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ABSTRACT 

 

Herding, E.J. Prospects for development of an effective Lyme disease vaccine.  MS in 

Clinical Microbiology, May 2016, 40pp. (S. Callister) 

 

Lyme disease is the most prevalent tick-borne disease in the world, and the annual 

number of cases continues to increase. By this measure, a vaccine to prevent the illness 

would be valuable. However, the first commercial attempt at a human Lyme disease 

vaccine failed to adequately protect people for an extended period of time, and also 

caused serious side effects in a small population of recipients.  Though many different 

vaccine formulations have been proposed and evaluated since then, none have yielded 

results sufficient to warrant progression to clinical trials. This review provides historical 

perspective of early efforts and discusses current strategies that may ultimately prove 

more effective at providing vaccine-induced antibody-mediated protection. 

 

 

  



iv 
 

ACKNOWLEDGEMENTS 

 

 I would like to express my sincere gratitude to my advisor Dr. Callister for his 

continuous support, patience, motivation, and willingness to share knowledge. His 

research guidance and assistance with writing this seminar paper were invaluable, and I 

could not imagine a better advisor and mentor.  I would also like to thank the rest of my 

thesis committee: Dr. Michael Hoffman, Dr. Marc Rott, and Dean Jobe, for their 

insightful comments, support, and encouragement throughout my studies. 

  



v 
 

TABLE OF CONTENTS 

           PAGE 

INTRODUCTION ...............................................................................................................1 

BACKGROUND…………………..…….………………………………………………..3 

Historical Perspective……….…………………………………………………………..3 

General Morphology and Laboratory Growth of Borrelia spp…….…………………...4 

Genetic Characteristics………………………………………………………………….5 

Regulated Expression of Osps...…………………………………………………...……6 

   Clinical Manifestations………………………………………….………………………6 

IMMUNE RESPONSES AFTER INFECTION…………………………………………..8 

   Cellular-Mediated Immunity………………………………………………….………...8 

   Antibody-Mediated Immunity……………………………………………….….………9 

PREVIOUS EFFORTS AT A HUMAN LYME DISEASE VACCINE….……………..10 

OTHER STRATEGIES FOR INDUCING ANTIBODY-MEDIATED IMMUNITY BY 

VACCINATION………………………………………………………………….…...…13 

   Elimination/Prevention of Infection in Reservoir Hosts……..………………………...13 

   Prevention of Tick Feeding…………………………………………………………….13 

   Antibody-Mediated Immunity by Vaccination with Other Proteins…………………...14 

   Induction of Antibody-Mediated Immunity by Vaccination with Multiple Proteins….15 

FOCUS ON OSPC……………………………………………………………………….16 

Suitability for Antibody-Mediated Immunity ................................................................16 

    Strategies to Overcome the Heterogeneity of OspC……………….…………………..17 

   Significant Remaining Issues Impeding Further Evaluation of OspC...…………..…...18 

SUMMARY .......................................................................................................................19 

REFERENCES…………………………………………………………………………..20 

 

 

  



1 
 

 INTRODUCTION 

 Lyme disease is a tick-transmitted bacterial infection that annually affects 

thousands of people worldwide. The most common vectors are hard-bodied Ixodes spp. 

ticks including I. scapularis and I. pacificus in the US, and I. ricinus and I. persulcatus in 

Europe and Asia. The illness is caused primarily by infection with any of three 

genetically-distinct spirochetal bacteria within the Borrelia burgdorferi sensu lato 

complex. For example, Lyme disease cases in the US are most commonly caused by 

Borrelia burgdorferi sensu stricto (ss), while B. afzelii and B. garinii are responsible for 

most cases in Asian patients, and European patients can be infected with any of the three 

genospecies. 

Despite several decades of effort to decrease prevalence, Lyme disease remains 

the most commonly reported vector-borne illness in the US.  For example, there were 

27,203 confirmed cases and 9,104 probable cases reported to the Centers for Disease 

Control (CDC) during 2013 (1), and the CDC believes the actual number of annual Lyme 

disease cases in the US may actually exceed 300,000 (2).  In addition, Europe reports 

approximately 85,000 confirmed cases annually (3), and the actual number may also be 

several times greater.  Therefore, current recommendations to quell Lyme disease; 

including avoiding areas of tick infestation, wearing protective clothing, utilizing insect 

repellants, performing tick checks after possible exposure, and landscape management,

have had only limited effectiveness.  This review highlights past efforts to develop and 

market a successful human Lyme disease vaccine and discusses recent findings that may 
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yield more effective strategies for providing antibody-mediated protection against the 

illness. 
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BACKGROUND 

Historical Perspective 

 A Lyme disease-like illness was first reported in 1909 by the Swedish physician 

Arvid Afzelius, who described a European patient with a unique skin lesion termed 

erythema chronicum migrans (ECM) that developed after a tick bite (4).  However, Lyme 

disease was not formally recognized as an illness until 1975, when Dr. Allen Steere 

reported the disease in a group of children who resided in Lyme, Connecticut (5).  

Subsequently, spirochetal bacteria that reacted strongly with immune sera from the 

afflicted children were recovered from Ixodes ticks (6, 7, 8), and shortly thereafter 

researchers recovered spirochetes from blood (9, 10), CSF (10) and skin biopsies (10) 

from additional patients who developed similar clinical abnormalities after a tick bite.  

Subsequent studies resulted in the classification of the spirochetes that caused the illness 

as Borrelia burgdorferi in honor of Dr. Willy Burgdorfer, who was primarily responsible 

for characterizing the original isolate (11).   

 Since that time, numerous genetically-distinct species within the genus Borrelia 

have been characterized and Lyme disease spirochetes are now collectively referred to as 

Borrelia burgdorferi sensu lato until they are formally speciated.  The original type strain 

is classified as Borrelia burgdorferi ss, and this organism remains the primary cause of 

the illness in the US.  However, Lyme disease cases caused by B. bissettii (12), 

B.lonestarii (13, 14), and B. miyamotoi (15, 16) have also been reported.   In addition, 

Lyme disease cases in Europe and Asia may be caused by B. burgdorferi ss, but illnesses 
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from infection with B. afzelii (17) or B. garinii (18) are also common.  Moreover, Europe 

and Asia harbor a far greater diversity of Borrelia spp., including at least 14 pathogenic 

genospecies recognized to date (19, 20), although human illness with most occurs 

relatively rarely.  More significantly, the geographical range of Borrelia spp.-infected 

ticks continues to expand dramatically in both the US (21, 22) and overseas (20, 23, 24), 

and climate change is likely a significant factor (25).   

General Morphology and Laboratory Growth of Borrelia spp. 

    Borrelia spp. spirochetes are helically-shaped microaerophilic organisms (26) 

with a cell wall composition similar to a typical gram-negative bacterium, but with a 

significantly lesser amount of lipopolysaccharide (LPS) that also lacks a lipid A moiety 

(27, 28).  The organisms range from three to 20 µm in length, and each has 7 to 11 

flagella in the periplasmic space that are anchored at each end in the protoplasm (29).  

Darkfield microscopy is most commonly used to visualize the organisms, since the 

spirochetes are not easily seen after gram staining because the unique cell wall does not 

readily incorporate the dyes. 

Borrelia spp. are fastidious organisms that can be cultured in the laboratory by 

growth in BSK medium that is incubated at approximately 32ºC in the laboratory.  

However, slightly increased or decreased incubation temperatures (30, 31) or variations 

of essential ingredients such as bovine serum albumin (32) can have profound effects on 

the antigenicity of the cultured organisms.
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Genetic Characteristics 

The organisms typically harbor a small linear chromosome and up to 21 linear or 

circular plasmids (33) that contain genes coding for multiple proteins that are not 

essential under all growth conditions.  The spirochetes also scavenge some essential 

nutrients from the surrounding host milieu (34), because they lack the capacity to 

synthesize individual amino acids.  In addition, the linear plasmids are structurally 

unique since there are hairpin loops at each end that are composed of inverted repeats 

(35, 36).  Additionally, the entire genome of B. burgdorferi ss strain B31 has been 

sequenced (34), which has fostered numerous investigations to characterize the 

functions and interactions of specific genes (33, 37-40). 

Among the proteins synthesized from plasmids, are multiple lipidated outer 

surface proteins (Osp), designated OspA to OspF, which are expressed under varying 

environmental conditions.  Although the specific function(s) for most remain unknown, 

researchers have shown that OspA is an adhesion protein that mediates attachment to 

epithelial cells within the tick midgut (38, 41, 42).  In addition, OspC plays some 

undefined, but essential role in the ability of the spirochetes to establish infection in 

mammals (39, 43).  One possibility is the protein also plays a role in adhesion (44).  

Other unique proteins include the basic membrane protein (Bmp) (45), which also plays 

an essential role in virulence (46), GMP synthase (47), telomere resolvase (48, 49), 

fibronectin binding protein (50), and decorin binding protein (Dbp), which fosters 

adherence to collagen-associated proteoglycan (38).
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Regulated Expression of Osps 

 Borrelia ssp. increase or decrease the expression of some Osps in response to 

environmental stimuli (51).  For example, OspA is the predominant outer surface protein 

expressed when the spirochetes reside in the midgut of unfed ticks (41, 52) where the 

spirochetes are typically bound to epithelial cells (53).  However, the expression of OspA 

is decreased and the expression of OspC increases as the spirochetes acquire a bloodmeal 

(39, 54), because expression of OspC is necessary to release the spirochetes from the 

epithelial cells and assist with migration to the salivary glands (43, 55).  The spirochetes 

then continue to express high levels of OspC as they enter the mammalian host and 

establish infection (56, 57).   Interestingly, the duration and magnitude of OspC 

expression seems to vary widely among different mammalian hosts.  For example, 

spirochetes that infect humans express high levels of OspC for an extended period of 

time, as evidenced by the high levels of anti-OspC antibodies that are a hallmark of early 

human Lyme disease (58, 59).  In contrast, high levels of anti-OspC antibodies are only 

rarely detected after infection of mice (60) or canines (61), which suggests the increased 

expression of OspC is significantly more short-lived in these mammals.  

Clinical Manifestations 

Early after infection, Borrelia spp. localize in the skin (62), where most cause the 

formation of a lesion termed erythema migrans (EM) (63-65) that typically appears as an 

expanding red ring with central clearing (63, 66).  Constitutional symptoms such as fever, 

fatigue, and arthralgia/myalgia (64, 65) are also common.  If B. burgdorferi ss are not 

promptly eliminated by appropriate treatment with antibiotics, the organisms can then 

disseminate and cause secondary EM lesions (64, 65) or other clinical abnormalities that 



7 
 

 suggest involvement of multiple organ systems including the heart (67) and facial nerves 

(68).  Joint manifestations or more serious organ involvement can also occur in patients 

when the disseminated infections persist for months to years (69).  In addition, a small 

number of long-term infections apparently trigger an autoimmune syndrome termed 

treatment-resistant Lyme arthritis (70-72) that continues to be problematic long after the 

spirochetes are eliminated by antibiotic treatment.  

Other pathogenic species of Borrelia also cause characteristic EM lesions and 

constitutional abnormalities during the earliest stage of infection, but the manifestations 

vary widely after the spirochetes disseminate.  For example, while B. burgdorferi ss most 

commonly colonize large joints (73, 74), B. bissettii is recovered almost exclusively from 

heart tissue (74, 75), B. afzelii most commonly infects the skin (73, 74), and B. garinii 

appears to have a propensity for nervous system tissue (73, 74).  Therefore, a hallmark of  

B. afzelii infection is a unique skin lesion (73, 77) termed acrodermatitis chronica 

atrophicans (ACA) that manifests most often as chronic discoloration and thickening of 

skin tissue, and typical symptoms of infection with  B. garinii are meningoradiculitis, 

lymphocytic meningitis, or cranial nerve palsy (73, 74, 78).   
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IMMUNE RESPONSES AFTER INFECTION 

Cellular-Mediated Immunity 

 In addition to the innate immune defense mechanisms, infections with Borrelia 

spp. induce adaptive cellular immune responses typical of the responses induced by other 

bacterial infections.  For example, spirochetal antigens presented by resident 

macrophages in turn induce secretion of cytokines that ultimately attract additional 

phagocytic cells that include more macrophages and natural killer cells (79, 80).  

Interestingly, the spirochetes are phagocytosed by a unique “coiling” mechanism, where 

the phagocytic cells undergo actin filament rearrangement to form pseudopods that wrap 

around and engulf the spirochetes (80, 81).  In addition, the presentation of individual 

antigens via major histocompatibility complex (MHC) I or II activate Th-1 cytotoxic or 

Th-2 helper cells, respectively.  The cytotoxic (Th-1) T-cells subsequently kill the 

spirochetes independent of phagocytosis, and the T helper (Th-2) cells induce 

proliferation of B-cells that ultimately produce antigen-specific antibodies (83-85).    

Both the innate and adaptive cellular-mediated immune mechanisms are effective at 

eliminating the spirochetes, especially when they are targeting organisms in the 

bloodstream (86), but some apparently escape by sequestering in “immune-privileged” 

sites, such as skin or heart fibroblasts, joints, or CSF (87-89). 
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Antibody-Mediated Immunity 

IgM antibodies are produced after the first few weeks of infection and antibodies 

specific for the flagellar protein, OspC, or a basic membrane protein (BmpA) 

predominate (90).  After 3 to 4 weeks, the antibody response expands to include IgG 

antibodies against these and multiple other proteins.  The IgG antibodies mainly function 

by one of two mechanisms.  Most coat the surface of the spirochetes and “mark” the 

organisms for elimination by phagocytic cells (91, 92).  However, a few, including 

antibodies specific for OspA (93, 94), OspB (93, 94), the 39-kD periplasmic protein, (95) 

or OspC (58), continue to function like IgM antibodies by inducing a complement 

cascade that results in formation of a membrane attack complex that lyses the spirochetes 

independent of phagocytosis (60, 96-98). This IgG antibody response, termed 

borreliacidal, has been the most effective at providing antibody-mediated immunity after 

vaccination (99, 100).   

Interestingly, mechanisms that might prevent killing by the borreliacidal 

antibodies have been described. For example, some spirochetes have been shown to 

express complement regulator-acquiring surface proteins (CRASPs) (101-103) that 

prevent complement deposition on the spirochete surface by binding the complement 

cascade regulators H-factor or FHL-1/reconectin (104, 105). However, Lyme disease 

spirochetes that infect humans have not been shown to possess these types of 

mechanisms.    
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PREVIOUS EFFORTS AT A HUMAN LYME DISEASE VACCINE 

Soon after B. burgdorferi ss was identified as the causative agent of Lyme 

disease, researchers confirmed that passive immunization of serum from challenged 

animals (106, 107) or active immunization with killed B. burgdorferi ss (108) provided 

the recipient animals with antibody-mediated protection against a subsequent challenge 

with the organisms.  Additional studies confirmed the protection was due primarily to 

OspA-specific IgG antibodies (7, 109, 110) that provided protection by borreliacidal 

activity (60, 96, 97, 111, 112).  In response, the commercial companies Glaxo Smith 

Kline and Pasteur Merieux Connaught focused their efforts on developing an OspA-

based vaccine for humans.   

The initial products were a combination of recombinant (r) OspA derived from B. 

burgdorferi ss strain ZS7 and aluminum hydroxide adjuvant (LYMErix, SmithKline 

Beecham, Philadelphia, PA) (113, 114) or a non-adjuvanted rOspA derived from B. 

burgdorferi ss strain B31 (ImuLyme, Pasteur Merieux Connaught, North York, Ontario, 

Canada) which both produced a protective borreliacidal antibody response (114, 115).  

However, Lovrich et al. (116) showed that the immunity provided by the anti-OspA 

borreliacidal antibodies was limited to only Borrelia burgdorferi ss because of significant 

heterogeneity among the OspA from other Borrelia genospecies (116).  Therefore, the 

products were not expected to provide comprehensive protection, especially in Europe or
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 Asia where Lyme disease caused by infection with B. garinii or B. afzelii also 

predominates. 

More significantly, Schwan et al. (39) showed that OspA was expressed only by 

the spirochetes that were attached to endothelial cells in the tick midgut, and the protein 

was downregulated to an undetectable level almost immediately after the infected ticks 

began acquiring a human blood meal (112, 114, 117).  Therefore, the effectiveness of an 

OspA-based vaccine was dependent on a sustained level of borreliacidal antibodies that  

would enter the tick coincident with acquiring a blood meal and kill the spirochetes in the 

midgut before OspA expression was decreased (118, 119).  In addition, the lack of OspA 

expression in the vaccine-recipients eliminated the possibility for enhanced protection via 

an immunologic memory response. As further complication, the anti-OspA antibody 

response  also triggered an “autoimmune phenomenon” in a small number of vaccine-

recipients (72, 120, 121, 122) with histocompatibility leukocyte antigen (HLA)-DR4 or 

HLA–DR2 haplotypes, apparently because the anti-OspA antibodies also bound  human 

lymphocyte function associated antigen 1 (hLFA 1). 

Despite these concerns, the products were evaluated in large, randomized, double-

blind, placebo-controlled studies, and the initial findings in the majority of recipients 

were encouraging.  For example, LYMErix prevented Lyme disease-associated 

symptoms in 76% of recipients (114) and ImmuLyme provided effective protection in 

68% and 92% of recipients after 2 or 3 dosages, respectively (115).  However, the 

recipients were evaluated for only a few months after administering the vaccine and 

Parenti et al. (123) subsequently showed that the anti-OspA borreliacidal antibody 

response remained detectable after vaccination for only a few months.  Therefore, long-
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term protection became dependent on regular boosters.  Despite the significant findings, 

the Food and Drug Administration approved the introduction of LYMErix to the 

marketplace in 1998, but poor sales, weak endorsement from the CDC, the difficult 

vaccination schedule, safety concerns, and even a class action lawsuit contributed to 

severely limit demand, and the product was quickly removed from the marketplace.  In 

addition, the failed commercialization of LYMErix contributed to halt additional 

development of ImuLyme.
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OTHER STRATEGIES FOR INDUCING ANTIBODY-MEDIATED IMMUNITY 

BY VACCINATION 

Elimination/Prevention of Infection in Reservoir Hosts 

 The demise of LYMErix and ImuLyme caused a redoubling of efforts to prevent 

human Lyme disease by vaccination.  One intriguing possibility that continues to 

generate interest is vaccinating reservoir hosts, most notably the white-footed mouse 

(Peromyscus leucopus), to prevent the feeding immature I. scapularis ticks from 

becoming infected with Lyme disease spirochetes while they obtain a bloodmeal.   In 

support, researchers showed that vaccinating P. leucopus with rOspA by needle (124) or 

administering the vaccine formulation via gavage (125) significantly reduced the rate of 

spirochetemia in recipient mice after intradermal needle-challenge with B. burgdorferi ss.  

In addition, vaccinating laboratory mice by introducing rOspA via food pellets also 

significantly decreased spirochetemia after challenged with infected I. scapularis ticks 

(126).   Despite these promising results, however, the daunting task of administering an 

OspA-based vaccine to large populations of wild mice has greatly dampened enthusiasm 

and subsequent large-scale studies have not been forthcoming.

Prevention of Tick-Feeding 

Another promising possibility is to develop a vaccine that stimulates antibodies that in 

turn prevent ticks from feeding, especially since the strategy would also provide 

protection against other tick-transmitted human pathogens such as Anaplasma spp., 

Ehrlichia spp., or Babesia microti (127).  The current leading candidates are formulations
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that induce antibodies specific for subolesin, a protein that is conserved among many tick 

species (128, 129), including I. scapularis, that helps “anchor” the tick to the mammalian 

host (128, 130-132).  In support, De la Fuente et al. (129) showed that vaccinating 

laboratory mice with a vaccine that induced anti-subolesin antibodies significantly 

reduced transmission of Anaplasma phagocytophilum from feeding I. scapularis ticks.  

Similarly, Bensaci et al. (127) demonstrated that vaccinating laboratory mice with a 

Vaccinia virus that expressed recombinant subolesin antigens also induced an antibody 

response that prevented significant numbers of questing ticks from feeding.   Based on 

these early successes, the approach has generated enthusiasm for more comprehensive 

feasibility studies, and several are ongoing.    

Antibody-Mediated Immunity by Vaccination with Other Proteins 

Researchers have also pursued vaccination with other Borrelia spp. proteins, 

including several that are expressed in the mammalian host, since they would then also 

conceivably induce an effective immunologic memory response.  For example, 

vaccination with decorin binding protein (Dbp) A induces antibodies that are effective 

against a subsequent needle-challenge with Lyme disease spirochetes (133, 134). 

Similarly, vaccination with the fibronectin binding protein BBK32 (135-137) or the porin 

protein P66 (138, 139) have induced antibody responses sufficient to protected laboratory 

mice from subsequent needle- or tick-challenges.  An important caveat, however, is that 

comprehensive protection by vaccination with each of these proteins has been 

confounded by significant inter- and/or intra-species heterogeneity, and the result has 

been that more comprehensive studies that include evaluating the ability of vaccination 
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 with the antigens to stimulate effective antibody memory responses have not been 

forthcoming.  

Induction of Antibody-Mediated Immunity by Vaccination with Multiple Proteins 

 Because of the extreme heterogeneity among individual Borrelia spp. proteins, 

more recent studies have focused primarily on evaluating protection after vaccination 

with multi-antigen vaccines (140).  For example, Hanson et al. (141) showed that 

vaccinating mice with a combination of OspA and DbpA provided antibody-mediated 

protection that was effective against a needle challenge with a 100-fold higher 

concentration of B. burgdorferi than was achieved with either protein alone.  Similarly, 

Brown et al. (142) showed that vaccination with a combination of DbpA, BBK32, and 

OspC antigens induced antibodies that protected laboratory mice (86-94%) from needle-

challenge with multiple Borrelia genospecies.  Despite these promising results, however, 

additional studies have not been forthcoming.  One possibility may be ongoing concerns 

of the longevity of antibody-mediated protection without an effective immune memory 

response.  In addition, demonstration that the expression of surface proteins by the 

spirochetes in laboratory mouse models differs significantly from the proteins expressed 

during human infection (30, 31, 32, 58-60) may also be confounding additional study.   
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FOCUS ON OSPC 

Suitability for Antibody-Mediated Immunity 

Several observations suggest that OspC may be the most effective vaccinogen.  

Most notably, high levels of OspC are expressed in the tick as the spirochetes migrate to 

the salivary glands (43, 55), and also during the early stages of mammalian infection (56, 

57, 143, 144).  In fact, Lyme disease spirochetes that have lost the ability to express the 

protein are non-pathogenic to humans (56, 57).  Therefore, borreliacidal antibodies 

specific for OspC could be expected to provide protection in the tick and the human host.  

Moreover, there are multiple epitopes within OspC that induce borreliacidal antibodies 

(58, 60, 145, 146).   

Because of these properties, investigators confirmed the ability of vaccination 

with OspC to protect laboratory mice 100% from infection with Lyme disease when 

challenged with spirochete-infected nymphs (147).  However, the protection was limited 

to challenge with only the Borrelia strain that the OspC was derived from (109, 148, 

149).  In addition, subsequent studies (145, 150-152) confirmed considerable amino acid 

variability in the OspC protein, even among B. burgdorferi isolates from the same 

geographic region (153), was responsible for the limited protection.  Therefore, the 

extreme heterogeneity of OspC cast considerable doubt on the widespread utility of an 

OspC-based product.
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Strategies to Overcome the Heterogeneity of OspC 

Despite the general lack of enthusiasm, however, some researchers continued to 

investigate the feasibility of strategies to overcome the heterogeneity of OspC.  One 

approach was to incorporate multiple protective epitopes from within OspC proteins from 

multiple Borrelia genospecies into a single vaccine, and then evaluate the ability of such 

a vaccine to provide comprehensive protection.  In support, Earnhardt and Marconi (154) 

formulated a chimeric protein comprised of peptides that corresponded to 8 linear 

epitopes within multiple OspC proteins and showed that the immune serum from mice 

vaccinated with the chimera produced complement-activating antibodies that bound 

multiple Borrelia spp..     

Another option was to identify a single epitope that is conserved among multiple 

pathogenic Borrelia spp.  In support, researchers (60, 155, 156) identified the epitope 

recognized most reliably by human antibodies, which was a section located within the 

last 7 amino acids nearest the C-terminus of OspC (AESPKKP), and showed the 

antibodies formed against the epitope were borreliacidal (59, 60).  More significantly, by 

analyzing the existing ospC sequences in the BLAST database, the investigators 

confirmed the region was absolutely conserved among the pathogenic Borrelia spp. (60, 

155, 157).  Moreover, the epitope is reliably expressed on the surface of OspC-expressing 

spirochetes (155).
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Significant Issues Impeding Further Evaluation of OspC 

Despite the aforementioned possible solutions for overcoming the heterogeneity 

of OspC, however, further evaluations have not been forthcoming because of two 

significant issues.  Most notably, Borrelia spp. express large amounts of OspA and only 

small amounts of OspC while growing in traditional laboratory BSK medium (158).  

Therefore, in vitro studies to evaluate the ability of anti-OspC antibodies to bind intact 

spirochetes are difficult to perform.  Moreover, while OspC expression can be increased 

during laboratory culture by manipulating the incubation temperature (30, 31) or pH of 

the growth medium (31), the increased expression of OspA apparently still hinders the 

ability of OspC antibodies to bind (159).  In addition, in contrast to human infection (39, 

41, 54), Borrelia spp. express little or no OspC while infecting laboratory mice (60), so in 

vivo protection studies using a mouse  animal model are also difficult to interpret.  One 

possibility to overcome this shortcoming is to utilize rhesus macaques, since they have 

been shown to mount a robust immune response to many of the same epitopes as humans, 

including OspC (160-162), but factors such as exorbitant costs and logistical issues have 

apparently prevented their use.  
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SUMMARY 

Lyme disease is the most prevalent vector-borne disease in the United States, and 

the annual number of worldwide cases continues to increase (19-21).  A vaccine that 

provides reliable, long-term protection would therefore be extremely valuable. Several 

strategies for inducing effective antibody-mediated immunity by vaccination, including 

developing products that induce antibodies in the reservoir host to kill the spirochetes or 

stimulate the production of antibodies in human recipients that prevent ticks from 

feeding, are being pursued.  However, the difficulty of effectively vaccinating large 

numbers of reservoir hosts and the rigor of evaluating a strategy to prevent tickbites 

continues to significantly hinder progress.  Alternatively, researching have pursued the 

more traditional approach of developing a vaccine that induces a human antibody 

response that provides long-term, comprehensive protection against Lyme disease 

spirochetes.   However, this task also continues to be hampered by several confounding 

factors that include the extreme intra- and interspecies heterogeneity, an inability to 

culture spriochetes in the laboratory that express surface proteins at similar levels as 

occurs during infection in the human host, and the lack of an inexpensive laboratory 

animal model where the antigenicity in vivo more closely mimics the antigenicity of the 

spirochetes during human infection.    
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