i) LSJ Uj| = 3, there exist unique i and j, with 1 < ¢, < 3, such that 3 < |U;;| < 4
and (U | < 2 for k € {7, j} and ('} = {1,2,3}\ {1, }.
(ii) LBJ U,| = 4, there exists a unique i, with 1 < i < 3, such that |U;| = 2, and for
{jj:,}c} ={1,2,3}\ {¢}, if 2 < |U;;| < 3, then |Us| < 1 and |Ujz| < 1.

3
(i) |U U;| =5,

j(a)l there exists a unique 4, with 1 < ¢ < 3, such that |U;| = 3, and for all
1<,k <3, U = 0;

(b) there exists a unique 4, with 1 < ¢ < 3, such that |U;| = 1, and for

{7,k} ={1,2,3}\ {4}, |Uji| <1 and U;j; = Uy, = 0.
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Proof. First we assume that £(AG(L)) is a projective graph. By Lemma 2.3,

3
‘ U Uj‘ < 5. Hence we have the following cases.
j=1

3
Case 1. ’U U;| = 3. In this case, if |U;;| < 2 for all i,j € {1,2,3}, then by
j=1

Theorem 2.3, the graph £(AG(L)) is planar, which is not projective. Also, without
loss of generality we may assume that |Usz|,|U13| € {3,4}. Then one can easily check
that the graph £(AG(L)) contains a copy of A1, one of the graphs listed in [11], which
is not projective. In addition, if we assume that Uyo, Uz or Uss has at least five
elements, then the graph £(AG(L)) contains a subgraph isomorphic to K7, which
is not projective. Therefore, for the projectivity of £(AG(L)), it is necessary that
there exist unique ¢ and j, with 1 < 4,5 < 3, such that 3 < |U;;| < 4 and |Upp| < 2
for k € {i,5} and {K'} = {1,2,3}\ {i,5}.

3
Case 2. ‘ U U;| = 4. In this case, if |U;;| < 1 for all ¢,j € {1,2,3}, then, by
j=1

Theorem 2.3, the graph £(AG(L)) is planar, which is not projective. Now, suppose
that there exists a unique U;, with 1 < ¢ < 3, say Uy, such that |Uy| = 2. If |Uss| > 2,
then AG(L) contains a copy of K2 4. Clearly, 7(£(AG(L))) > F(£(K2,4)), and we
have 7(£(K32,4)) = 2. This implies that the graph £(AG(L)) is not projective. Now,
we may assume that Usz = (). If U or U;3 has at least four elements, then the graph
£(AG(L)) contains a subgraph isomorphic to K7, which is not projective. Also, if
|Ui2| = |Uis| = 2, then the graph £(AG(L)) contains a copy of Ay, one of the graphs
listed in [11], which is not projective. Therefore, for the projectivity of £(AG(L)),
it is necessary that 2 < |U;;| < 3, |Ui| < 1 and |Uji| < 1, for {j,k} = {1,2,3}\ {3},
when |U;| = 2.

Case 3.

3
U U;| = 5. Suppose that |U;| = 3. If Uyz or Us3 has at least one element,
i=1

then the graph £(AG(L)) contains a copy of Di7, one of the graphs listed in [11],
which is not projective. Also, if Uss has at least one element, then the contraction
of £(AG(L)) contains a copy of Eg, one of the graphs listed in [11], which is not
a projective graph. Therefore, for the projectivity of £(AG(L)), it is necessary that
Uiz = Uy = Uz = ), when |U;| = 3. On the other hand, suppose that there exists
a unique U;, with 1 < < 3, say Uy, such that |Uy| = 1. If Uz or Uz has at least
one element, then the contraction of £(AG(L)) contains a copy of Eg, one of the
listed graphs in [11], which is not a projective graph. Also, if |Uss| > 2, then the
contraction of £(AG(L)) contains a copy of Dj7, one of the graphs listed in [11],
which is not a projective graph. Therefore, for the projectivity of £(AG(L)), it is
necessary that Ujs = Uz = () and |Usz| < 1, when |Uy| = 1.
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Conversely, if one of the statements (i), (ii) or (iii) holds, then we will show that
L(AG(L)) is a projective graph.

3
First suppose that } U Uj| = 3. If |[U12| = |U1s| = 2 and |Ua3| = 4, then the graph
j=1

AG(L) is pictured in Figure 8, which is planar and the graph £(AG(L)) is pictured
in Figure 9, which is projective. We have u; € Uy, us € Us, uz € Us, 12,115 € Uya,
1137113 € Uy3 and 1237153, é%,[é’é € Uss.

!
Lo I,
us

I
E 23
‘[23
I Uz Uy I
13 23
I///

Figure 8.

Figure 9.

3
Now, suppose that ‘ U Uj’ =4 and |U1]| = 2. If |Ur2| = 3 and |Uss| = |Uas| = 1,
j=1

then the graph AG(L) with vertices uy, Iy € Uy, ug € U, uz € Us, L1, I15, I{ € Uy,
I3 € Uiz and I3 € Uss is planar and the graph £(AG(L)) is projective (see Fig-
ure 10).

Figure 10.
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3
Finally, suppose that ‘ U U;| =5 and consider the following cases.
j=1
Case 1. There exists a unique U;, with 1 < ¢ < 3, say Uy, such that |U;] = 3,
and also Uy = Uz = Usg = (). Then the graph AG(L) with vertices uy, I1, I] € Uy,
ug € Us and ug € Us is planar. As observed, in Figure 11, the graph £(AG(L)) is
projective.

Wuy,uz

W1y ug

Wi us Wry,u3

WI! uy

w117ug w[{,ug

wuhUS

Wuy,uz

Figure 11.

Case 2. There exists a unique U;, with 1 < 7 < 3, say Ui, such that |Uy| = 1,
also Uy = Uz = 0 and |Usz| = 1. Then the graph AG(L) with vertices uy € Uy,
ug, Iy € Usa, us, I3 € Us and Ia3 € Uss is planar, and so £(AG(L)) is pictured in
Figure 12, which is a projective graph. (]

Wy, I3 WI;,us3

WI;,us3 Wy, Is

Figure 12.

In the following, we study the planarity and projectivity of £(AG(L)), when
A(L)] = 4.
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Lemma 2.4. If £(AG(L)) is planar or projective, then ‘ U Uj‘ =4.

4
Proof. Suppose on the contrary that ‘ U U;| > 5. Then the graph AG(L) has
j=1

a vertex of degree 4 which is not a cut vertex. Hence, by Theorem 1.1, £(AG(L))
is not a planar graph, which is a contradiction. Also, on the contrary, consider

4
that ’ U Uj’ =5 and |U;] = 2. Then £(AG(L)) contains a subgraph isomorphic
j=1

to Esog, one of the graphs listed in [11], which is not a projective graph. It is again
a contradiction. (]

Theorem 2.5. Suppose that |A(L)| = 4. Then £(AG(L)) is a planar graph if
and only if U;j =0 and |U,jx| < 1 for all i,j,k € {1,2,3,4}.

Proof. First, assume that the graph £(AG(L)) is planar. By Lemma 2.4, we
4

have | |J Uj‘ = 4. If there exists at least one element in U;; for i, € {1,2,3,4},
j=1

then one can easily check that the graph £(AG(L)) contains a subdivision of K3 3,
which is not planar. Also, if one of the sets Ujj; has at least two elements for
i,7,k € {1,2,3,4}, then the graph AG(L) has a vertex of degree 5. Hence the graph
£(AG(L)) contains a copy of K3, which is impossible.

Conversely, suppose that Ujs = Uyg = Usz = 0 and |Ujaes| = |Ur24] = |Ursa| =
|Uz3a| = 1. The graph AG(L) with vertices u1 € Uy, ug € U, ug € Us, uyg € Uy,
I1o3 € Uyos, I124 € Uyoa, I134 € Uyzq and I334 € Ussy is pictured in Figure 13.

Ia34
Uy

1134 1123

Ti94

U Uy

Figure 13.

Hence £(AG(L)) is pictured in Figure 14, which is a planar graph. Therefore, in
the case that U;; = () and |Uyji| < 1 for all ¢, 7,k € {1,2,3,4}, we have £(AG(L)) is
planar. O

4
In the sequel, suppose that ‘ U U;| = 4. We have the following situations.
j=1

(i) There exist i,j € {1,2,3,4} such that |U;;| > 2. Then £(AG(L)) contains
a copy of A, one of the listed graphs in [11], which is not a projective graph.
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Figure 14.

There exist 4,4, 4,7 € {1,2,3,4} with ¢ # ', j # j', such that |U;;| =
|Uirjs| = 1. Then the contraction £(AG(L)) contains a copy of Di7, one of
the graphs listed in [11], which is not a projective graph.

There exist 4,7, j € {1,2,3,4} with ¢ # ¢, j such that |U,;| = |Uy;| = 1. Then
£(AG(L)) contains a copy of D17, one of the graphs listed in [11], which is not
a projective graph.

Forall 1 <i,j,k <4, |Uiji| < 1and U;; = 0. Then, by Theorem 2.5, the graph
£(AG(L)) is planar, which is not projective.

There exist 4, j, k, with 1 < 4,5,k < 4 such that |Uj;x| > 4. Then £(AG(L))
contains a copy of K7, which is not projective.

There exist unique 4,7, j, k € {1,2,3,4} with i # ¢/, j, k such that 2 < |Usjz| < 3
and |Uyi;| = |Uwik| = |Uijk| = 1. Then the graph AG(L), with vertices
up € Uy, ug € Uz, uz € Us, ug € Uy, Li23, [193, [{23 € Uiaz, T124 € Uy,
T34 € U4 and o34 € Ussy is planar. Therefore the graph £(AG(L)), which is
pictured in Figure 15, is projective.

1"
w“47]123 Wy, uy

Wy, I123 Q

Figure 15.



(vii) There exist 4,7, j, k € {1,2,3,4} with ¢ # ¢, j, k such that |S;;x| = |Si | = 2.
Then £(I'2(L)) contains a copy of A, one of the listed graphs in [11], which is
not a projective graph.

(viii) There exist 4, j,j', k, k' € {1,2,3,4} with 4,5 # j',k # k' such that |U;;| = 1
and |U;j/ x| = 2. Then the contraction of £(AG(L)) contains a copy of Bi, one
of the listed graphs in [11], which is not a projective graph.

(ix) There exist 4,j,k, with 1 < 4,5,k < 4, |Ui;j| = |Uijx] = 1. Then £(AG(L))
contains a copy of E1g, one of the graphs listed in [11], which is not a projective
graph.

(x) There exist unique 4,7, j, j* with {¢’, '} = {1,2,3,4} \ {4, j} such that |U;;| =
|Uiirj| = |Ujirjs| = 1. Then the graph AG(L), with vertices uy € Uy, ug € Us,
us € U3, Uy € U4, I € U12, T34 € Uiy and Iz34 € Uszy is planar. Therefore
the graph £(AG(L)), which is pictured in Figure 16, is projective.

Wug, Iz  Wuy,usg

Wuy,uz

Wy, uz

Wug,us  Wug,I1o

Figure 16.

As a consequence of the above discussion and Lemma 2.4, we state the necessary
and sufficient conditions for the projectivity of the graph £(AG(L)), when the size
of A(L) is equal to 4.

Theorem 2.6. Suppose that |A(L)| = 4. Then £(AG(L)) is a projective graph
if and only if ‘ '61 Uj| = 4 and one of the following conditions holds:
j=
(i) There exist unique i # i',j, k with 1 < 4,7, j,k < 4 such that 2 < |Ujj| < 3
and |Ul/”| = |Ui/ik| = |Ui/jk| =1.
(i) There exist unique ¢,4',7,j" with {i',7'} = {1,2,3,4}\ {4,j} such that |U;;| =
\Uiirjr| = |Ujirjr| = 1.
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