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Statement of the Problem

The current trend for enhancing response times is parallelization. Reducing

response-times can not be achieved with software written for single-core pur-

poses. The software has to be aware of the additional cores, and must gain

benefit from those. The shift from sequential programming toward multi-core

programming influences not only the market for gaming and consumable de-

vices, but also the one for medical and industrial applications.

The reduction of response time in single-core applications by code opti-

mization is limited. By utilizing several cores, those limits can be overcome,

because further resources can be allocated for that purpose. Furthermore, sit-

uations may exist in hard real-time environments, where it becomes impossi-

ble to keep all deadlines without the utilization of another core. But the usage

of those additional resources and the shift to real parallel execution has its

own difficulties. Problems will occur if cores are utilized incorrectly, and dead-

lines may not be kept.



Methods and Procedures

This thesis attempts to find efficient approaches for gaining additional ben-

efit from several cores. For that purpose, a generic view at a multi-core sys-

tem is introduced and evaluated. Each layer has its own impact on concur-

rency. Concepts and frameworks are evaluated for gaining benefit from multi-

ple cores, i.e. whether those concepts and frameworks are suitable for a real-

time environment

For being not limited to a special real-time system, their main limitations

are evaluated as well.

Results

As this thesis will underline, utilizing several cores within a real-time environ-

ment is possible at different layers. Efficient frameworks exist, which can de-

compose work in order to gain benefit from additional cores. Frameworks

like OpenMP, Intel TBB and Cilk can help to improve performance through

work decomposition, and furthermore they are considered as scalable. For us-

ing them in a real-time environment, it has to be considered that attributes

of the thread creation are done automatically. As such, it is not possible to

influence the whole scheduling behavior related to those created threads. In

OpenMP, Intel TBB and in CILK attributes like priority are inherited from the

main thread. OpenMP and Intel TBB provide their own scheduling mecha-

nisms. Those shall be set to static, to get a predictable result in time and work

flow.
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1.1 Outline

Advances in computer hardware technology improve system throughput and

increase the computational speed in terms of millions of instructions per sec-

ond (MIPS). Since costs to overcome physical limitations for enhancing single

cores are higher than utilizing several cores, it is more economic to improve

processing power with multi-core systems.[Chr]

Having a higher throughput, or having several cores on a system does

not mean that timing constraints of an application will be met automatically.

Those constraints are essential for real-time computing, where the individual

timing requirement of each task has to be met. This objective is different, un-

like fast computing where the average response time of a given set of tasks has

to be minimized.

When several computational activities have different timing constraints,

average performance has little significance for the correct behavior of the sys-

tem. This situation is emphasized, when moving from single-core to multi-

core hardware architectures.

1.2 Motivation

Multi-core systems are offering several benefits for developer. They are com-

paratively affordable compared to high-end single core platforms, have low

power consumption, and good heat dissipation. Furthermore, higher fre-

quency requires more power, making it harder and more expensive to cool

down the system. In terms of robustness, it may be interesting to move from

a single- to a multi-core platform.
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Installing an application to a multi-core platform does not mean to get

a benefit of those additional cores. In most cases, the application has to be

modified or completely redesigned. The application, as well as the operating

system must be (aware) of the additional cores.
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PURPOSES AND GOALS

2.1 Scope of this Thesis

This thesis covers issues, which must be considered for meeting real-time con-

ditions, when moving from single- to multi-core hardware architectures. Tech-

niques for reducing latency-, and computational-times by meeting real-time

requirements are the main foci of this thesis.

2.2 Related work

Many approaches exist concerning multi-core technologies, most of them for

the mass-market, not related to real-time systems.

This thesis tries to comprehend the essential requirements for real-time

5



CHAPTER 2. PURPOSES AND GOALS 6

systems, and shows whether current state-of-the-art techniques exist for re-

ducing the overall response time of the system in a multi-core system.

2.3 Style guide

In this work, quotations are written indented:

Real-time systems are computing systems that must react within

precise time constraints to events in the environment. As a con-

sequence, the correct behavior of these systems depends not only

on the value of the computation but also on the time at which the

results are produced.[SR89]

The name of variables used in the text is written in courier font: mNode. Special

words used in the text connoting a non-standard meaning are written in italic:

fast Multiprocessing. Important words in the text emphasizing the focus are

written in bold face: Hazard pointer.

References can be found at the end of the thesis and are formatted ac-

cording to the AIP style guide. Citations in this work are written inline within

square brackets with the reference in blue color: [SR89]. Footnotes are added

at the end of each page in small fonts, and are numbered serially.
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3.1 Definition of Real-Time

Timing requirements are especially important for real-time systems. External

events, even when unpredictable for the system, must be handled in a pre-

dictable manner.

Real-time systems are computing systems that must react

within precise time constraints to events in the environment. As a

consequence, the correct behavior of these systems depends not

only on the value of the computation but also on the time at which

the results are produced.[SR89]

An example for a predictable system with hard real-time constraints is the

pacemaker. It is absolutely mandatory that every heartbeat comes in a con-

trolled manner. Enhancing the overall computing time would not lead to the

desired effect, but reducing the processing time Tp at a desired time T0. In fig-

ure 3.1 an example for the time constraints is illustrated. A shows the desired

heart beat for the patient, whereas B shows the approximation with process-

ing time. If we enhance the computing time for the overall system1 the heart-

beat will change as shown in C . A real-time system has to be aware of its dead-

lines (see D), violating them is an error, which will lead to strict consequences

to the real world. This example about hard real-time shows that real-time sys-

tems are related to the external environment, in that case the real world. It is

reasonable to classify real-time systems into two domains:

hard real-time: A real-time task is said to be hard if missing its

1using a 1 GHz CPU instead of a 500 MHz one
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Figure 3.1: Hard real-time requirements for a pacemaker.

deadline may cause catastrophic consequences on the envi-

ronment to control.[But04]

soft real-time: A real-time task is said to be soft if meeting its

deadline is desirable for performance reasons, but missing its

deadline does not cause serious damage to the environment

and does not jeopardize correct system behavior.[But04]

Typically, a real-time system consists of hard and soft real-time require-

ments. The system has to cover requirements where violating deadlines may

cause catastrophic consequences and requirements where violating dead-

lines may not cause catastrophic consequences. These two aspects should

be designed using different approaches. The system has to guarantee the in-
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Figure 3.2: Block diagram of a generic real-time control system (adapted from
[But04]).

dividual timing constraints of the hard tasks (see figure 3.2) while the average

response time of the soft tasks should be reduced.
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3.2 Multi-Core Technologies

Software is a language developed for communicating with hardware. Without

having the proper hardware, real parallelism cannot be achieved. The pur-

pose of this section is to describe the fundamentals of different hardware ap-

proaches and their impact on a real-time system.

In order to achieve parallel execution in software, hardware

must provide a platform that supports the simultaneous execu-

tion of multiple threads.[AR06]

Figure 3.3: Different hardware approaches for multiple cores.[AR06]
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For achieving real concurrency in terms of parallel tasks, hardware redun-

dancy must exist. Without having redundant hardware, real parallelism will

not be achieved.

Several programs can also be executed at the same time on single-core

systems using multi-threading or multi-processing. One program will be

stopped for a specific time and another one will be executed instead. Using

this timesharing technique, a kind of pseudo parallelism is implemented. Real

concurrency means that more than one program, application, or task is exe-

cuted in parallel. This little difference has a significant impact on the whole

design.

Depending on how much hardware is redundant or connected to each

other and depending on the proposed application, the bus or the cache may

become a bottleneck. Figure 3.3 shows different solutions for additional hard-

ware in order to run programs in parallel.

Hyper-Threading: is a simultaneous multi-threading (SMT) technology. It

enhances the utilization of processor pipelines by filling leaks within

pipelines with commands from another thread. Leaks within a pipeline

can occur when data in cache is missing and has to be recovered from

main memory.

Cache: is an important part of the hardware multi-core architecture. Cache

satisfies the need for fast data access. Current CPUs are beyond the

range of 1GHz, whereas main memory lies in the range of several

100MHz. Cache provides fast access to already stored data compared to

main memory. Efficient use of the cache can improve the accessing time

for required data. This reduces the CPUs idle time and improves the effi-
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Figure 3.4: Different approaches for memory access.

ciency of the system by optimizing the utilization of the CPU. This effect

will be emphasized for each additional core in a multi-core system, be-

cause more cores have to acquire data for their further progress.

Data access is important for the behavior in the system. In terms of a

multi-core system, data has to be modified and changed in parallel. The

most of the data is stored in the main memory of a system. Figure 3.4

gives an overview on how main memory can be accessed. The principles

are known as Non-Uniform-Memory-Access (NUMA) and Uniform-Memory-

Access (UMA).[AR06]

The term shared memory refers to the fact that the address

space is shared; that is, the same physical address on two pro-

cessors refers to the same location in memory. Shared mem-

ory does not mean that there is a single, centralized memory.

In contrast to the symmetric shared-memory multiprocessors,
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also known as UMAs (uniform memory access), the DSM2 multi-

processors are also called NUMAs (nonuniform memory access),

since the access time depends on the location of a data word in

memory.[HP03]

In a NUMA system, the response time of a memory access depends on

the actual distance between the processor and the random-access-memory

(RAM), although it is the same for each processor on the same node.

For the UMA system, the response time for memory accesses is the same

all over the system.

2DSM stands for distributed shared memory.
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3.3 Multi-Core Operating Systems

The work with additional cores is an additional overhead for an operating sys-

tem (OS). The operating system must have specific features in order to interact

with additional cores. Several approaches exist for that purpose.

AMP: Asymmetric multiprocessing uses a separate copy of an OS on a core.

In most cases the software process is locked to that single core which

provides an execution environment similar to an uniprocessor system.

Code can be simply migrated, because the software process behaves like

a uniprocessor system. One of the drawbacks is that all shared Input-

Output (IO) devices, like an Ethernet port, have to be managed explicitly

between the OS.

Each OS has full access to all IO (see figure 3.5) but is not aware of another OS.

SMP: Symmetric multiprocessing places the OS on one core, which handles

the other ones. This means that one core suffers from additional over-

head, but has as advantage that all shared resources are known by the

OS, so that the access from several cores to e.g. Ethernet can be man-

aged. Furthermore, the system becomes scalable through the OS be-

cause the scheduling of processes is distributed to the available cores.

One OS has full access to all IO (see figure 3.6).

BMP: Bound multiprocessing uses the same concept as SMP, but it is possible

to bind a process to a specific core. The problem of the shared IO is

handled as in SMP.
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Figure 3.5: AMP: User has to share IO and memory explicitly.

Figure 3.6: SMP: OS handles shared resources.
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If resources like IO are not shared and there are no dependencies between

the processes, AMP offers the most efficient approach for the utilizing the ad-

ditional cores. In theory, the same amount of overhead is introduced from the

OS at each core. Practically, it depends on the hardware architecture (espe-

cially UMA, NUMA). But migrating independent single core tasks to a multi-

core system will enhance response times of the system. If deadlines are not

violated, this will be the simplest and most efficient approach to utilize multi-

cores.

Having shared IO will complicate the attempt to migrate to a multi-core

platform. SMP introduces not only the overhead of the OS, but furthermore

a scheduling overhead because the additional cores must be managed from

the OS. So a set of tasks T has to be distributed to several cores C . Having

only one core simplifies the management procedure, having several cores will

increase the scheduling overhead. SMP will be the best choice if dependen-

cies between processes exist, and if resources are shared. It introduces addi-

tional overhead because of the process management, but simplifies depen-

dency management.

BMP adds an overhead but provides an additional advantage compared

to classical SMP. The additional overhead comes from the fact that processes

have to be bound to a special core. If e.g. a process A shall only run at core

C2, a mechanism has to be implemented to prohibit the use on e.g. C0. This

leads to the advantage that migrations3 can be limited. For instance, if there

is a migration overhead on a specific calculation, because several other pro-

cesses are running in parallel, it is possible to assign one core for that critical

3simplified: a context switch between processors
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operation, which will reduce scheduling overhead and therefore calculation

time4.

4Compared to classical SMP.
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3.4 Dependencies between thread-safe, reentrant,

atomic and recursive

Multi-processing or multi-threading has its assets, as well as its drawbacks.

One of those drawbacks is the possibility of corrupting data during parallel or

even semi-parallel5 access.

A function executed by Thread A can be interrupted by Thread B. For

this example, Thread A and Thread B will execute the same function

incCounter(). If this function uses global variables or static variables the

possibility of corrupting data exists, because data is shared between compet-

ing threads. Listing 3.1 shall show an example for the undesired behavior of a

function.

The increment for GLOB is not atomic because it can be interrupted by the

scheduler. This will occur whenever a time-slice is consumed or a higher pri-

ority thread arrives.

Listing 3.1: Incrementing a single-word counter.

1 Int64 incCounter (){

2 static Int16 GLOB = 0;

3 GLOB ++;

4 return GLOB;

5 }

Listing 3.2 shows the assembler operations for the single GLOB++ incre-

ment statement.

Listing 3.2: GLOB as a 16 bit variable at an x86 architecture with a 32 bit

memory bus.

5Through scheduling mechanisms like preemption.
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1 mov [GLOB], eax

2 add 0x1, eax

3 mov eax , [GLOB]

Depending on the word-size of the variable GLOB, the amount of instruc-

tions may become more.

Listing 3.3: GLOB as 64 bit variable at an x86 architecture with a 32 bit

memory bus.

1 mov 0x804c480 ,eax

2 mov 0x804c484 ,edx

3 add 0x1,eax

4 adc 0x0,edx

5 mov eax ,0 x804c480

6 mov edx ,0 x804c484

Each of those operations consumes time. The operation itself might be

interrupted and data might be modified. In case of a 64 bit variable e.g. of

type long long, the first bytes might be written, GLOB is changed and further

progress is stopped because of preemption. This will lead normally to data

corruption.

The listing 3.2 will not have data corruption, but if the value of GLOB is

modified at the first instruction mov [GLOB], eax, the resulting value for that

function might become invalid.

Functions as shown above are known as non-reentrant and non-thread-

safe.

A solution within a single core system is to change the scheduling from

round-robin to FIFO6.[Sup]

6Also known as FIFO scheduling trick.
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Since no time-slicing mechanism is used, a thread will only be interrupted

by the scheduler if a higher priority event arrives. A thread has to complete

its whole work, or it has to switch using calls as sched_yield(). This is an

efficient approach on single core systems.

In a multi-core system this solution will mostly not work, because several

threads might be running in parallel.

Shared data have to be protected by synchronization mechanisms or other

techniques, when they are accessible by more than one thread. Different syn-

chronization mechanisms exist for that purpose, each of them with their own

advantages and disadvantages. Functions must fulfill special requirements in

order to access shared data from different threads.

Thread-safe: A function is considered as thread-safe if it can be called by dif-

ferent threads without an unwanted interaction between the threads.

The attribute thread-safe in a function has no implications on whether this

function is intended to be fast. Thread-safe is, in most cases, sequencing of

concurrent access. This can lead to bottlenecks in a multi-threaded environ-

ment. If several threads are intended to perform modifications on a shared

resource, one of the following must be ensured:

1. Only one thread has access rights for the shared resource at a time, other

threads have to wait.

2. The modification must be completed before another thread starts mod-

ifying as well.
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In both cases a kind of sequencing exists, because simultaneous access may

lead to data corruption.

Providing access rights to shared resources is typically done by using syn-

chronization mechanisms. Those have to be provided by the operating sys-

tem, and have direct impact on the scheduling of the system. The most com-

mon synchronization primitives are:

• Semaphores

• Mutexes

• Memory-Lock7

• Spin-locks (busy-waiting)

The following listing shows one conceptual approach to make a function

call thread-safe, by utilizing synchronization primitives.

1 Int64 incCounter (){

2 mutex.take();

3 static Int64 GLOB = 0;

4 GLOB ++;

5 mutex.give();

6 return GLOB;

7 }

Nearly each synchronization mechanism uses a system call, so thread-safe im-

plementations have a cost of performance. Calling and releasing synchroniza-

tion mechanisms cost time. During this time, other threads attempting access

to the shared resource wait until execution has completed. Depending on the

7Commonly used in the embedded world
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amount of threads waiting for that resource, and depending on the time for

waiting, those costs could be too high for the overall system performance.

Another approach for solving that issue is the use of atomic primitives.

Atomic: Actions are atomic if they can be considered, so far as

other processes are concerned, to be indivisible and instanta-

neous, such that the effects on the system are as if they were

interleaved as opposed to concurrent.[BW01]

This approach, which works normally only for small data (single or double

words), is typically performed in few processor cycles. Furthermore, system

calls for the synchronization mechanisms do not exist. Those atomic calls

are very fast if they are provided by the hardware architecture. The following

example shows the use of such an implementation utilizing atomic primitives.

Listing 3.4: Using atomic primitives.

1 Int64 incCounter (){

2 static Int64 GLOB = 0;

3 atomic_add (&GLOB , 0x01);

4 return GLOB;

5 }

The appliance of atomic primitives comprises new risks and problems. The

listing 3.4 is using such a primitive, but is not thread-safe because a wrong

value could be returned. Considering the following case:

1. Thread A and Thread B are executing function incCounter().

2. The value of GLOB is 0.

3. Thread A executes atomic_add(&GLOB, 0x01); (GLOB value is 1).
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4. Thread A is preempted by Thread B (GLOB value is 1).

5. Thread B performs function incCounter() and returns 2 (GLOB value is

2).

6. Thread A completes function incCounter() and returns 2 (GLOB value

is 2).

The return value is needed for handling that issue and for making the

function incCounter() thread-safe. The QNX implementation provides

atomic_add_value() for that purpose. That implementation is slower then

the pure atomic_add() implementation, but returns the original value before

the atomic addition was performed. The value was incremented, so 1 is added

manually. This will not lead to further data problems; hence tmp is allocated

on the stack, and therefore just visible for the current context of the corre-

sponding thread.

1 Int64 incCounter (){

2 static Int64 GLOB = 0;

3 Int64 tmp = atomic_add_value (&GLOB , 0x01)+1;

4 return tmp;

5 }

A thread-safe function can be called simultaneously by multiple threads when

each invocation references to shared data. Normally this access to the shared

data is serialized.

Reentrant: A function is called reentrant if it is thread-safe and does not use

any synchronization mechanism.

Recursive: A function is considered recursive if it calls itself.
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Recursive functions shall be reentrant in order to work properly, but not all

reentrant functions need to be recursive. The main difference between a

thread-safe function and a reentrant function is that threads are not blocked

in a reentrant function. Many algorithms exist which are implemented by

the use of recursive functions (e.g. divide-and-conquer algorithms). The con-

cepts used in those algorithms can be simply enhanced by multi-processing

if their functions are reentrant.

If those functions are only thread-safe, serialization will be emphasized

and can lead to efficiency issues. Other threads can not perform their work

because it will lead to data corruption.

Having them reentrant means that they are executed with a less amount of

serial code and may gain benefit by additional cores (e.g. in Cilk parallelized

implementations). It has to be considered that not all problems can be effi-

ciently solved in parallel. Some algorithms are faster if they are performed

serially.

The proper understanding of those terms is crucial for handling complex-

ity with multi-core systems. If not properly understood, a system may work

properly in 99% of all cases, but sometimes might not. The example with the

incCounter function shows how many additional circumstances shall be con-

sidered in order to build a thread-safe or a reentrant function. Atomic opera-

tions are very efficient calls, which must be supported by the hardware. If sup-

ported, these are by far faster than synchronization mechanisms like mutexes

or semaphores. For gaining further achievements in terms of speed, frame-

works or libraries for multiprocessing system should not only be thread-safe,
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they should be reentrant8. Otherwise, bottlenecks will occur in a manner that

one running thread will block another one.

8At least frequently called functions.
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3.5 Non-Blocking Algorithms

Synchronization primitives have their advantages as well as their disadvan-

tages. An advantage is their simplicity to use, but hidden complexity and dead-

locks, life-locks, priority-inversion and sequencing limit their use in terms of

efficiency. Researchers have also looked for other solutions in order to mini-

mize the use of synchronization mechanisms. Lock-free mechanisms are fre-

quently used in kernel implementations (see [McK03] for read-copy-update

(RCU) mechanisms in the Linux kernel implementation), or in the QNX ker-

nel (like the scheduling trick for SMP scheduling) implementation.

Although the Linux 2.6 kernel offers much improved real-time

response, performance, and scalability when compared to the

2.4 kernel, it does not offer hard real-time response, nor has it

been able to provide scheduling latencies below about 100 mi-

croseconds. However, this is changing with the advent of two new

approaches.[MS05]

Those mechanisms are more complex than those for mutual exclusion,

like shown for the reentrant functions in Part I. The implementations have

to be reentrant in order to be non-blocking.

Traditionally, there are two basic levels of non-blocking algorithms, called

lock-free and wait-free. Wait-free and lock-free algorithms can be used in ad-

vanced data-structures for multi-processing and multi-threading purposes.

Those algorithms have several benefits in terms of scalability and perfor-

mance. Wait-free algorithms are performed within a specific time-window.
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This makes them interesting for their use in a real-time environment. In lock-

free algorithms, at least one task is ensured to make progress.[Sun04]

Wait-free algorithms fulfill hard real-time conditions. They are determin-

istic and executed within a specific time-frame, regardless of the actual level

of concurrency. This means directly that they are not only reentrant, but also

terminate after a finite number of execution steps. Many implementations

are using RCU, where an object is copied into different buffers and redirected

into separate buffers for avoiding conflicts. The buffer with the latest value

is activated using an atomic call like compare-and-swap (CAS) or another

mechanism. An example for the wait-free RCU mechanisms, can be found

in the Linux kernel implementation. Further details can be found at [Sun04].

Lock-free and wait-free algorithms promise huge performance since can be

performed in parallel. Both types of algorithms are not using synchronization

primitives like mutexes or semaphores.

Figure 3.7 shows the time behavior of wait-free algorithms. As shown in

figure 3.7, each algorithm terminates at a specified time-frame, which make

this kind of algorithms interesting for hard real-time systems.

Lock-free implementations ensure that at least one instance is making

progress, whereas in wait-free implementations all instances are making

progress. As shown in figure 3.8 their behavior is to poll if an operation cannot

be performed. This is not desired in a hard real-time system, where those hard

real-time conditions might lead to catastrophic circumstances. Solutions ex-

ist to overcome this problem, by e.g. implementing a counter for reducing the

amount of spins.
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Figure 3.7: Time behavior of wait-free algorithms (adapted from [Sun04]).

Figure 3.8: Time behavior of lock-free algorithms (adapted from [Sun04]).
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Comparing lock-free algorithms with algorithms using locking primitives,

the former have several benefits:

• They are scalable (several threads can execute them at the same time).

• They do not lead to priority inversion.

• They do not lead to deadlocks.

• They need no interaction with the operating system.

• They are fast.

By providing all these benefits, they also have their disadvantages:

• They are more complicated to program (ABA Problem).

• They are using (in most cases) atomic primitives, which must be sup-

ported by hardware.

• Lock-free implementation can lead to spinning.

ABA Problem: The ABA problem occurs when a thread reads

a value A from a shared location, and then other threads

change the location to a different value, say B, and then back

to A again. Later, when the original thread checks the loca-

tion, e.g., using read or CAS9, the comparison succeeds, and

the thread erroneously proceeds under the assumption that

the location has not changed since the thread reads it ear-

lier. As a result, the thread may corrupt the object or return a

wrong result.[Mic04]
9CAS stands for compare-and-swap.
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For illustrating the ABA problem, an example implementation of a simple

linked list is shown. See figure 1 for a detailed work flow of the implementa-

tion. A basic node is defined, where mNext is a pointer to the next Node and

mData a piece of information, which has to be stored into this linked list. A

header HEAD exists, which points to the latest value. This header is stored on

the data-segment (DS).

Listing 3.5: Structure of the Stack (slightly modified from [Lan05]).

1 struct CNode {

2 CNode * mNext;

3 Int32 mData;

4 };

5

6 CNode * HEAD;

Two operations are defined to add and remove elements from the stack.

These operations are push and pop. push adds a new value onto the head of

the stack, and pop retrieves a value from the head. Both operations are using

the atomic call CAS for securing data integrity. The method cas(a,b,c) takes

3 parameters. The first parameter a is a memory region10, which has to be

compared against parameter c. If this comparison succeeds, the value of a

is overwritten with the value of b. In case of a failure the return value of this

function will be false, otherwise it will be true.

Listing 3.6: Adding elements lock-free (slightly modified from [Lan05]).

1 void push(Int32 t) {

2 CNode* node = new CNode(t);

3 do {

4 node ->mNext = HEAD;

5 } while (!cas(&HEAD , node , node ->mNext));

10Should not be stored in a register, so it has to be volatile.
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6 }

As shown in listing 3.6, node is a pointer stored on the stack, pointing to a new

value t on the heap. The pointer to the next Node node->mNext is allocated

on the heap and will point to the same address as the global variable HEAD

(after the assignment). In the example of the push function, the current loca-

tion is where HEAD points to, compared (using cas) with the location where

node->mNext points to. After the assignment node->mNext = HEAD, is the ad-

dress stored in variable HEAD copied to node->mNext. So cas compares two

addresses, not their values. If the addresses are equal, HEAD will be set to point

to the new value on the heap node.

The same technique is used for the pop method.

Listing 3.7: Removing elements lock-free (slightly modified from [Lan05]).

1 bool pop(Int32& t) {

2 CNode* current = HEAD;

3 while(current) {

4 // HEAD is compared with current

5 if(cas(&HEAD , current ->mNext , current)) {

6 t = current ->mData;

7

8 delete current; // the node is returned to the heap

9 return true;

10 }

11 current = HEAD;

12 }

13 return false;

14 }

As shown in listing 3.7, a pointer of type CNode is allocated on the stack point-

ing to HEAD. It is checked whether current and HEAD are equal. If those val-
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ues are not equal, it means that another thread has already updated the stack

structure (using push or pop). When the structure is changed, current will be

updated with the new value of HEAD. Otherwise, if both values (current and

HEAD) are equal, the value will be retrieved from HEAD and returned. As already

explained for the push()method, comparison is done for pointers (locations)

and not for values. Problems can occur if locations in memory are reused by

the memory manager. See figure 2 for a detailed work flow, which will lead to

the so called ABA problem.

Listing 3.8: Explaining the ABA problem.[Lan05]

1 Thread 1: Thread 2:

2 pop()

3 read A from HEAD

4 store A.next "somewhere"

5 pop()

6 pops A, discards it

7 First element becomes B

8 memory manager recycles

9 "A" into new variable

10 pop(): pops B

11 push(HEAD , A)

12 CAS with A succeeds

If a location is reused (see listing 3.8) before a cas operation, the location

could be the same one, but the value might be changed. This will not lead

to a program error, but might lead to a semantic or logic error, which cannot

be recovered from that easily.

Those kinds of errors are in most cases sporadic and difficult to find. It

might be that the system performs well, but the logical error might lead to

serious issues.



CHAPTER 3. FUNDAMENTALS 35

3.6 Summary

This chapter showed that real-time systems have different requirements than

non real-time systems. The relation to time in order to meet deadlines is im-

portant for those systems. Violating those deadlines can lead to catastrophic

consequences. In order to meet them, the system has to be deterministic and

well defined.

Several tasks can only be performed in parallel when hardware is redun-

dant. There is a difference between the time-sharing of two processes on a

single core, and the time-sharing of two processes on a dual-core system.

This scheduling behavior is defined by the use of an operating system.

Without the support of the operating system to exploit several cores, it can

become difficult to use several cores as efficient as only one single core.

The terminology for thread-safe, reentrant, atomic and recursive was dis-

cussed. Having a thread-safe function does not mean that this function scales

well in a multi-core environment. By using locking mechanisms, this function

will be locked while in use and minimizes the parallel access for that time.

New types of algorithms were introduced, which do not suffer from lock-

ing mechanisms. With those algorithms parallel access is possible, but they

are complicated to create. New problems might occur like the ABA problem,

which was analyzed to give a hint about the complexity of those algorithms.
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4.1 Layers influencing concurrency

Layers encapsulate functionality in order to reduce complexity. This is also

the case when using an operating system. The operating system provides the

Software Developer with services and functions. It encapsulates the direct

hardware access (see figure 4.1). This enlightens programming efforts but re-

duces the overall system performance by adding an initial overhead (layer) to

the application.

It is mandatory to have additional layers for encapsulating functionality

toward a specific domain. Otherwise the time-to-market and robustness of

the system would suffer. There are at least two approaches for improving the

response-time of the overall application. The first one is a technical approach

using different hardware or faster primitives. The second one is a concep-

tual approach using a different concept e.g. scattering and gathering data.

Both have their advantages, but also their drawbacks. Figure 4.1 shall give

an overview of the specific domains from the perspective of a Software Devel-

oper.

Layer 0: Represents the hardware. Hardware is the first step for achieving real

concurrency. Modifications of this layer can be achieved by e.g. BIOS

settings1, or jumper switches. It requires specific knowledge about the

hardware technology (e.g. hyper-threading, caching, or power-save op-

tions) and its related impact on the system.

Layer 1: Represents the Operating System. It is important to choose the cor-

rect operating system for the intended use. Real-time operating sys-

1BIOS settings are changing the behavior of the hardware.
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Figure 4.1: Different layers for the interaction with the OS (adapted and
slightly modified from [HH08]).

tems meet additional requirements related to determinism, stability

and communication. From the Software Developer perspective, system

calls can be used for providing access to hardware. It requires specific

knowledge about operating system internals, hardware interfaces and

kernel-level interfaces.

Layer 2: Represents core thread library functions. Libraries like POSIX offer

the possibility to create concurrency using threads or processes. Those

libraries interact directly with the operating system, e.g. for register-

ing processes at the process manager. Using libraries of this layer re-

quires detailed knowledge about process and thread management, in-

terprocess communication and about synchronization techniques. Li-

braries and frameworks use this layer for adapting the ability to create
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threads and processes. It provides an encapsulation to the operating sys-

tem. So applications using libraries (e.g. POSIX) at this layer are mainly

portable2.

Layer 3: Represents customized libraries for an easy use of multi-processing

or multi-threading. They make use of direct operating system calls

(layer 1), and of the thread function libraries (layer 2) as well. They

offer specialized solutions for their domain (e.g. Cilk for using nested

parallelism). Those customized libraries reduce much of the paralleliza-

tion issues by introducing their own primitives. They provide high-level

language constructs or simple function calls, whereas synchronization

objects and direct system interaction for the low-level work are in most

cases hidden.

Layer 4: Represents application frameworks for parallel programming.

Those application frameworks are more specialized in terms of their

own domain. Parallelization is encapsulated in a set of rules defined by

the framework, which has to be followed. Problems with synchroniza-

tion are handled from the framework itself, but there may be dependen-

cies when using other layers as well. Using this layer requires knowledge

of the framework.

Layer 5: Represents the developers’ environment, which has multi-threading

or multi-processing requirements. From the perspective of a Software

Developer, modifications of the source-code are related to one of the

2if ported libraries exist as well
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previous layers. Knowledge of the appropriate layer is necessary de-

pending on which layer is accessed.

The layers will be described in the following sections. Each layer has influ-

ence in terms of latency-time and response-time of the overall application, as

well as influence on a real-time environment. Important key technologies of

each layer will be explained and analyzed in terms of usability, performance

and influence concerning real-time requirements.
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4.2 Layer 0: Hardware

CORE 0 CORE 1 CORE 2 CORE N
Main
MemoryLayer 0

Hardware is the first layer for entering the parallelized world. Without the

possibility to e.g. calculate several equations at the same time, real parallelism

becomes pseudo-parallelism. Mastering hardware is crucial in gaining more

benefit of several cores. An application will not be n-times faster, just because

of using n-cores. Those cores can compute in parallel, but they need to ex-

change data as well. In a shared memory environment (SM) the main mem-

ory may become a bottleneck, depending on the hardware architecture and

on the utilization of the bus, which links processors with main memory. From

the developer perspective it is important to know which different factors exist

for affecting the performance of the overall system. However, determinism is

one of the most important requirements for a real-time applications, which

shall not be affected by improving performance.
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Figure 4.2: Different access times for memory.[HH08]

Memory

Memory is one of the main components of a system. The importance of the

memory and its management increases with additional number of cores.

Figure 4.2 shows the different types of memory.

• Register

• Cache

• Random-Access-Memory (RAM)

• Virtual Memory
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In order to reduce costly operations by accessing RAM, further knowledge

for exploiting registers and cache is necessary.

Register

A register is a fast memory with almost no latency-time3. Registers are usually

implemented directly into the core. This means that each core has its own set

of registers. The registers bound on one core are independent from registers

of other cores. Registers can be accessed directly via assembler code, or by

using the keyword register4 in C++. Read and write operations to registers

are very fast. That is one reason for their use in interrupt handling routines.

Registers are important for the overall performance of a system:

• Stack Pointer (ESP)

• Base Pointer (EBP)

• Instruction Pointer (EIP)

This improves the system performance by utilizing hardware resources effi-

ciently.

Cache

Cache is especially important for multiprocessor systems. The purpose is to

preserve the memory bus, so that the average throughput can be increased to

a significant level. Memory will become a bottleneck if the bus or the memory

3In terms of accessing and modifying.
4This does not mean that the variable will be always stored in the register, but compiler

will do so if enough space exist.
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itself is not fast enough for providing direct response. Cache is a fast mem-

ory that glues registers and the RAM together. The main purpose of caching

was originally to enhance the core utilization through data buffering, since

accessing RAM is costly in terms of clock cycles. Having a faster layer, which

provides the same data as stored in RAM, can enhance the overall system per-

formance significantly5. In a multi-core environment caching is more impor-

tant, because the access to a bus by several cores can be minimized by utiliz-

ing buffering techniques.

Caching disrupts determinism, because if data is missing, it has to be

restored from slower RAM, which consumes extra processing cycles, which

is not desirable for fulfilling hard real-time conditions. In most cases, it is

mandatory to disable caching options e.g. in the BIOS settings for achieving

determinism. Situations may exist where non-determinism of caching plays a

lower significant role, so that it becomes an interesting feature for enhancing

system processing.

Cache Trashing: For a full utilization of a single core it is important for data

structures to fit into the processors cache memory, so that no calls or

data accesses to RAM are employed. Whenever data from cache is mod-

ified, it has to be invalidated for updating data stored in RAM. The up-

dated information must be re-cached. This will be the case if a call to

the operating system (system or kernel call) is performed.

In addition to thrashing the cache memory, the processor

has to change its internal mode of operation and raise the

5Statistically the most frequent accesses to the main memory are limited to a small ad-
dress space (known as program locality)
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privilege level. The operating system needs to save the pro-

cess’ execution context and establishes the kernel context to

perform the OS’ call (and vice versa on return). Thus this is a

relatively costly operation compared to a regular in-program

function call.[Som02]

Each operation which needs interaction with additional periphery, outside

the memory architecture, adds another order of magnitude overhead. Reduc-

ing the number and frequency of such expensive system calls can boost up

performance and drop the use of system resources.

Compiler Options

Compiler options may have a serious impact on the response behavior of the

overall system. Depending on those options, written source code might be in-

terpreted differently. Even a resort of instructions is possible, which can cause

under specific circumstances (e.g. using the -parallel statement from the

Intel compiler [GN]), a different behavior of the system. This kind of resort

might eventually work in a serial program utilizing one core, but might not

work within a multi-core system, because real parallelism exists. A compiler

cannot understand all semantics, whether a piece of code shall be run in par-

allel or not. Using a synchronization mechanism like the mutex might cause

a deadlock when being automatically resorted. This might lead to a problem,

because current compilers are not (or only partly) aware of such issues.

A compiler can definitely enhance response times using hardware depen-

dent optimization techniques. Instructions like MMX or SSE3 exist, which are
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implemented directly in hardware, and can perform several operations (nor-

mally 2-3 operations) at once. Those instructions can be utilized by setting

appropriate options. The compiler will search for specific instructions which

can be replaced by those calls. Knirsch utilized those options for enhancing

the speed-up time for his system6 using the following instructions:

Listing 4.1: Gaining benefit from compiler options.

1 gcc -Wall -O1 -msse3 -march=core2 -mfpmath=sse -pipe -fstrength -

reduce

2 -fexpensive -optimizations -finline -functions -funroll -loops

3 -foptimize -register -move

Using options for loop-unrolling or for using in-line functions, etc. instructed

the compiler to interpret the written source-code more efficiently, where the

start-up time is improved by about 30%.

When using the default flags the system would need up to

2.15 seconds from starting the kernel instead of the given 1.58

seconds.[Kni09]

This example showed that even modifications at the lowest level can have se-

rious impact on the processing time. It is also possible to get an additional

speed-up by creating hardware specific assembly through recompilation, in

order to exploit more resources from the target hardware. This will work if the

hardware architecture and its features are known; otherwise, there will be no

benefit from using those options.

6Using the gnu compiler for an Intel architecture.
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HyperTransport (HT)

Cores need to communicate with each other; otherwise, it is not possible

to share work across cores, and to merge results. Implementing a commu-

nication through cache may be possible for one dual core processor where

this cache may be shared, but not for two separate processors. Implement-

ing a communication through slower RAM may be easy in UMA systems,

where the address of the memory is shared across all cores, but becomes

an additional overhead in NUMA systems. Sharing mechanisms may lead

to bottlenecks, depending on scheduling overhead. Interconnect technolo-

gies provide fast communication among cores, and help to simplify inter-core

communication.[Hyp]

HyperTransport is such an interconnect technology, providing low latency-

times and a high bandwidth7 for, not only inter-core, but also core to periph-

ery communication.

HyperTransport (HT) is a state-of-art packet-based, high-

bandwidth, scalable, low latency point-to-point interconnect

technology that links processors to each other, processors to co-

processors and processors to I/O and peripheral controllers.[Hyp]

This kind of technology offers several features, which are suited for hard real-

time conditions, not only because of the high bandwidth, but also because of

the low latency-times and its predictability. Figure 4.3 shows a NUMA archi-

tecture using HyperTransport.

7It can reduce the magnitude of additional overhead, for expensive IO operations.
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Figure 4.3: Processor communication using HyperTransport.[Hyp]

The illustrated processors have their own memory. For an application writ-

ten on top of an operating system there, is just one shared memory. From a

developers perspective, it appears as an UMA architecture (one shared mem-

ory). The main difference is that data may be saved in several memory loca-

tions, which means that accessing has to be done directly, or in worst case over

several processors, which will cost more time. In order to enhance response

times, scheduling has to consider this issue. As already mentioned, accessing

times are different between an UMA and a NUMA architecture. In a NUMA ar-
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chitecture, those times are related to the number of hops from one processor

to another one. This number of hops may differ, depending on the number of

processors and on the defined strategy8 for the access.

8Like in a larger Ethernet network where several ways to a destination may exist.
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4.3 Layer 1: Operating System

Operating system, system calls, IPCs

Layer 1

Several operating systems are available, which provide multi-core support.

They behave differently in terms of determinism, real-time and efficiency.

They may also differ in their way to react when external events arrive. The im-

plementation for scheduling (e.g. FIFO) may differ. So it is possible that two

operating systems with different scheduling algorithms react differently to the

external world. In a hard real-time environment, it is important to know those

details when choosing the operating system for a commercial use.

An operating system offers several services. One service is to provide an

abstraction layer for the interaction with hardware. Another service is the task

management for process and thread scheduling. Scheduling helps to orches-

trate decomposed tasks9. Different methods exist for changing the scheduling

9Chunks of work, to be processed by one of the cores.
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behavior. The most important methods for this thesis will be introduced and

explained.

Thread-Affinity

A long running thread in a multi-core system will be executed by different

cores. A SMP scheduler may migrate the work of a task to another core for

balancing purposes. Each core has its own set of registers and its own cache

(see Layer 0). A core switch of a thread will lead to the following consequences:

1. Current processed data, which might be cached on a specific core will

become invalidated from that cache, when touched by another core.

2. Registers and contents bound on a specific core have to be migrated to

the other core.

All of these operations consume time. So, applications should minimize fre-

quent core switching, because core migration consumes additional time. In

a SMP environment, context switching may occur through improper use of

synchronization mechanisms, unnecessary system calls or other interrupts,

which can lead to massive context switches. Those can lead indirectly to core

switching, adding further overhead to the context switching overhead. In or-

der to reduce this kind of migration, it is possible to assign threads to a subset

of cores by changing the affinity of a thread.

The core scheduling is an additional layer for scheduling the cores only. In

other terms, SMP scheduling comes with an additional overhead for utilizing

cores and for changing thread-affinity. Different implementations for SMP

scheduling exist. Those implementations try to get additional benefit from
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the cache. They try to schedule threads to the last utilized core, in order to

keep the cache hot. Even frameworks like Intel TBB try to get benefit from

affinity by reducing memory access using the cache. Thread-affinity is a tool

for optimizing core utilization and can also help to minimize response times

by reducing overhead caused by core migrations.

System Calls

System calls highly depend on the operating system implementation. The

timing behavior and the anatomy of a system call are important for the re-

sponse times of a system. Typically, the kernel is completely locked during a

system call. Depending on the duration of the system call, every additional re-

quest from another thread is serialized. This induces an additional amount of

non-determinism to the overall system. If the kernel is blocked, and another

system call cannot be executed, additional latency will be added to the call.

The correct consumed time may suffer due to system calls, when considering

round-robin, where each thread has its own quantum10.

Having several threads executing a system call will block the kernel for all

threads, except for the first one. Depending on the scheduler, the next access

will be provided. The kernel is a kind of bottleneck, and system calls must be

minimized in order to anticipate a bottleneck behavior.

Figure 4.4 shows the anatomy of a system call implemented in the QNX

Neutrino kernel. The interrupts are locked as short as possible. It is also pos-

sible that a current operation of the kernel is preempted (after enabling inter-

rupts again) e.g. by a critical task, which leads to a more predictable system.

10A quantum has the same meaning as a time-slice, and has a value of typically 4 ms.
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Figure 4.4: Preemptable system calls implemented in QNX Neutrino.[Resa]

Whenever a higher priory thread is consuming its quantum, it can preempt

kernel operations11.

11This is one of the QNX Neutrino features.
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Interrupts

Interrupts are generated for notifying the software of external events. They

are12 the glue between peripherals and the operating system. So interrupts

are normally related to device drivers. Interrupts normally have the highest

priority in the system. Each time an interrupt occurs, a working thread with

lower priority will be preempted. Two different ways for working with inter-

rupts exist. The first one is to write code directly into an Interrupt Service

Routine (ISR). The second one is to delegate work from an ISR to a working

thread. Depending on the amount of work and the frequency of the interrupt,

one of the strategies must be chosen.

Writing code directly into an ISR is probably the easiest approach, but has

its drawbacks. The size of the ISR is limited and often requires additional code

within an ISR for protection. In some implementations, the ISR handler must

be disabled to prevent further interruptions on crucial tasks. Secondly, the ISR

must be performed as fast as possible; hence it takes ownership of a processor.

As long as the ISR is executed, a lower priority thread will not work13.

Lengthy interrupts can degrade overall system performance, hindering

the execution of other critical processes. Hindered processes may have im-

pact on meeting deadlines for each piece of work. Violating those deadlines

will lead to catastrophic consequences in a hard real-time system. For that

reason it is important to delegate time consuming operations from the ISR to

a preemptable (user-level) thread or process. The data used by an ISR can be

delegated to a thread, whereas the ISR and the thread have to share data. If an

12Polling mechanisms exists as well.
13On this core.
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interrupt arrives, information may be preprocessed and delegated to a thread.

An ISR and thread can run in parallel in a multi-core system. An interrupt

and a thread can share data. If that is the case, the access has to be secured be-

cause of the possible parallel execution of the ISR and the thread. When data

is provided to the user-level thread, it is possible, depending on the priority of

the thread, that the current task can be preempted.

Preemption supports a kind of quality of service mechanism for those rou-

tines. This enables reducing the latency-time for more important tasks

Scheduling

Scheduling is one of the most important properties of a real-time system.

Scheduling is the main utility to be exploited to map internal system work-

flow to real world events. Different scheduling methods are proposed from the

POSIX standard and can be used within the most POSIX conform operating

systems:

• FIFO

• Round-robin

• Sporadic

The kind of scheduling is important, because the scheduler is responsible for

ensuring that all processes can be orchestrated so that they can meet their

deadlines. The focus of this thesis will be on round-robin and FIFO scheduling

mechanisms, so sporadic scheduling will not be discussed any further in this
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thesis. Sporadic scheduling14 uses a kind of budgeting for performing timing

decisions.

FIFO and round-robin can be used if different processes or threads are

sharing the same priority. Otherwise, only the highest thread will work and

other ones will be preempted if all resources (cores) are allocated. FIFO and

round-robin are preemptive mechanisms. So, if a higher priority thread starts

its operation, a lower priority thread may be preempted. This preemption is

done through the scheduler.

FIFO implementations add another significant overhead to medium

scaled implementations, because scheduling has to be triggered using

sched_yield or another system call. Moreover, FIFO implies a kind of state-

machine at the scope of processes and threads. Implementing it in a multi-

core system will increase the complexity of this state-machine significantly,

and, furthermore, it will increase the risk of having deadlocks, live-locks or

other problems.

The task performance in round-robin is different. It has an additional char-

acteristic which is related to time. The quantum in which each thread (in QNX

Neutrino threads and processes are nearly the same) may run is fixed and is

usually triggered from an external hardware timer. In most cases, this timer

has a resolution at around 1 ms.

14It is old fashioned and can not efficiently be used in a larger development team, hence
each team has to maintain their own budget, which may interfere with the budget of another
team.
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Synchronization Primitives

Synchronization primitives are offered by the OS to provide mechanisms

against data-races. Data-races occur if data dependencies over several tasks

exist. This also may happen on a single-core-machine, but having a multi-

core machine emphasizes this effect.

An example for those data-races can be shown through the client and ob-

server mechanism, where the client writes the information at a specific place

in memory and the observer has to update this information on a screen. Run-

ning the observer and client in parallel or even quasi-parallel will lead to an

error when either the update or the write procedure is not an atomic opera-

tion. If the writer has not completed the intended work15 and the observer

tries to update, a wrong information will be displayed or an error might occur.

Synchronization primitives can be used to make this operation thread-

safe. Those synchronization primitives are atomic, but their time consump-

tion may not be constant. Problems may occur like deadlocks, live-locks or

priority inversion. Improper use of many synchronization primitives can lead

to a relevant amount of overhead. These primitives heavily rely on their im-

plementation within the OS and on the used target hardware.

To improve system performance and in order to reduce latency-times,

proper usage of those primitives must be ensured. Synchronization primi-

tives were mainly used for dealing with pseudo parallelism. It may be that

those primitives, which are often interacting with the kernel, are not suitable

for multi-core applications. Having 1000 threads sharing the same resource,

which is protected through a shared semaphore, may decrease the perfor-

15See increment example (listing 3.3).
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mance significantly, depending on the frequency of accessing this resource.

Semaphores lead to system calls, so the operating system has to perform work.

A double-check mechanism in user-space may influence the performance

drastically, but also lock-free mechanisms exist where the operating system

will not be influenced.

Synchronization primitives must be handled with special care on a multi-

core system, because false wake-ups can occur. They have to be placed inside

a loop and their conditions must be checked.[Resb] So it is not safe to use

the standard primitives (mutexes, semaphores) within a multi-core system,

without the proper consideration of the impact of real concurrency.
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4.4 Layer 2: Thread function libraries

Thread function libraries
(for example, POSIX spawn and threads)Layer 2

This layer is mainly used for providing portability to applications which

have the need for parallelization. In other terms, if several OS are sharing

only layer 2, then applications and frameworks based on this layer become

OS independent. One realization of that is the POSIX library.

Thread creation

POSIX defines how the application talks to the library and how

the library and underlying operating system behave in response.

Each implementation can have its own way of dividing the work

between the library and the operating system.[LD91]

With this library it is possible to create and to destroy threads and processes,

which are necessary for the creation of an OS independent parallelized ap-
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plication. This OS independence comes at the cost of an additional layer to

the application. For reducing the overhead, which comes from the additional

layer, a direct system call might be performed. The listing 4.2 shows the dif-

ferent signatures between the system call ThreadCreate() and the POSIX li-

brary call pthread_create():

Listing 4.2: Different layers can be accessed through a simple selection of the

function calls.

1 #include <sys/neutrino.h> #include <pthread.h>

2

3 int ThreadCreate( int pthread_create(

4 pid_t pid , pthread_t* thread ,

5 void* (func)(void*), const pthread_attr_t* attr ,

6 void* arg , void* (* start_routine)(void*),

7 const struct void* arg );

8 _thread_attr* attr );

Using those calls can reduce overhead, but not without cost.

Synchronization Primitives

Calling ThreadCreate instead of pthread_create will reduce time for creat-

ing a thread, but the time the function will consume, which is passed through

void* (func) (void*) or through void* (*start_routine)(void* )

will be almost the same. More interesting are functions which are called fre-

quently, like synchronization mechanisms as the mutex (see listing 4.3).

Listing 4.3: Achieving higher benefits utilizing lower synchronization

primitives.

1 #include <sys/neutrino.h> #include <pthread.h>

2
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3 int SyncTypeCreate( int pthread_mutex_init(

4 unsigned type , pthread_mutex_t* mutex ,

5 sync_t * sync , const pthread_mutexattr_t*

attr );

6 const struct _sync_attr_t * attr );

The implementation from pthread_mutex_init is utilizes SyncTypeCreate

for gaining access to a kernel internal mutex. This is suitable for a mutex with

the need for further scheduling information in order to implement advanced

accessing protocols for reducing priority inversion. The POSIX implementa-

tion might also have direct access to the hardware. Using an atomic statement,

in this case test_and_set16, helps to implement a mutex in user-space. A mu-

tex which does not rely on a kernel interaction17 saves the time necessary for

a context switch.

Listing 4.4: POSIX mutex implementation in user-space.

1 static __inline int __attribute__ (( __unused__)) _smp_cmpxchg(

volatile unsigned *__dst , unsigned __cmd , unsigned __new) {

2 __asm__ __volatile__(

3 "lock; cmpxchgl %3, (%2)"

4 :"=m" (__atomic_fool_gcc(__dst)), "=a" (__cmd)

5 :"d" (__dst), "c" (__new), "1" (__cmd)

6 :"memory");

7 return __cmd;

8 }

As shown in listing 4.4, the memory was locked in order to prevent issues de-

rived from CPU migration and parallel access. This comes from a compare,

which is necessary and uses additional instructions. A mutex in user-space

has its advantages and its disadvantages. A great advantage is the indepen-

16usually implemented in x86 hardware
17It will need a system call, when advanced protocols like for priority-ceiling are used.



CHAPTER 4. ANALYSIS 62

dence of the OS, which could be also interpreted as a disadvantage; hence the

OS does not know anything about this synchronization mechanism. Mutexes

and semaphores are sources of priority inversion and deadlock situations. Ac-

cessing protocols exist, which retrieve information from the scheduler, for

implementing sophisticated protocols in order to reduce deadlock situations

and priority inversion.

POSIX proposes several synchronization primitives, most of them are

implemented in a POSIX-conforming operating system. QNX Neutrino of-

fers mutexes, condvars, barriers, sleepon-locks, reader- and writer-locks and

semaphores for that purpose.[Resb]

Almost every operating system extends this standard with its own primi-

tives. QNX Neutrino provides its own mechanism for Interprocess communi-

cation (IPC), which works quite efficiently, and Linux provides RCU synchro-

nization mechanisms. QNX Neutrino uses its own internals for gaining addi-

tional performance. Libraries are not limited to system calls; they can interact

with the hardware directly. This direct interaction can improve performance

(see mutex as example). It is important to know when a mechanism will work,

and how those mechanisms will interact with their environment.

Raw threads and MPI expose the control of parallelism at its

lowest level. They represent the assembly languages of paral-

lelism. As such, they offer maximum flexibility, but at a high cost

in terms of programmer effort, debugging time, and maintenance

costs.[Rei07]

The POSIX library helps to provide an additional layer for operating sys-

tem independence. Using this layer requires knowledge about the operating
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system, and if performance becomes important, deeper understanding about

implementation details is needed.
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4.5 Layer 3: Libraries and Components for

multiprocessing and multithreading

Class libraries & object-oriented components for multiprocessing 
and multithreaded libraries (for example, TBB)

Layer 3

It was shown in the previous chapters that the utilization of hardware can

be improved using specific hardware dependent compiler settings, an opti-

mized operating system, or faster synchronization primitives. The current

layer offers a new, more general possibility for enhancing response times,

called work decomposition. It is often the case that bigger chunks of work,

which are executed serially, can be decomposed into smaller chunks of work,

which can be parallelized. This work decomposition offers the opportunity to

utilize several cores. In other terms, work decomposition is one of the most

important aspects for parallelism.

In some cases, it is not possible to decompose work because of data de-

pendencies. It is possible to resolve many of those dependencies by restruc-
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turing data, or by using techniques of redundancy. Frameworks exist for work

decomposition, but frameworks for removing all data dependencies do not

exist. Those frameworks may aid the developer for utilizing several cores, but

the developer has to remove those dependencies for gaining maximal benefit.

It is an interesting fact that the developer needs to know less about scheduling

or synchronization, because the frameworks establish a kind of automatism,

which is exploited for gaining better predictable results in a more generic way.

One author introduced his book about frameworks for parallelization (in this

case Intel Thread Building Blocks (TBB)) with the following statement:

You do not need to have any experience with parallel program-

ming or multi-core processors to use this book. Whether you have

a great deal of experience with parallel programming, or none at

all, this book will be useful. No prior understanding of threading

is required.[Rei07]

For a better understanding of those frameworks, three of the most impor-

tant18 will be discussed:

• Cilk

• OpenMP

• Intel Thread Building Blocks (TBB)

Cilk and OpenMP need their own compiler support. OpenMP is included

in the gcc compiler, and Cilk uses the functionality of the gcc compiler, but has

18From my perspective.
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to be compiled with its own Cilk compiler. TBB behaves differently; the phi-

losophy of TBB is to provide a library for enhancing parallelization, whereas

Cilk and OpenMP use their own special keywords. All have in common that

they utilize the POSIX library for gaining access to threads (pthread) and syn-

chronization mechanisms.

Cilk and OpenMP differ in implementation detail and work-flow, but pro-

vide a similar interface to the developer. Both frameworks use keywords for

the creation of threads and for explicit synchronization. In general, it has to

be distinguished between explicit and implicit synchronization. This will be

noted in each discussed framework.

Cilk

Recursive functions are often used for a simplified implementation of back-

tracking or special brute-force mechanisms. They are used in real-time sys-

tems19 as well. Many algorithms like divide-and-conquer are implemented

as recursive functions. Divide-and-conquer algorithms require a kind of work

decomposition, which can be greatly utilized with Cilk. An often used exam-

ple for exploiting parallelism is the computation of the Fibonacci numbers.

The keyword cilk has to be written in front of a function, which shall be par-

allelized. Each Cilk function has an implicit barrier at the end of the function.

Listing 4.5 shows a parallel version of a recursive Fibonacci algorithm.

Listing 4.5: One of the advantages of Cilk lies in the parallelization of

recursive functions.

1 cilk int fib (int n){

19With some special considerations for security.
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2 if (n < 2) return n;

3 else {

4 int x, y;

5 x = spawn fib (n-1); // can be parallelized

6 y = spawn fib (n-2); // can be parallelized

7 sync; // wait for both parallelized calls

8 return (x+y);

9 }

10 }

The developer has to sign which parts of the source code can be performed

in parallel. The Cilk compiler translates those sections with corresponding

library calls (from the Cilk library). It is interesting that the use of high num-

bers (n > 10000) does not lead to poor system performance, because 10000

threads could be spawned. Spawn does not create any threads; it marks that a

command can be executed in parallel. Cilk uses a work-stealing algorithm for

utilizing the cores in a system. Cilk has proven that it is suitable even for hard

real-time conditions, because its efficiency is predictable.

Cilk is a runtime system whose work-stealing scheduler is effi-

cient in theory as well as in practice. Moreover, it gives the user an

algorithmic model of application performance based on the mea-

sures of work and critical path which can be used to predict the

runtime of a Cilk program accurately.[BJK+95]

Cilk achieves nearly linear speedup for problems with the same structure as

Fibonacci.[Blu92] The Cilk scheduler uses randomized work stealing, which

means randomized determinism in some cases.
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OpenMP

OpenMP uses an iterative approach for work decomposition, especially for

parallelizing loops. The big advantage of OpenMP is that only little changes on

the original code must be performed. The changes are done through compiler

options (pragmas), which, if not supported, are ignored by the compiler.

The standard way of parallelizing a program using OpenMP is to write it

sequentially. After that, the program can be parallelized by setting appropriate

pragmas.

Listing 4.6: With OpenMP it is possible to parallelize loops efficiently.

1 #pragma omp for

2 for( i = 0; i < n; i++ ){

3 /*xxx*/

4 }

As shown in figure 4.6, parallelization can easily be achieved by using prag-

mas. The iterations for a loop are divided into chunks, where each chunk is

performed in an own thread. At the end of the loop, all threads wait for each

other until all work is completed. The pragma omp for creates an implicit

lock at the end of the scope20.

The POSIX synchronization construct barrier is used for that purpose.

This construct is used for implicit synchronization within OpenMP. Listing 4.7

shows the implementation details of the used barrier.

Listing 4.7: The POSIX barrier is used for implicit synchronization in

OpenMP.[Bab]

1 void __ompc_barrier (omp_team_t *team) {

2 pthread_mutex_lock (&(team ->barrier_lock));

20In C++ a scope can be defined using brackets.
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3 team ->barrier_count ++;

4 barrier_flag = team ->barrier_flag;

5

6 if (team ->barrier_count == team ->team_size) {

7 team ->barrier_count = 0;

8 team ->barrier_flag = barrier_flag ^ 1; /* Xor: toggle */

9 pthread_mutex_unlock (&(team ->barrier_lock));

10 return;

11 }

12 pthread_mutex_unlock (&(team ->barrier_lock));

13

14 OMPC_WAIT_WHILE(team ->barrier_flag == barrier_flag);

15 }

Threads are managed as teams, where each thread team maintains a bar-

rier counter and a barrier flag. Teams increment the barrier counter when

they enter the barrier and wait for the barrier flag to be set by the last thread21.

The team size is equal to the counter when the last thread enters the barrier.

As such, the barrier flag is set and all other waiting threads can then proceed.

Intel Thread Building Blocks (TBB)

Similar to the iterative approach of OpenMP is the TBB approach from Intel.

A thread pool is initialized at the beginning, which can be used for complet-

ing different tasks. The keyword Task has a special meaning for TBB22. Using

a thread pool has several advantages, because the overhead for the creation

and deletion of threads is minimized. TBB not only adapted the work stealing

concept from Cilk for the scheduling of the own thread pool, but also the possi-

21It is not defined in the POSIX standard which thread will finish the work.
22It has a special meaning for Cilk and OpenMP as well, but it is the main conceptual

approach from TBB.
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bility to mix TBB semantics (library calls) with OpenMP semantics (pragmas).

One descendant from this approach is the Intel Compiler23, which offers the

possibility to use OpenMP and TBB. TBB is based on library calls, which im-

plies that additional source code has to be included in order to gain benefit

of this framework. This is different than the Cilk or the OpenMP approach,

where those additional calls are hidden from the Software developer by intro-

ducing new keywords. Listing 4.8 shows the required source code for creating

a parallel version of a loop.

Listing 4.8: Using TBB templates for work decomposition.

1 class CFunctor {

2 public:

3 void operator( )( const blocked_range <size_t >& r ) const {

4 for( size_t i=r.begin(); i!=r.end(); ++i ){

5 // Perform the chunk of work between r.begin() and r.end()

6 //This is calculated through myStart , myEnd , myChuckSize

7 }

8 }

9 CFunctor () { } // constructor

10 };

11 void tbb_parallel (){

12 parallel_for(blocked_range <size_t >(myStart ,myEnd ,myChunkSize),

CFunctor () );

13 }

As shown, a complete new class has to be created in order to create a parallel

version of a loop. This class is required for working with STL like templates

as the parallel_for call. A class has to overload the bracket operator with

the defined signature, as shown in listing 4.8, for being adapted from the TBB

framework. It is also possible to add further data as attributes to the CFunctor

23And its related library.
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class, which could be used during parallelization. The introduction of a new

class for such a simple construct might be seen as too much overhead. With

the upcoming C++ standard called C++1x, it will be possible to use lambda

expressions. Those lambda expressions offer the possibility of temporary ob-

jects, without the definition of a class. This will have a significant impact for

writing TBB enhanced applications. Listing 4.9 shows that much of the intro-

duced overhead can be eliminated by using lambda expressions.

Listing 4.9: Using TBB templates with lambda expression

1 void tbb_parallel (){

2 parallel_for(blocked_range <size_t >(myStart ,myEnd ,myChunkSize),

3 // --- start of the lambda expression

4 [=]( const blocked_range <size_t >& r ){

5 for( size_t i=r.begin(); i!=r.end(); ++i ){

6 // Perform the chunk of work between r.begin() and r.end

()

7 //This is calculated through myStart , myEnd , myChuckSize

8 }

9 }

10 // --- end of the lambda expression

11 );

12 }

In their current versions, the syntax for writing lambda expressions is differ-

ent between the Intel compiler and the gcc compiler. Listing 4.9 gives a good

example for the effectiveness of lambda expressions.

Listing 4.10 gives an introduction to the nested task concept in TBB. For

a more comprehensive understanding, the calculation of the Fibonacci num-

bers will be used to show the differences between Cilk nested parallelism and

the TBB approach.
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Listing 4.10: The task principle implemented in Intel Thread Building Blocks

(adapted and slightly modified from [Rei07]).

1 class FibTask: public task {

2 public:

3 const long n;

4 long* const sum;

5 FibTask( long n_ , long* sum_ ) : n(n_), sum(sum_) {}

6

7 task* execute () {

8 if( n < 2 ) {

9 *sum = n;

10 } else {

11 long x, y;

12 FibTask& a = *new( allocate_child () ) FibTask(n-1,&x);

13 FibTask& b = *new( allocate_child () ) FibTask(n-2,&y);

14 set_ref_count (3);

15 spawn( b );

16 spawn_and_wait_for_all( a );

17 *sum = x+y;

18 }

19 return NULL;

20 }

21 };

Two important steps must be done for implementing nested parallelism with

TBB. The first step is to inherit from the task class, which is part of the

TBB framework. As a second, the task* execute method has to be imple-

mented. This is the part where the work decomposition has to be defined.

In case of the Fibonacci numbers, it has to be defined whether the recur-

sive calls are done in parallel or not. The command set_ref_count(3) de-

fines that 3 actions are running in parallel. That are the two spawned nodes
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a and b, as well as the task execute method itself. The keyword for paral-

lelizing (spawn) is in this case equal to Cilk. The synchronization is done via

spawn_and_wait_for_all( a ).

The call within the main function looks different, because nodes were de-

fined for parallelization purposes. Listing 4.11 shows the call for spanning the

tree.

Listing 4.11: Calling the FibTask.

1 long ParallelFib( long n ) {

2 long sum;

3 FibTask& a = *new(task:: allocate_root ()) FibTask(n,&sum);

4 task:: spawn_root_and_wait(a);

5 return sum;

6 }

The first node is the root node (in listing 4.11 defined as a), the following are

sub-nodes, which are created for each recursive call.

Listing 4.10 showed the TBB implementation for nested parallelism. This

implementation is not performance optimized. It is important to have an ad-

equate grain size for the tasks. The overhead induced for the orchestration of

the task may not be useful for small tasks. In case of the Fibonacci example,

the overhead comes from the recursive computation of small n-values (see

listing 4.12).

Listing 4.12: Increase performance through changed work size.

1 // fine granularity // use different strategies

2 // // for enhancing performance

3 task* execute () { task* execute () {

4 if( n < 2 ) { if( n < 16 ) {

5 *sum = n; *sum = SerialFib(n);

6 } else { } else {
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Use the serial version for small n-values (e.g. n < 16) to minimize overhead in-

troduced through parallelism and create parallel versions for larger n-values

(e.g. n >= 16). It is an interesting fact that two different approaches for the

calculation must be implemented to gain an improvement. The Software de-

veloper has to be aware of this concept.

The TBB framework handles the deletion of those nodes automatically24.

In case of hard real-time conditions, those techniques are not allowed. Dy-

namic memory allocation will lead to memory fragmentation, which will end

in a non-deterministic system. Using the default memory allocation routine

of TBB should not be allowed without considering the effects for the overall

system.

24TBB comes with its own memory allocator.
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4.6 Layer 4: Application framework for parallel

processing

With layer 4 it becomes possible to decouple the level of parallelism from

shared memory toward to distributed memory. OpenMP, Cilk and Intel TBB

implementations require (at least at the moment) parallelization in shared

memory. Libraries exist, which can perform parallelism in shared memory

as well as in distributed memory.

Standard Template Adaptive Parallel Library (STAPL)

This library is designed to work on both shared and distributed memory par-

allel computers. It allows a developer to work at a higher level of abstraction

as in Cilk, OpenMP and TBB. It provides interface classes and interface algo-
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Figure 4.5: STAPL components.[AJR+03]

rithms, which hide many details for the work decomposition. The architec-

ture (see figure 4.5) of this library allows implementations at different scopes.

The keyword Adaptive is originated from a feature of the STAPL framework.

STAPL tries to adapt25 the best possible algorithm for increasing performance,

based on a performance model.

Build-in performance monitors can measure actual perfor-

mance and, using an extension of the BSP model predict the

relative performance of the algorithmic choices for each library

routine.[AJR+03]

One important aspect is the support of recursive (nested) parallelism, which

is supported by Cilk. With the new standard 3.0 of OpenMP, another feature is

introduced for gaining nested parallelism support by introducing the task ob-

25It provides an interface for that.
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ject. The task concept is driven from the TBB implementations, where tasking

is used as generic concept (e.g. parallel_for).

STAPL consists of five major components: parallel containers

(p_container), thread safe iterators, ranges for parallel work decom-

position (p_range and s_range), a function for managing parallelism

(p_for_all) in conjunction with algorithms for defining processor schedul-

ing (p_scheduler) and order of the next range to be used (p_sort).

Decomposable work has to be defined by setting its range. This range is

divided into different subranges, which can be processed by a single processor

(see figure 4.5) in a defined order.

The separation into the mentioned major components offers flexibility in

arranging tasks. Depending on which method for scheduling and work de-

composition is used, it may be become usable for hard real-time implementa-

tions.
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4.7 Summary

In this chapter 6 different layers were introduced for showing opportunities

and problems in multi-core systems. Real concurrency can only be achieved

by having the appropriate hardware. Hardware and its configuration settings

have direct impact on the system, especially for one with several cores. Usu-

ally, each core has its own cache and an own set of registers. These types of

memory are fast, but using them improperly can lead to performance issues.

One example for that case is cache-trashing, which may occur by the frequent

use of system calls.

RAM may become a bottleneck in multi-core systems, because each core

needs access to the memory bus. In order to relieve this issue, an additional

bus like HyperTransport is used in modern systems. HyperTransport reduces

the traffic on the main memory bus.

The impact of the operating system was discussed in Layer 1. As shown,

scheduling has a big impact on the core utilization. This scheduling can be

influenced not only by synchronization primitives and system calls, but also

by the thread affinity, which can be used to reduce scheduling overhead. Sys-

tem calls are expensive because they block the kernel for a short time. This

blocking mechanism leads to serial access to the kernel in a multi-core sys-

tem, which is not the case in a single-core system.

Programming in a multi-core environment is different from a single-core,

because real concurrency data has to be protected from all sides. The data

access has to be secured because data may accessed in parallel (from ISR and

thread).

Layer 2 showed that, depending on the implementation, even calls from a
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layer above the operating system may be fast. Therefore, a developer has to

be aware of this implementation details, to know e.g. whether a call is related

to a kernel interaction or not.

Frameworks for parallelizing were introduced in Layer 3. Those frame-

works automate a big part to be done for work splitting. The parallel loop was

an example where this big part was performed by the OpenMP framework.

OpenMP, Cilk and Intel TBB use different approaches for gaining bene-

fit from additional cores. TBB uses a thread-pool, whereas OpenMP creates

threads and delegates the work to those sub-threads. Nested parallelism,

which is the easiest way to gain parallelism in Cilk, and tasks were introduced.

These attributes serve for comparative purposes among parallelization capa-

ble frameworks.

STAPL introduced at layer 5 is a kind of framework, which goes one step

further. Different methods of work splitting and scheduling can be adapted

during runtime for maximizing the performance of the overall system. This

layer uses frameworks like OpenMP for parallelization reasons.
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5.1 Layer 5: Application Layer

Several ways for utilizing performance are possible, and were partly dis-

cussed in the previous part. The use of frameworks can help to exploit ad-

ditional cores more efficiently. Cilk, Intel TBB and OpenMP may have their

advantages for multi-core systems, but deep knowledge is mandatory to use

them in a hard real-time environment. Those frameworks use advanced prim-

itives to eliminate synchronization overhead or to resolve latency issues.

It is interesting that the previously shown frameworks did not provide any

further information of the lock-free or wait-free mechanisms shown in Part II.

The implementation of a concurrent lock-free Queue

The class CCommQueue of the H_DA framework (based on [WT05]) is reimple-

mented to give an example for the lock-free approach and to provide a work-
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Figure 5.1: Two different concepts for implementing a queue.

ing solution for those algorithms. CCommQueue is an implementation of a fixed

sized Ring-Buffer class. Within this framework, several processes and threads

have access to this buffer and are writing and reading elements in parallel.

In order to have a clean data access, methods for adding and getting elements

are protected through a mutex. The current implementation uses semaphores

to signal whether the queue is empty or filled, and a mutex for read-, write-

protection. For further information, take a look at [WT05]. The new imple-

mentation uses a finite state-machine and the atomic call compare-and-swap.

As shown in figure 5.1, two indexes are used for accessing current data. The in-

dex mTailIndex is used for getting data from the end of the queue. The index

mHeadIndex is used for adding new data to the front of the queue. It is impor-

tant that the mTailIndex does not step over mHeadIndex, in which case data

will be lost.
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Figure 5.2: Different states for providing structured access to one CMessage in
parallel.

The fixed size buffer is an array defined in a shared memory. This shared

memory is accessible by different processes. The data messages stored in

the queue are of type CMessage. In the new implementation, a wrapper was

added for storing the state of each CMessage (see figure 5.1). The combination

of CMessage and the corresponding state (mState) will be called SLOT. It is a

kind of wrapper, which includes CMessage and the current state (see figure

5.2) of this message. The parallel access to a SLOT has to be serialized within a

multi-core system. The atomic compare-and-swap shall be used for that pur-

pose. In case of a parallel add, the current mHeadIndexhas to be retrieved, and

has to be made secure against parallel accesses. This can be done by making

a copy from mHeadIndex to the stack. This copy has to be protected against

data races if the access is not atomic (single word instruction). Using an Int161

on an x86 system will work in most cases, but this approach depends highly

on the instruction set and architecture of the hardware. The variable on the

1Int16 means a primitive data type with the size of 16 bit.
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stack is thread-safe, because it is thread-private (saved on the threads stack).

The next step is to check whether the current index (mHeadIndex) is al-

ready used by another thread. The current state has to be retrieved for this

purpose. The problem here lies in the fine details. Whenever the current state

is checked, it is possible that it is modified at the same time or just one or

two cycles later. In the case of adding a new CMessage, it has to be checked

if the SLOT has the state STATE_EMPTY. If the state is STATE_EMPTY, a mes-

sage can be added. The state has to be changed to STATE_WRITING before

the data for a message is added. This will prevent other threads from access-

ing this SLOT in parallel. The check of the state (STATE_EMPTY) and setting it

to STATE_WRITING has to be done without any interrupts so that data-races

cannot occur2. The slot was acquired by another thread if the check was not

successful; as such the new updated mHeadIndex index has to be retrieved

and be used in the thread’s own stack to perform the check once again.

The SLOT belongs exclusively to the calling thread after the state is set to

STATE_WRITING. Then the thread has enough time to complete its operation.

For performance reasons, mHeadIndex should be incremented directly after a

successful compare-and-swap within the add method. This enables another

thread to use an updated (incremented) version of the mHeadIndex.

The work for adding a message is done when the message is added (stored)

to the queue, the current temporary index is stored into mHeadIndex and the

final state is set to STATE_FULL. The following list summarizes how a new

CMessage is added to the queue.

1. Retrieve the current mHeadIndex and store it into a thread-private work-

2If the operation is completed there can not be a race with more then one participant.
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ing index tmpIndex, which will be used for all index related operations.

2. Increment the thread-private working index tmpIndex.

3. Check whether the SLOT of this index has the state STATE_FREE

a) If successful, take the slot immediately by setting the state to

STATE_WRITING and proceed.

b) If not successful, start from the beginning again.

4. Store tmpIndex

5. Finish algorithm by setting the state of the SLOT to STATE_FULL

The same approach works similar for the get method.

Using atomic calls without interaction with the kernel should lead to a sig-

nificant improvement in terms of performance. The current implementation

is not using any synchronization mechanisms that are involved with the ker-

nel.
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5.2 Strategy for Measuring Performance

For measuring performance and the repeatability of the different strategies

and methods, a test bench is created. This test bench has an uniform interface

to the function calls which are analyzed. This was achieved using a function

pointer. The functions must have the form void name(void) in order to be

measured from the test bench. Tests were implemented in order to measure:

1. Operating System Primitives

2. POSIX library Primitives

3. OpenMP

4. Intel TBB

The Cilk compiler, which is based on the gcc, was unable to understand

OpenMP extensions. Because of that unavailability, tests were not performed

with Cilk.

Tests were created for measuring differences between OpenMP, Intel TBB

and their serial counterparts. Figure 5.3 gives a schematic overview of the

implemented test bench. As shown in the figure, tests can be repeated and

TDel t a is measured for each iteration. This is done for measuring the average

time Tmean , the standard deviation Tstd , the minimum time Tmi n as well as

the maximal time Tmax . These are important metrics for a real-time system,

and help to determine whether a deadline will be violated or not.

As shown in the figure, new tests are easily be adapted by adding new

functions with the defined signature. Furthermore, the use of a common test

bench is a systematical attempt for measuring; as such systematical errors will
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Figure 5.3: Strategy for testing different approaches for parallelization.

dominate3. This kind of regression test is useful for checking primitives or for

computations like the calculation of a Fibonacci number. This kind of test

bench is not suitable for testing a whole framework, but becomes reasonable

for testing primitives, hence the initial state for a test is easier to achieve.

5.3 Results for measured Test-Cases

Table 5.1 is a summary of the results for the performed tests. As expected, par-

allelization has a negative impact on determinism, as the standard deviation

of the table shows. The TBB framework has superior values concerning stan-

dard deviation (Tstd ) and average processing time (Tmean).

The time for creating a thread-pool for the TBB is not mentioned in the

3in most cases...
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Tmean Tstd Tmi n Tmax Tp−v

A

Serial Loop 19.618 0.000 1.961 1.963 0.002
OpenMP For dyn. 3.631 0.002 0.357 0.371 0.014
OpenMP For stat. 3.646 0.001 0.359 0.369 0.010
OpenMP For sect. 3.706 0.001 0.364 0.377 0.013
TBB For 2.595 0.002 0.257 0.274 0.017

B
Serial Fib. 9.163 0.000 0.914 0.917 0.003
TBB Fib. 49.779 0.001 4.971 4.982 0.011
Hybr. Fib. 1.192 0.000 0.119 0.120 0.001

C
Nto. Mutex 64.639 0.002 6.448 6.470 0.022
Pos. Mutex 24.055 0.000 2.404 2.407 0.003

Table 5.1: Comparison of the performance and the standard deviation
between the frameworks.

tests. Differently than the OpenMP approach, where threads are created (see

kernel-trace 3 for more details) and attached after each iteration (see kernel-

trace 4 for more details), this additional overhead does not apply for the TBB

framework. Performance measurements for parallelizing loops are shown in

table 5.1 labeled with A. Intel TBB shows superior results, but as mentioned

before, the coding overhead is several times higher in the TBB implemen-

tation. The repeatability is better in the OpenMP implementation by using

static scheduling.

Performance measurements for nested parallelization are shown in table

5.1 labeled with B. It is interesting to see that the improper use of the TBB

framework will lead to poor performance (Tmean was approximately 5 times

higher) by 100% core utilization. This happened through synchronization

overhead in user-level (see kernel-trace 5 for more details). A hybrid approach,

using Intel TBB for larger chunks of work, and the serial one for smaller chunks
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showed a good performance result.

Performance measurements for the comparison of selected POSIX (using

the POSIX library) and Neutrino primitives (accessing the OS features directly)

are shown in table 5.1 labeled with C. The POSIX implementation of the mu-

tex is faster than direct system calls for the mutex primitive provided by the

Neutrino operating system. It might be possible to increase (slightly) the per-

formance of the Neutrino calls by using other parameters for that call4. Unfor-

tunately, the interface for calling the kernel directly is not recommended and

not well documented (e.g. for changing the attributes of called synchroniza-

tion primitive).

The additional overhead for creating threads or for synchronization in-

creases the standard deviation. The performance is increased when using the

frameworks correctly, as the example with the Intel TBB framework showed.

It depends on the requirements of the application itself whether a standard

deviation can be accepted for meeting a deadline or not.

5.4 Strategy for Measuring the lock-free

implementation

The queue implementation will be handled differently; hence it shall be tested

under real world conditions to fit into the existing H_DA framework. For

this purpose, the H_DA framework was adapted and components were cre-

ated. The H_DA framework has several elements for creating a parallel ver-

sion of an application. It includes object oriented wrappers for using mu-

4E.g. enabling a inheritance protocol or not.
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Figure 5.4: The queue (class CCommQueue) as important element for
communication.

texes, semaphores, threads, shared-memory and several more. The advanced

elements are the components in this framework. They can be used as pro-

cesses or threads5 and provide a communication interface, by default. This

communication interface uses a queue for storing incoming messages and

for forwarding messages into another component. Figure 5.4 shows the im-

portance of the queue. Several components access this queue in parallel, so

the access to this element has to be protected (critical section). The original

implementation uses a mutex for protecting the access to the queue, and sev-

eral semaphores. They can signal, in case of a full queue, that related receiver-

components have to consume the messages and that producer-components

have to wait until new space is available. They signal as well, in case of an

5If the software developer implements a switch.
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empty queue, that producer-components can forward their messages and

consumer-components can sleep.

The lock-free implementation does not have such a signaling mechanism,

so that in case of a full queue, the add method will attempt to add a new mes-

sage in a loop, and will tend to busy-wait, which will prevent lower priority

threads from gaining processing time.

5.5 The impact of the queue-size

Figure 5.5 shows the weakness of the lock-free implementation for small

queue-sizes. The scheduling for this test is set to round-robin with a quan-

tum of 4 ms. Having a full queue during those 4 ms will lead to a spinning

behavior, because the lock-free algorithm tries to add the message until the

messaged is accepted. The scheduler will not be influenced by a full queue,

which is the case within the locked implementation. Here the semaphores are

used to indicate the queue status and to change rescheduling behavior. Fur-

ther scheduling overhead was minimized by limiting the Dispatcher and Re-

ceiver to one core on the first processor, and by setting one core of the second

processor to one producer.

With increasing queue-size the performance benefit of the lock-free imple-

mentation is superior to the locked one. The drop in performance for smaller

queue-sizes has its origin from the round-robin scheduling. This limits the

processing time for the Dispatcher and for the Consumer to 4 ms, so that

the queue-size will become full in about 1 ms. The lock-free algorithm will

spin the remaining 3 ms. It is interesting that the standard deviation for the
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Figure 5.5: Comparison between the locked and the lock-free implementation
related to the queue-size.

locked lock-free

Size (n) Tmean Tstd Tmi n Tmax Tmean Tstd Tmi n Tmax

1 19,691 0,369 19,406 20,318 na na na na
32 na na na na 24,997 0 24,997 24,997
64 18,703 0,686 17,677 19,349 13,326 0 13,326 13,326
128 18,953 0,430 18,290 19,460 13,326 0,001 13,325 13,326
512 19,004 0,191 17,677 19,366 13,334 0,003 13,326 13,336
1024 18,379 0,088 18,304 18,531 13,350 0,001 13,348 13,351

Table 5.2: The lock-lock free implementation has a smaller standard deviation
and faster response times for larger queue-sizes.
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lock-free implementation is several orders of magnitude smaller than for the

locked one. Table 5.2 shows the result of the measurements. Measurements

were performed for six different queue sizes. As shown in the table, larger

queue sizes did not significantly affect performance.

5.6 The impact of parallel access

The tests were performed on a motherboard with two Intel XEON 5300 quad-

cores. Also the impact of the number of producer was measured. The lock-

free implementation showed good scalability in terms of a small overhead

(see kernel-trace 9 for more details). The table 5.3 shows that the number

of producers has no significant impact on the performance in the lock-free

implementation. Like in the queue-size test, further scheduling overhead was

minimized by limiting Dispatcher and Receiver to one core of the first proces-

sor, and by limiting one Producer to one core of the second processor. All pro-

ducers tried to access the ring-buffer in parallel. Figure 5.6 compares the scal-

ing behavior of the lock-free and the locked implementation when additional

producers are added. Additional producers lead to further overhead induced

through system calls for locking access to the shared ring-buffer from the Dis-

patcher. The overhead induced through the state-machine seems reasonable

compared to the amount of time spent for a system call and for consumed

time through rescheduling (see kernel-trace 6 for more details). Even in this

case the standard deviation of the lock-free implementation is small (see table

5.3).
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Figure 5.6: Comparison between the locked and the lock-free implementation
related to the number of producers.

locked lock-free

Prod. (n) Tmean Tstd Tmi n Tmax Tmean Tstd Tmi n Tmax

1 18,379 0,088 18,304 18,531 13,350 0,001 13,348 13,351
2 27,788 0,975 26,522 28,768 13,628 0,003 13,624 13,631
3 38,980 1,956 36,991 42,095 13,907 0,007 13,898 13,917

Table 5.3: Additional communication overhead is lower in the lock-free
implementation.
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Figure 5.7: Comparison between the locked and the lock-free implementation
related to the number of cores.

5.7 The impact of additional cores

This test compares how well the implementations will scale when additional

cores are added. The scheduling overhead was minimized by limiting each

producer to one (of the four) core(s) of the second processor. The Dispatcher

and Receiver6 were the only components that were able to gain benefit from

additional cores. The current framework uses only one thread for each com-

ponent. As such the Dispatcher has only one thread for delegating messages

to other components (Receiver). This limits the overall performance because

the Dispatcher communicates only with one Receiver in parallel. The fig-

6Only one Receiver is being used during the tests.
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locked lock-free

Core (n) Tmean Tstd Tmi n Tmax Tmean Tstd Tmi n Tmax

1 41,178 0,029 41,122 41,201 13,086 0,000 13,086 13,086
2 55,471 0,247 55,217 55,792 7,573 0,001 7,572 7,573
3 56,968 0,176 56,711 57,191 7,573 0,001 7,572 7,574

Table 5.4: Linear increase in performance for the lock-free implementation,
when adding additional cores.

ure 5.7 shows the limits of the test environment for core utilization. Further

threads must be added to the Dispatcher component for enhancing the mes-

sage throughput. However, the lock-free implementation scales with the num-

ber of cores almost linearly (see kernel-trace 7 for more details), because per-

formance is approximately doubled. Similar to the previous comparison, the

standard deviation is small compared to that of the locked implementation.

Another interesting point is the measured time for the locked implementa-

tion. The performance seems to decrease because of the message overhead

induced through locks of the four producers (see kernel-trace 6 for more de-

tails).

The comparison of the locked and the lock-free implementation showed

that even on a single-core system the performance improvement is significant.

The implementation overhead seems to be higher, but the results showed

a good standard deviation and a performance benefit as well for the lock-

free implementation. The current implementation does not use any signal-

ing semaphores. This will increase performance for smaller queue-sizes on

single-core systems, since components with full or empty queues will not spin,

but sleep. It is an interesting result that the locked implementation does not
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scale on a multi-core system; furthermore, performance seems to decrease at

a small ratio when further cores are utilized. Hence, the standard deviation

is much smaller for the lock-free implementation. It will become important

for real-time and for hard real-time systems. However, the spinning behav-

ior does not fit into a hard real-time environment. This spinning behavior

must be limited, e.g. through an additional counter, which can be easily im-

plemented in the methods add and get of the lock-free implementation. It

reduces the amount of allowed spins during acquiring a SLOT.

Another point is that the spins may be performed several times in parallel,

which will lead to an overhead of the amount of spins. This overhead could

be reduced by executing a usleep(rand()%100) if compare-and-swap fails.

However, modifications which change the scheduling behavior will have an

impact on the standard deviation. So it has to be measured and evaluated for

use within a real world system.
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5.8 Summary

This chapter introduced the test environment in which the performances of

the frameworks, from the previous chapter, were measured. The benchmarks

for Intel TBB were superior to OpenMP. OpenMP creates threads and dele-

gates to them the work from the main thread, whereas TBB uses an initial

thread-pool and assigns tasks directly to it. The delegation of the work in

OpenMP introduces more overhead in terms of time, compared to the TBB

approach. TBB has additional capabilities like nested parallelism. Nested par-

allelism reduces (when properly implemented) the time for recursive calcula-

tions dramatically.

Additionally, a comparison between the lock-free and the locked mech-

anism was performed. The lock-free implementation has superior results,

which comes from the fact that the involvement of the kernel is minimized

and scheduling of the operating system is not changed. The lock-free queue

has not only a significant better benchmark, but also a reduced standard devi-

ation (i.e. a better determinism), which is important for real-time systems.
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6
DISCUSSION AND OUTLOOK

An improvement of performance through core utilization is possible, as

shown in the previous chapter.

Lock-free and wait-free algorithms are complicated and not commonly

used for real-time applications. Recent implementations of the LINUX ker-

nel include some of those constructs. The open source community was able

to reduce the response times of the Linux kernel below 1 ms by using read-

copy-update primitives for synchronization.

Lock-free algorithms are not suited for hard real-time systems, because of

their characteristic to spin if an operation was not successful. A worst-case

analysis will not be possible if this spinning is not performed in a controlled

manner. It is possible through a simple stack based counting variable within

the loops to restrict this spinning behavior to, for example, 12 iterations. So,

100
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whenever the compare-and-swap operation fails, the counting variable has to

be incremented to reduce the amount of spins to e.g. 12.

The spinning overhead can also be reduced through the introduction of a

sleep operation. E.g. whenever compare-and-swap fails, the thread sleeps a

randomized time usleep(rand()%100), giving another thread the possibility

to aquire the SLOT.

Those mentioned techniques may enable the use of lock-free algorithms

in a hard real-time environment.

From the overall system perspective, a spinning thread will utilize 100%

of the core computation. As such, it is possible, depending on the number of

cores and on the priority of the spinning thread, that lower priority threads

will not have time to perform their work. In case of the implemented lock-

free ring-buffer, this case will occur whenever the ring-buffer is filled or busy

(e.g. STATE_WRITING). So, for the sake of efficiency and stability, a signaling

semaphore should be included to indicate whether the ring-buffer is full or

not.

Another interesting point is that locked mechanisms suffer from

rescheduling. A thread, when being blocked from the scheduler, is added at

the end of the schedule list. Even if this thread is marked as READY, the whole

schedule list must be iterated until a processor is assigned to this thread.

This time for rescheduling does not exist in the lock-free implementation.

Hence, each thread is always busy and therefore ready for the CPU. So the

scheduling list will not change in that case.

The compare-and-swap operation has to be protected in a multi-core sys-

tem using a hardware memory lock. Otherwise, several cores may perform
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the compare-and-swap mechanism for the same referenced data at the same

time, which can lead to an error. So, a hardware memory lock is used, which

consumes approximately 3-5 processor cycles, to prevent core interaction at

the same time. This locks the memory access, which reduces the system

performance significantly depending on the number of cores and on the fre-

quency of the memory lock. It is an interesting point that the double-check

paradigm increases the overall system performance.[SH], [WT05]

It has to be checked whether the condition for enabling the memory-lock

becomes true by using an if-statement. The hardware memory lock is set only

if the condition is true. This minimizes the calling frequency of the hardware

memory-lock, hence other cores are enabled to access memory over a longer

period of time.

Wait-free algorithms are desired for a hard real-time system, since they

will complete in a defined number of steps. Such algorithms can not be im-

plemented for all requirements within a real-time system, because a solution

may simply not exist. In case of a multi-core system these algorithms are in-

teresting because of their possibility to scale (more cores add more overhead)

and their efficiency.

The introduced frameworks solve the work decomposition differently. In-

tel TBB uses an initial thread pool for the reduction of the thread creation over-

head, whereas threads in OpenMP are created and destroyed after their usage,

and Cilk uses the approach of task stealing. All of those frameworks utilize ad-

ditional cores and are scalable. It is also possible to change the scheduling be-

havior for improving load-balancing1, which is not important for a real-time

1Each core will process the same amount of work.
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system, especially when those load-balancing algorithms may lead to lower

efficiency and to decreased predictability.

So, for hard real-time tasks, those parallelization frameworks might not be

suitable for all cases. But, for the soft real-time domain of a system (maybe

a process at a lower priority), they might be suitable and help to exploit addi-

tional cores.

QNX Neutrino provides the possibility to log user events at the system-

level through an instrumented kernel. This is a useful feature for measuring

times, for giving a snapshot2 of the current scheduling and for analyzing the

predictability of the overall system.

I was able to get Cilk, Intel TBB and OpenMP to run on QNX Neutrino. All

of those frameworks are based on the POSIX library. QNX Neutrino claims

to be a POSIX conform operating system, so most of the port was achieved

through pure POSIX conformity. QNX Neutrino uses its own compiled ver-

sion of the GNU compiler, which has no OpenMP support. By retrieving the

sources for this compiler, pre-compiled libraries for QNX Neutrino, and some

modifications to the build-hooks file, I was able to compile my own version of

the GNU compiler, which works for QNX Neutrino.

It was not necessary to change sources for Cilk, it compiled directly within

QNX. In order to get Intel TBB to run, some lines must be changed for the

direct hardware access.

The example of the Intel TBB Fibonacci Numbers showed that use of work

decomposition, grain-size and related threading overhead must be under-

stood to gain performance. The parallel TBB implementation for n=40 was

2Kernel traces for more then 3 seconds, where in most cases larger then 1 GByte.
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5 times slower in finding the Fibonacci number than the serial approach. This

could be interpreted as scheduling overhead at a single-core system, but not

at an 8-core system where all cores are utilized to 100%, which was the test

bench.

Frameworks reduce the overhead induced by parallelization. It is my opin-

ion that parallelism should be gained through the use of those frameworks for

the sake of stability and transparency. It might become difficult to get special-

ized frameworks for all problems3, but they reduce the programming time for

exploiting additional cores.

For hard real-time systems, the additional overhead that comes from a

generic solution of a framework might be unacceptable. In these cases, one

must integrate their own solution into the system.

Intel TBB claims to work in combination with OpenMP and vice versa.

Both frameworks are based on the POSIX library and are compatible to POXIX

conform calls. But it is possible to interfere with those frameworks by setting

the affinity or blocking a team of threads by using mutexes. OpenMP and Cilk

use their own compiler, which might lead to problems within different envi-

ronments.

The current trend goes towards parallelization; frameworks are being im-

proved to get more benefit from additional cores. Cilk++, which is a commer-

cial version of Cilk, adds new features to the framework for parallelizing loops.

Intel TBB improved the task construct in their new version and claims to have

a significant increase in performance, and OpenMP introduces the task con-

struct.

3And they might be not compatible to each other.
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Since each new version of a framework may change its implementation

details and its scheduling behavior, the used version must be understood in

order to gain performance benefit from those frameworks in a real-time envi-

ronment.
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7
CONCLUSIONS

Gaining benefit through multi-core processing by fulfilling hard real-time con-

ditions is a very complex topic. An additional layer of complexity is added

when moving to real parallelism, because data can be processed in parallel.

For meeting hard real-time conditions, each of the introduced layers must be

considered in detail. This thesis gives an overview of the new complexity and

the possible benefits when dealing with multi-core systems.

The QNX Neutrino instrumented kernel provides an easy tracing capabil-

ity for monitoring system events. The Intel TBB framework provides measur-

ing tools for a thread-safe time measurement in user space. Cilk, Intel TBB,

and an OpenMP enabled GNU compiler for QNX were ported to QNX Neu-

trino (see appendix: Setup of the Environment). It was not possible to get a

direct timing comparison between Cilk and the other frameworks, because
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the Cilk compiler was not accepting OpenMP constructs and vice versa.

In general, knowledge is the key for dealing with multi-core systems. A de-

veloper has to know about different technologies like wait-free and lock-free

algorithms. It is also important to choose the correct frameworks for the de-

termined problem.

Cilk exploits nested parallelism, whereas Intel TBB may lead to coding

overhead. This coding overhead will be reduced with the introduction of

lambda constructs in the new upcoming C++ standard. OpenMP provides an

easy interface for loop-parallelism, whereas Cilk does not have such a con-

struct. The strategy for choosing a correct approach for parallelization de-

pends not only on the specific problem but on the grain size as well.

This problem was emphasized in the Intel TBB Fibonacci example. Two

different solutions for the problem were implemented, and the appropriate

solution was chosen during runtime. STAPL goes one step further by adding

an interface for adapting the correct method during runtime.

It is important to know that those frameworks hide much of the implemen-

tation details. Using those frameworks without mastering implementation

details will lead, for sure, to an unpredictable behavior of a real-time system.

The chunk size and the scheduling must be changeable by the developer for

enhancing determinism and efficiency. The result of the different measured

frameworks Cilk, Intel TBB and OpenMP shows that Intel TBB is the more

matured approach. The features of Intel TBB cover not only parallelism and

nested parallelism, as well as for-loop constructs, but also parallel containers,

constructs for pipelining and a thread-safe exception environment. For that

reason, Intel TBB should be preferred in real-world applications, even when
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introducing code overhead.

For proving the efficiency of lock-free algorithms, the ring-buffer imple-

mentation from the H_DA framework was modified, and the throughput was

measured. The result showed approximately 8 times superior performance

of the lock-free implementation compared to the original one. Secondly,

the standard deviation is significantly better in the lock-free implementation.

Lock-free implementations behave more deterministic compared to locked

implementations. They should also be considered for hard real-time systems,

when a limitation for the spinning behavior is guaranteed. A hybrid approach

between the lock-free and the original implementation seems to be feasible

for avoiding deadlocks and reducing core load simultaneously.

As such, it is possible to create efficient frameworks or primitives for ex-

ploiting multiple cores in a real-time environment. In my opinion, multi-core

systems should only be exploited by the use of frameworks. The analyzed

frameworks provide a generic solution to many problems and are efficient in

distributing work to additional cores. The possibility to adapt those frame-

works to many problems improves the maintenance of the overall system.

It has been shown that response times can be shortened in real-time sys-

tems by a correct utilization of multiple cores, hence the hypothesis is con-

firmed.
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Linked list with 3 elements
Data Segment

Pushing "4" in thread A, preempted 
after executing "node->next=head"

Data Segment

Data Segment

Data Segment

7 2 1

7 2 1

7 2 1

7 2 1

4

94

4 9

HEAD

HEAD

HEAD

HEAD

Pushing "9" in thread B completed

Thread A resumes

cas(HEAD, node, node->mNext) will not succeed, because
HEAD is pointing to value "9".
-> node->mNext is updated, because of a new iteration 
in while. cas will finally succeed if not preempted again.

Because node->mNext==HEAD (location), 
cas will succeed and while-loop will be broken.

"7","1","2" was added.

mNext->
mNext->

ptr

node

ptr

ptr

mNext->

node

mNext->
mNext->

Stack
Thread A

Stack
Thread B

node

Stack
Thread B

Heap

Heap

Heap

Heap

STEP 0

STEP 1

STEP 2

STEP 3

1 3 2

1 3 2

1 3 2

1 3 2

4

4 5

4 5

Figure 1: The work flow of the Node implementation.
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Linked list with 3 elements

Data Segment

7 2 1

HEAD
"7","1","2" was added.

mNext->
mNext->

ptr

Heap

STEP 0

1 3 2

Thread A calls pop and is interrupted by thread B

Data Segment

7 2 1

HEAD

mNext->
mNext->

ptr

Heap

STEP 1

1 3 2

current

mNext->

0x0A12 0x0B16 0x0C24

0x0A12 0x0B16 0x0C24

Thread B pops "2" and "1" and pushes "42" to the 
                                           same location as "2"

Data Segment

7 42

HEAD

mNext->

ptr

Heap

STEP 2

1 4

node

mNext->

0x0A12 0x0B16 0x0C24

Callstack is nearly filled: 
cas(&HEAD, current->next, current):
                      push 0x0B16 (HEAD), 
                      push 0x0C24 (current->next) !!!
                      Interrupted by thread B

Thread A resumes

Data Segment

7 42

HEAD

mNext->

ptr

Heap

STEP 3

1 4 2

current

mNext->

0x0A12 0x0B16 0x0C24

??

cas will succeed, because 
HEAD is pointing to 0x16 as well as current: 
cas(0x0B16, 0x0C24, 0x0B16) == true

After cas succeeds, it is HEAD that points to an 
errornous memory location!

Figure 2: The ABA problem illustrated by example.



LISTINGS FOR THE TEST BENCH

Listing 1: Function pointer for test decoupling.

1 METRIC performTest(void (* fkt_ptr)(void), const int& myLoop){

2 METRIC m;

3 MEASURE t;

4 for(int i=0; i < myLoop; i++){

5 t.start(); // start measurement for iteration i

6 (* fkt_ptr)();

7 t.end(); // end measurement for iteration i

8 if (0==i){ // save the initial time

9 m.min=t.delta ().seconds ();

10 m.max=t.delta ().seconds ();

11 m.sum=t.delta ().seconds ();

12 }else{ // save current min , max and the sum

13 if (t.delta().seconds ()<m.min)m.min=t.delta ().seconds ();

14 if (t.delta().seconds ()>m.max)m.max=t.delta ().seconds ();

15 m.sum+=t.delta ().seconds ();

16 }

17 }

18 return m;

19 }

The listing 2 shows how functions are called and the results stored.

Listing 2: Loop tests.

1 m = performTest (&serial , LOOP);

2 printResult(m);

E
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3 m = performTest (&TBB , LOOP);

4 printResult(m);

5 m = performTest (&Cilk , LOOP);

6 printResult(m);

7 m = performTest (&OpenMP , LOOP);

8 printResult(m);

The function performTest is used for measuring as listing 1 shows. All

measured times are added together to get the average value. As a second, the

minimum and maximum time for each iteration are saved as well.

Listing 3: Testing the Neutrino mutex primitive.

1 void mutex_test_nto (){

2 int i,j,k, tmp;

3

4 sync_t sync;

5 sync_attr_t attr;

6

7 // fill_n (&attr , sizeof(sync_attr_t), 0);

8

9 //attr.__prioceiling = _NTO_SYNC_NONRECURSIVE;

10 attr.__clockid =0;

11 attr.__flags=_NTO_ATTR_MUTEX || _NTO_SYNC_PRIONONE ||

_NTO_SYNC_NOERRORCHECK || _NTO_SYNC_NONRECURSIVE;

12 attr.__prioceiling =1;

13 attr.__protocol = 1;

14

15

16 int tmps = SyncTypeCreate_r(

17 _NTO_SYNC_MUTEX_FREE ,

18 &sync ,

19 &attr);

20 printf("Error during creation %d\n",tmps);

21

22

23 for (i=0; i< STRESS; ++i){
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24 for (j=0; j< STRESS; ++j){

25 for (k=0; k< STRESS; ++k){

26 // nop , see compiler settings

27 SyncMutexLock_r (&sync);

28 tmp = tmp + sin(i) + cos(j) + log(k);

29 SyncMutexUnlock (&sync);

30 }

31 }

32 }

33 SyncDestroy (&sync);

34 }

Listing 4: Testing the parallel for construct from TBB.

1 class CFunctor {

2 public:

3 void operator( )( const blocked_range <size_t >& r ) const {

4 int tmp (0);

5 for( size_t i=r.begin(); i!=r.end( ); ++i ){

6 for (int j=0; j< STRESS; ++j){

7 for (int k=0; k< STRESS; ++k){

8 // nop , see compiler settings

9 tmp = tmp + sin(i) + cos(j) + log(k);

10 }

11 }

12 }

13 }

14

15 CFunctor ()

16 {}

17 };

18

19 void tbb_parallel (){

20 parallel_for(blocked_range <size_t >(0,STRESS ,STRESS /8),

CFunctor () );

21

22 #ifdef DEBUG
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23 printf("%20s%10qd \n", "tbb_parallel:", t.delta ());

24 #endif

25 }
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Figure 3: OpenMP creates new threads and synchronizes them using a
semaphore.
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Figure 4: OpenMP attaches to already spawned threads.
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Figure 5: Comparison between the naive TBB implementation and the hybrid
approach.
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Figure 6: Overview of the queue (CCommQueue) implementation using
locking mechanisms.
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Figure 7: Latency-time, induced through the Dispatcher, in the locked
implementation.
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Figure 8: Overview of the queue (CCommQueue) implementation using the
lock-free approach.
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Figure 9: Latency-time, induced through the Dispatcher, in the lock-free
implementation.



SETUP OF THE ENVIRONMENT

The target operating system used was QNX Neutrino 4.1. The following steps

must be executed under QNX Neutrino 4.1.

Cilk The used version was Cilk-5.4.6. The source code is included in the

DVD of this thesis. In order to get Cilk operational under Neutrino, the

source code had to be extracted. At the root directory Cilk-5.4.6, make

was executed. Two errors appeared, mainly because of missing modules

which were not ported to Neutrino (e.g. pearl). At the example directory

Cilk-5.4.6\examples, make cleanwas executed, so that all examples

were deleted. If e.g. make queens is executed within this directory, the

syntax of the command is shown for building the Cilk version of the

queens problem. Analog syntax was used for building other Cilk pro-

grams.

The build process for an OpenMP enabled compiler was more complex.

OpenMP The compiler used in Neutrino is a modified version of the gcc com-

piler. The features for OpenMP are disabled in this modified version. So,

the compiler had to be recompiled with OpenMP support enabled.

Q
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The following steps must be performed in order to get OpenMP runnable at

QNX Neutrino 4.1.

1. the gcc 4.3.3 version was downloaded from QNX branch

svn:core-dev-tools (now included in the DVD).

2. already ported libraries mpfr, ppl, gmp for Neutrino were downloaded

(now included in the DVD)

3. the source was extracted to a destination path /home/gcc-4.3.3.

4. the compiled libraries for mpfr, ppl, gmp were extracted to their desti-

nation path /usr/local/.

5. the file build-hooks in the root directory was modified by adding the

line --enable-libgomp directly after --enable-libmudflap.

6. the libmudflap/Makefile.in was modified by changing the line

QNXLDFLAGS = -Wl,-Bstatic -Wl,-lbacktraceS -Wl,-Bdynamic

to QNXLDFLAGS = -lbacktrace.

7. unnecessary directories in the path /home/gcc-4.3.3/, like sh, ppc

were deleted.

8. the compiler was compiled using

make 2>&1 | tee CC.log

9. the status of the compilation was stored at CC.log.

The following steps must be executed under a Linux operating system.
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Intel TBB Intel TBB is a library which had to be ported to QNX Neutrino. A

part of this library is hardware and OS dependent, and must be changed

to use this library under QNX Neutrino.

The following steps were performed in order to get Intel TBB (tbb21_009)

runnable at QNX Neutrino 4.1.

1. the source was retrieved from http://www.

threadingbuildingblocks.org/ver.php?fid=122 (now included in

the DVD) and extracted into the destination folder /home/TBB/.

2. a patch was created (now included in the DVD (file:new.patch)) for en-

abling TBB under Neutrino.

3. the patch had to be applied by using patch -p0 < new.patch in the

destination folder.

4. the library was compiled using make OS=QNX in the destination folder.

In order to use this library, the whole content of /home/TBB/ was to copied

to the operating system Windows where the development environment was

stored. The include path c:\TBB\include was registered to the QNX devel-

opment environment (Windows). The compiled libraries i.e. the directories

within c:\TBB\build were also registered. The libraries within this build di-

rectory must be deployed to the targets library path. Those libraries were used

by adding tbb, tbbmalloc to the compiler settings of the environment.

http://www.threadingbuildingblocks.org/ver.php?fid=122
http://www.threadingbuildingblocks.org/ver.php?fid=122
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