
                                                                                                                                                           

 

Data Mining For Knowledge-Based 

Approach for Landslide Susceptibility Mapping 

 

By 

Aaron D. Schuck 

 

A thesis submitted in partial fulfillment of 

the requirements for the degree of 

 

Master of Science 

(Cartography and GIS) 

at the 

UNIVERSITY OF WISCONSIN – MADISON 

2018 

 

 

 

 



ii 
 

 

Table of Contents 

Acknowledgments.............................................................................................................................. iv  

List of Figures ....................................................................................................................................  v 

List of Tables .....................................................................................................................................vii 

Abstract  ..........................................................................................................................................  viii 

1. Introduction ...................................................................................................................................   1 

     1.1 Significance............................................................................................................................. 1 

     1.2 Research Question .................................................................................................................. 3 

     1.3 Goal of Thesis ......................................................................................................................... 4 

     1.4 Thesis Structure ...................................................................................................................... 4 

2. Background on Knowledge Based Approach ................................................................................ 5 

     2.1 Challenges of the Statistical Methods for Landslide Mapping ............................................... 5 

     2.2 Knowledge-based approach on landslide susceptibility mapping .......................................... 6 

3. Materials and Methods ................................................................................................................... 9  

     3.1 Study Areas ............................................................................................................................. 9 

     3.2 Methodology ...........................................................................................................................10 

          3.2.1 Selection of Pre-Disposing Factors .................................................................................11 

          3.2.2 Generation of Fuzzy Clusters..........................................................................................13 

          3.2.3 Generation of Fuzzy Membership Functions ..................................................................14 

          3.2.4 Computation of Landslide Susceptibility........................................................................16 

4. Results and Discussion ..................................................................................................................17 

     4.1 Environmental Clusters ...........................................................................................................17 

     4.2 Fuzzy Membership Functions .................................................................................................18 



iii 
 

 

     4.3 Inferred Landslide Susceptibility Map for Kaixian ................................................................20 

     4.4 Inferred Landslide Susceptibility Map for Three Gorges .......................................................21 

     4.5 Logistic Regression Comparison ............................................................................................21 

5. Conclusion and Future Direction ...................................................................................................25 

     5.1 Conclusion ..............................................................................................................................26 

     5.2 Future Direction ......................................................................................................................26 

References ..........................................................................................................................................28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

Acknowledgements: 

 I would like to thank first and foremost my academic advisor, A-Xing Zhu.  He 

helped me bring focus and clarity to not only my work, but my way of thinking.  This work 

could not have been completed without his seemingly limitless patience.   

 A significant amount of help came from Sharon Khan, our former graduate program 

director.   It was very difficult pursuing a degree while also working full-time, and it would 

have been much more difficult without her guidance and understanding.   

 I would also like to thank my committee members, Qunying Huang, and Song Gao.  

Their feedback helped make this a better product. 

 My employer, TDS Telecom, provided funding for this endeavor, and was especially 

patient while I continued to work for them and for the completion of this project.   

 Lastly, I would like to thank my family.  My father was a good example, who also 

received a master’s degree while working full-time.  My mother provided ample support and 

understanding during those times when things became exceedingly difficult.  My children, 

Aleksei and Sophia, without whom this project would be pointless, you both are the love of 

my life. 

 

 

 

 

 

 

 

 



v 
 

 

List of Figures 

2.1 Basic diagram of knowledge based landslide susceptibility mapping approach ............................. 8 

3.1 The Kaixian and Three Gorges study areas are located within the red bounding box .................... 11 

3.2 The Kaixian and Three Gorges study areas.  DEM’s are overlaid the study areas, 

recorded landslides are displayed in red............................................................................................ 12 

3.3 The red line (359⁰ ) and the blue line(10⁰) are both facing in approximately the same 

direction, but not accounting for the disparity in values can cause errors ........................................ 15 

3.4 An example fuzzy membership curve.  The C values shown are the cluster centroids 

generated in fuzzy classification ....................................................................................................... 18 

4.1 Initial data point output of the FCM process ................................................................................... 19 

4.2 3 cluster dataset overlaid on the city of Kaixian with landslide data-points.   Cluster 1 is 

red, cluster 2 is yellow, and cluster 3 is blue ..................................................................................... 20 

4.3 The variables correlating to higher landslide density clusters are translated into a SoLIM 

fuzzy membership function.................................................................................................................... 21 

4.4 The inferred landslide susceptibility map for Kaixian.  The white areas are ≥ 50% 

susceptible to a landslide event. Red dots are outside of landslide susceptible areas, blue 

dots are within landslide susceptible areas ............................................................................................ 22 

4.5 The inferred landslide susceptibility map for Three Gorges using fuzzy membership 

functions derived from Kaixian. ............................................................................................................ 23 

4.6 The landslide susceptibility map created using logistic regression for Trial 3.  The blue 

dots are those landslides within highly susceptible areas, the red dots are within areas of 

medium susceptibility. ........................................................................................................................... 25 



vi 
 

 

4.7 Landslide susceptibility map for the Three Gorges area using the logistic regression 

coefficients from Kaixian. The blue dots are those landslides within highly susceptible areas ........26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

List of Tables 

4.1 Resulting clusters arranged by landslide density .........................................................................21 

4.2 The output data for the Kaixian logistic regression trials ............................................................24 

4.3 Accuracy comparison for the Kaixian area  .................................................................................26 

4.4 Accuracy comparison for the Three Gorges area  .......................................................................27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

 

Abstract 

 Statistical approaches to landslide susceptibility mapping can be an effective tool for 

determining areas of high risk, but have also had problems with portability, reliability, stability, 

and impracticality as they often require large amounts of data in order to be effective.  The 

knowledge based approach has been proven to address these issues, but the necessary preparation 

required for obtaining domain knowledge on landslide susceptibility and predisposing factors 

demands time and effort from the analyst.  This paper proposes a knowledge based data mining 

approach: data mining techniques for defining the knowledge on the relationship between 

landslide susceptibility and predisposing factors and the knowledge based approach for mapping 

landslide susceptibility.  A set of environmental clusters were generated through fuzzy 

classification of key environmental layers describing spatial variation of predisposing factors. 

These clusters were then hardened and later ranked according to density of landslides.  The 

cluster centroid values are ordered in the order of landslide density for hardened classes and used 

as control points for the construction of fuzzy membership functions on knowledge of 

relationships between landslide susceptibility and predisposing factors.  The fuzzy membership 

functions are then used through a knowledge-based approach to map landslide susceptibility.  

The accuracy of the so generated map in the Kaixian area is comparable with that from a logistic 

regression model. However, the generated fuzzy membership functions are more portable than 

those in the logistic model.  It was also found that the combination layer was correlated strongly 

with landslide instances, and could serve as a useful input for future studies. The results of this 

study provide a useful illustration for potential in the construction of fuzzy membership maps 

from field observation data. 
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Chapter 1: Introduction 

 The USGS has conservatively estimated that landslides annually cause between 1-2 

billion dollars in property damage within the United States alone.  Landslides occur in all 50 

states, causing between 25-50 fatalities a year (USGS, 2010).  The United Nations has stated “By 

2030, urban areas are projected to house 60 per cent of people globally and one in every three 

people will live in cities with at least half a million inhabitants…Of the 1,692 cities with at least 

300,000 inhabitants in 2014, 944 (56 per cent) were at high risk of exposure to at least one of six 

types of natural disaster (cyclones, floods, droughts, earthquakes, landslides and volcano 

eruptions), based on evidence on the occurrence of natural disasters over the late twentieth 

century. Taken together, cities facing high risk of exposure to a natural disaster were home to 1.4 

billion people in 2014” (Gu et al., 2015; United Nations, 2016).  Numerous studies have 

recognized human made interactions, including the presence of urban development (roads, 

buildings, etc.) as one of the leading predisposing factors towards a landslide event (Devkota et 

al., 2013; Kamp et al., 2008; Yalcin et al., 2011; Youssef et al., 2016). 

 

1.1 Significance 

 As urban development continues into areas prone to landslides, the need for accurate 

assessment of landslide susceptibility becomes more and more urgent.  GIS is in a unique 

position to assist in providing landslide prediction and susceptibility mapping.  Aside from the 

actual triggering mechanism for an individual landslide event, all of the underlying predisposing 

factors that cause landslides can be represented within GIS.   

 In fact, many studies have already been designed around landslide prediction (Alexander, 

2008; Brenning, 2005; Yalcin et al., 2011).  Statistical methods are the most widely used for 
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mapping landslide susceptibility.  Logistic regression is the representative of statistical methods. 

However, logistic regression models have been shown to lack stability, reliability, portability, 

and scalability (Ercanoglu and Gokceoglu, 2004; Guzzetti et al., 1999; Wang, 2008).   Zhu et al. 

(2014) highlighted the unreliability of the statistical approach: 

“...statistical approaches are often based on linear or generalized linear models, which can 

only represent the relationships in a monotonic way (inherent generalization; Van Westen et 

al., 2003). However, the actual relationships are complex and inherently nonlinear. For 

example, the relationship between strata (strike and dip) and landslide susceptibility is highly 

nonlinear because this relationship is also related to the slope information including gradient 

and aspect (Atkinson and Massari, 1998; Donati and Turrini, 2002; Lee et al., 2002; Liu et 

al., 2004; Zhu et al, 2004; Ayalew and Yamagishi, 2005). These linear or generalized linear 

models are thus insufficient to represent complicated nonlinear relationships.”
 

 

The knowledge-based approach was designed to address these deficiencies and has 

demonstrated its ability to function well in those areas where traditional statistical approaches 

have failed. Zhu et al. (2014) provide the following characterization for the knowledge-based 

approach: 

“The results of our case studies suggest that this knowledge-based approach holds up well 

when it is transferred without changes to an area that is about 19 times larger and much more 

complicated than the area in which the knowledge base was developed... The expert 

knowledge approach in this study does not use past landslides to develop the knowledge 

base. It is essentially different from the statistical methods in that the expert knowledge 

approach does not use data of landslide occurrence and absence to extract the relationships 
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between landslide susceptibility and predisposing factors. It does not have the false negatives 

during its model development as the statistical methods and some of the data mining methods 

do.
” 

 

 Though the knowledge-based approach has been proven to be a more accurate method for 

mapping landslide susceptibility (Wang, 2008; Zhu et al., 2014), it does come with its own 

disadvantages.  The knowledge based-approach is reliant on extracting domain knowledge 

through extensive and detailed interviews with landslide experts.  Experts provide a detailed 

description for each pre-disposing factor within the landscape and how that pre-disposing factor 

will contribute to landslides.  This knowledge is then assimilated into the computer through the 

form of a fuzzy membership function for each pre-disposing factor.  Each pixel will then have 

the pre-disposing factors aggregated, and a landslide susceptibility score is generated for every 

pixel over the landscape by integrating the values of predisposing factors and the fuzzy 

membership functions.   

The fuzzy membership functions are the key to the knowledge based approach (Yang et 

al., 2011; Zhu et al., 2010).  While the landslide susceptibility map is the desired result, those 

who wish to process and analyze landslide susceptibility for a given area may not have the time, 

the resources, or the experts to conduct these interviews and construct the necessary fuzzy 

membership functions needed for the knowledge based approach to work.  Very often all an 

analyst has to work with is existing observations of landslide occurrences.  
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1.2 Research Question 

 In order to address the challenges in defining membership functions for knowledge-based 

approach, this thesis explores the following scientific question: Is it possible to construct fuzzy 

membership functions from a sample data-set only, bypassing the need for extensive knowledge-

based interviews? 

 

1.3 Goal of Thesis 

 The ultimate goal of this thesis is to provide an alternative method for obtaining the 

knowledge for the knowledge based approach so that practitioners can use the benefits of the 

knowledge based approach, whilst simultaneously avoiding the drawbacks of the statistical 

approaches.  The approach described within this work aims to be less costly in terms of the 

necessary time and effort that must be expended when applying the knowledge based approach 

to a given area.  Given a dataset, this methodology will provide a more reliable result than seen 

with standard statistical approaches while also eliminating the prerequisites for the knowledge 

based approach. 

 

1.4 Thesis Structure 

 The remaining portion of the thesis will expand on the reasoning behind why building 

this new approach is necessary, and then continue to describe the construction of the 

methodology used to attain the desired results.  Chapter 2 will cover the challenges of 

implementing the statistical methods for landslide susceptibility mapping effectively, and 

provide a background on the knowledge based approach.  Chapter 3 will present an overview of 

the Kaixian and Three Gorges study areas within the first subsection.  The second subsection will 
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describe the methodology of this approach.  The fourth chapter will provide an overview of the 

results, and the fifth chapter will conclude this thesis and present avenues for future research 

direction. 
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Chapter 2: Background on Knowledge Based Approach   

 

2.1 Challenges of the statistical methods for landslide mapping  

Multi-variate statistical approaches have been the predominant method used to map 

landslide susceptibility, and there are several variations to the approach (Bai et al., 2010; Lee et 

al., 2005, 2006; Nefeslioglu et al., 2008; Yilmaz 2009, 2010).  Albeit their wide application, the 

statistical approaches suffer from the following drawbacks (Zhu et al., 2014):  

 1)  Statistical methods use the landscape characteristics of the sample sites (landslide 

occurrence sites as positive evidence and non-landslide sites as negative evidence) to define the 

relationships between landscape and predisposing factors (Zhu et al., 2014).  The quality of 

landslide data has uncertainty built into it because of the very nature of the phenomenon.  Even 

experts may disagree as to the exact shape and area of a landslide occurrence (Atkinson and 

Massari, 1998).  The predisposing factors for a given landslide will change after a landslide 

event, often to such a degree that completely new values are present at a landslide site after each 

event, adding to the difficulty of obtaining accurate data (Guzzetti et al., 1999).  Such ambiguity 

manifests as uncertainty within our data set, and eventually in the algorithm used to build the 

logistic regression model.    

 2)  Statistical methods have historically shown low stability.  Data driven models are very 

sensitive to their training datasets.  Unique coefficients are calculated based on the data for a 

given sample set, and no two sample sets will have the same values.  As such, unique 

coefficients lead to unique results, and different equations.  This situation will often lead to 

results that conflict with reality, or one another.  When conducting a purely data driven approach, 
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ignoring the physical processes and causes of a landslide event are critical omissions which can 

lead to misleading results (Dai et al., 2002).    

 For example, Wang (2008) conducted experiments using the logistic regression model 

using landslide data from China.  Two experiments were conducted with the same data. 

Experiment A trained the logistic regression model using 21 pixels where landslides had 

occurred, and 21 pixels where landslides had not occurred.  Experiment B did the same, except 

the 21 negative pixels were instead determined at random.  The results from Experiment A 

suggested that 4 predisposing factors were the most important, while the results of experiment B 

suggested 3.  In addition, factors which have been determined as very important indicators of 

landslide susceptibility by experts were instead negatively weighted for the model (Wang, 2008).  

The lack of consistency amongst the tests demonstrates the low stability inherent within this 

approach.          

 3)  Statistical methods are not portable.  It has been discussed that the training data 

shapes the algorithm for data driven models.  Every area has a different algorithm to go with its 

own unique data, and a statistical model is built tailored to the region.  Because of this, statistical 

models used for one area can’t be extrapolated to surrounding areas (Guzzetti et al., 1999; 

Carrara et al., 1991), resulting in a lack of portability.   

 4) It is impractical to use statistical methods for large areas.  It is well known that data-

driven models and statistical techniques require large amounts of data to produce reliable results 

(Ercanglou, 2004).  The larger the study area, the more samples are needed, and with budget and 

time constraints, this may not always be feasible. 
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 2.2 Knowledge-based approach on landslide susceptibility mapping 

 The knowledge based approach is designed in such a way that it can effectively address 

most of the problems we see within the purely statistical methods (Zhu et al., 2014).  Figure 2.1 

outlines the basic idea of the knowledge based approach.  Interviews are conducted with local 

landslide experts to determine which predisposing factors will be included in the calculation of 

landslide susceptibility and how these predisposing factors affect landslide susceptibility.  This 

knowledge is captured and represented as fuzzy membership functions for each predisposing 

factor.  Based on these fuzzy membership functions together with the values of the predisposing 

factors, every individual pixel within the study area is then evaluated to derive the landslide 

susceptibility; 0 being not susceptible at all to landslides based on this predisposing factor, 1 

being as susceptible to landslides as possible based on this predisposing factor.   

 
Figure 2.1:  Basic diagram of knowledge based landslide susceptibility mapping approach.  

(Taken from Wang, 2008) 

 

 

 This approach has the following advantages over purely statistical methods: 

 1) Expert knowledge is built directly into the model.  Instead of relying purely on the 

sample data to shape the statistical relationships as it is done in the commonly used logistic 
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regression, expert knowledge on physical reasons for landslide susceptibility is incorporated into 

the equation, resulting in greater reliability and consistency.   

2) The knowledge based approach can be used in different areas.  The relationships 

between landslides and their predisposing factors will be extracted directly from the experts.  

Expert knowledge is developed over years of observing landslide phenomenon and working in 

the field to understand the underlying factors which cause them.  Using this knowledge as a 

foundation, the knowledge based approach is able to be used as a generic model for a variety of 

areas across the globe, instead of being generated on the fly using local sample data on a case by 

case basis as we have seen with existing statistical methods.   This allows the same relationships 

to be used in a variety of areas.  This portability also means that the knowledge based approach 

is less data hungry, allowing larger areas to be mapped. 

 3)  The knowledge based approach is not restricted to linear models.  The relationship 

between a given predisposing factor and the probability of a landslide occurrence is rarely, if 

ever, linear (Zhu et al., 2014).  The knowledge based approach designs the curves for the 

relationships around each predisposing factor and its landslide probability, thus avoiding any 

linearity assumptions. 

 While the knowledge based approach addresses most of the deficiencies of the statistical 

methods, there is one major concern that should be examined.  The knowledge based approach 

assumes that detailed knowledge extraction will take place.  Interviews will be conducted, curves 

will be identified and shaped to each individual predisposing factor based on the expert’s 

knowledge, and the fuzzy membership equations will be constructed based on the information 

gained from the expert(s).   



10 
 

 

 It will often be the case however, that the analyst will not have the time or the resources 

to conduct the thorough investigation that is required in order for the knowledge based approach 

to be successful.  All that they will have is a dataset of landslide occurrences to work with.  In 

this type of situation, the most must be made from the dataset alone.  The question then is: how 

to build fuzzy membership functions from these landslide occurrence data. 
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Chapter 3: Materials and Methods 

 

 3.1 Study areas 

Two sites were chosen for the study area: Kaixian and the adjacent Three Gorges area 

(Figures 3.1-3.2).  

 

          

Figure 3.1:  The Kaixian and Three Gorges study areas are located within the red bounding box. 
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Figure 3.2:  The Kaixian and Three Gorges study areas.  DEM’s are overlaid the study areas, 

recorded landslides are displayed in red. 

 

 There are a total of 226 recorded landslide events, 21 within Kaixian, and the remaining 

205 within the Three Gorges area.  The Kaixian study area is focused around the town of Kaixian 

County with an area of 250 square kilometers (18 km * 14 km).  The Nanhe river passes through 

the town, surrounded by steep cliffs.  The greatest local relief in this area is approximately 700 

meters, with an average slope gradient of roughly 10 degrees.  The Three Gorges area is 

considerably larger with an area of 4,440 square kilometers (37 km * 120 km).  The Yangtze 

River bisects the entire area.  The area has an average slope gradient of approximately 32, with 

the largest local relief being 1,671 meters. The Kaixian area was used to develop fuzzy 

membership functions which were then applied to the Three Gorges area in order to test the 

portability of the methodology.   

 

 3.2 Methodology  

To extract the membership functions relating landslide susceptibility to environmental 

variables (predisposing factors) from landslide observation datasets, a set of environmental 

clusters were created using the FCM method on the given environmental variables for the study 
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area.  The environmental clusters were then hardened to create a map showing the core areas of 

these clusters. The landslide instances were overlaid onto the hardened map.  The clusters were 

then ranked according to their landslide density.  Fuzzy membership functions were then 

constructed using the centroids of the ranked clusters and used together with the environmental 

variables to predict landslide susceptibility.  

 For a given variable, the landslide susceptibility is at its highest for that variable when its 

value is equal to the cluster centroid of the cluster with the highest landslide density.  The 

susceptibility at this environmental value will then be set to 1 for the fuzzy membership function 

curve (i.e. the most susceptible to landslides for the given value for this variable).  The 

susceptibility is 0 for the environmental value of this variable when the environmental value is 

equal to the centroid of the cluster with the lowest landslide susceptibility.  The remaining cluster 

values filled in the curve depending on where they ranked in terms of landslide density.  This 

process was repeated for each variable, resulting in a set of fuzzy membership functions.  The 

final step used SoLIM Solutions software to create a landslide susceptibility map using the 

constructed membership functions and the spatial variation of the predisposing factors. 

 

 3.2.1 Selection of Pre-Disposing Factors 

The details of constructing the knowledge based approach have been well documented 

(Wang, 2008; Zhu et al., 1994, 2001).  Wang (2008) worked with a local landslide expert who 

identified seven essential predisposing factors which play a crucial role in determining landslide 

susceptibility in the Kaixian study area: lithology (rock type), strata dip, strata strike, slope 

gradient, slope aspect, slope relative relief, and slope shape.      
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 Initial attempts at clustering with the seven layers proved problematic.  For one, 

categorical values such as lithology and slope shape cannot be meaningfully clustered with data 

on the ratio scale without separating the dataset into several different categories, and then further 

clustering within these categories.   

 Zhu et al. (2014) successfully integrated several key environmental layers through the 

following formula: 

 

 

𝑓𝑆𝑡𝑟𝑎𝑡𝑎 𝑆𝑙𝑜𝑝𝑒 (𝑑𝑖𝑗, 𝑠𝑖𝑗,𝑔𝑖𝑗,𝑎𝑖𝑗 ) =

{
 
 

 
 0.0                                                                       𝑖𝑓 |𝑠𝑖𝑗 − 𝑎𝑖𝑗| > 90 

0.0                                                                                     𝑖𝑓 𝑑𝑖𝑗 > 𝑔𝑖𝑗

exp(− (
|𝑑𝑖𝑗−𝑔𝑖𝑗|x 0.8326 

45
)
2

)  x cos(𝑠𝑖𝑗 − 𝑎𝑖𝑗)            otherwise

        

(3.1) 

 

 

where 𝑑𝑖𝑗 is the strata dip at cell (i,j); 𝑠𝑖𝑗 is the strata strike at cell (i,j); 𝑔𝑖𝑗is the slope gradient at 

cell (i,j); and 𝑎𝑖𝑗 is the slope aspect at cell (i,j).   

An issue arises when calculating the cosine portion for this equation, namely there are 

instances where the slope aspect for 2 given pixels will be quite similar but will yield 

numerically dissimilar results.  For example, if we take two pixels, one with a slope aspect of 

359⁰ and a strata strike of 300⁰  and its neighbor with a slope aspect of 10⁰ with the same strata 

strike of 300⁰ and insert them into the cosine portion of formula (1) we will get .515 & .342 

respectively (See figure 3.3). 
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Figure 3.3:  The red line (359⁰ ) and the blue line(10⁰) are both facing in approximately the 

same direction, but not accounting for the disparity in values can cause errors. 

 

To counteract this, the following was substituted for the (𝑠𝑖𝑗 − 𝑎𝑖𝑗) portion of Equation 3.1:                                                 

   {

𝑠𝑖𝑗 + (360 − 𝑎𝑖𝑗)                      𝑖𝑓𝑠𝑖𝑗 ≤ 90 𝑎𝑛𝑑 𝑎𝑖𝑗 ≥ 270 

𝑎𝑖𝑗 + (360 − 𝑠𝑖𝑗)                      𝑖𝑓𝑎𝑖𝑗 ≤ 90 𝑎𝑛𝑑𝑠𝑖𝑗 ≥ 270 

 |𝑠𝑖𝑗 − 𝑎𝑖𝑗|                              otherwise 

                         

(3.2) 

 

 Equations 3.1 & 3.2 were used to generate an environmental layer, hereafter referred to 

as the combination layer.  This combination layer was then joined together with the slope 

gradient and slope height layers as the inputs for the FCM clustering process.  
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3.2.2 Generation of Fuzzy Clusters 

Several studies have successfully predicted new terrain characteristics through generating 

clusters of known environmental attributes (De Bruin and Stein, 1998; Yang et al., 2011; Zhu et 

al., 2010).  The FCM utility within the SoLIM program was used to generate cluster maps, along 

with cluster centroid values for each of the contributing data inputs. 

 Fuzzy c-means clustering is an unsupervised classification technique that detects clusters 

of the provided variables through iteratively identifying cluster centroids (Bezdek et al., 1984).  

Individual pixels are assigned a degree of membership to every cluster based on their distance 

from the cluster centroids and their degree of belonging to that given cluster.   The weighting 

exponent (m) and the number of clusters (c) are the two important parameters for FCM 

clustering. 

 The m value controls the weights assigned to the distance from a given pixel to a 

centroid.  The larger the m value, the fuzzier the pixels will be (every pixel belongs to every 

cluster).  If the m value is smaller, the clusters will become less fuzzy.  This research assigned m 

= 2, as it has been proven to give good clustering results (Pal and Bezdek, 1995). 

 The c value controls the number of clusters to be generated. Determining the optimum 

number of clusters to generate is a challenging and well known problem (Pal and Bezdek, 1995; 

Wang and Zhang, 2007; Xu and Wunsch, 2005).  Extensive research has been devoted to cluster 

validity indices, which are designed to determine the optimum number of clusters.  The partition 

coefficient and the entropy values are among the most popular indices used to determine cluster 

validity (Bezdek et al., 1984).  This research used these indices to select the best cluster fit. 
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3.2.3 Generation of Fuzzy Membership Functions 

The generated environmental clusters were then hardened.  Any pixel containing a 

membership ≥ 0.5 in a cluster will be treated as a representative of that cluster (setting its value 

to 1); the remaining pixels for that cluster were discarded (setting their values to a value of 0).  

The landslide instances were overlaid onto the hardened cluster maps.  Landslide density per 

square kilometer was calculated for each environmental cluster.  The generated clusters were 

then ranked in terms of landslide density.  Clusters with the highest landslide density were 

categorized as high landslide susceptibility environments, and the reverse was true for areas with 

low landslide density.   

Two types of knowledge are needed in order to define a fuzzy membership function 

(Zhu, 1999).  Type 1 knowledge consists of the typical environmental conditions present for a 

given landslide susceptibility.  The FCM clustering process generated this knowledge using the 

cluster centroid values for the environmental clusters with highest landslide density.  Type 2 

knowledge states how the membership changes when the environmental condition deviated from 

its value for the highest susceptibility.  This type of knowledge is determined by the centroids of 

the clusters with less landslide density. The cluster centroid values were plotted for each variable 

listed.  With sufficient cluster centroids, a curve can be constructed which will form the fuzzy 

membership function (See Figure 3.4).  This process was repeated for each of the three variables 

identified.  The fuzzy membership curves for all of the environmental variables are then created.  
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Figure 3.4:  An example fuzzy membership curve.  

 The C values shown are the cluster centroids generated in fuzzy classification. 

  

 3.2.4 Computation of Landslide Susceptibility 

 The inference engine in the SoLIM Solutions software was used to generate the landslide 

susceptibility maps.  A rule-based project was constructed, and the 3 data layers served as input 

into the GIS database.  Landslide susceptibility served as a “soil instance”, and each of the 3 

layers had s-shaped fuzzy membership curves defined mirroring the graphed data built around 

the centroid values of each of the clusters.  The inference kept the same 5 meter resolution as 

each of the input layers.  Areas containing ‘NoData’ values were masked out to produce reliable 

results. 

 



19 
 

 

Chapter 4: Results and Discussion 

 

 4.1 Environmental Clusters  

Each distinct number of cluster datasets produces a partition coefficient and an entropy 

level.  Figure 4.1 highlights the results from the clustering process.  A low entropy value implies 

a more “crisp” partition between clusters, while a high partition coefficient value implies a least 

fuzzy clustering amongst the different cluster sets (Bezdek, 1974).  Cluster sets 2 through 6 have 

the lowest entropy and the highest partition coefficient.  The 3 cluster dataset was chosen 

because it correlated well with the desired scaling for a landslide susceptibility map (A cluster 

for areas with low, medium, and high landslide susceptibility).  

 

          

Figure 4.1:  Initial data point output of the FCM process. 
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 After the clusters were generated, the clusters were hardened by assigning a category to 

every pixel based on its score (Figure 4.2).     

 

 
 

Figure 4.2:  3 cluster dataset overlaid on the city of Kaixian with landslide data-points.Cluster 1 

is red, cluster 2 is yellow, and cluster 3 is blue. 

 

  

 4.2 Fuzzy Membership Functions 

 The variables were then graphed to facilitate construction of fuzzy membership functions. 

The centroids of the ranked clusters are shown in Table 4.1.  All of the variables produced a 

graph shape roughly equivalent to an S-shaped curve.  Clusters 2 & 3 were similar in terms of 
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their landslide density.  In order to generate a continuous fuzzy membership function, the 

centroid values of Cluster 3 were assumed to be the most optimal value at which a landslide 

would occur, while the centroids of Cluster 1 were used as the cross value, or mid-optimal value. 

   

 

Table 4.1:  Resulting clusters arranged by landslide density.    

        
             

 

 

                               

Figure 4.3:  The variables correlating to higher landslide density clusters are translated into a 

SoLIM fuzzy membership function. 

 

 

 

 

 

 

  

Cluster 

Number

Combination 

Layer

Slope 

Gradient

Slope 

Height
KM² Landslides Density

1 0.0619 5.56 148.6 87.08 3 0.03445

2 0.1422 12.78 490.05 61.27 8 0.13057

3 0.1097 10.11 331.64 72.93 10 0.13712
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 4.3 Inferred Landslide Susceptibility Map for Kaixian  

 SoLIM takes the constructed fuzzy membership curves as input to infer a landslide 

susceptibility map.  A binary map is generated from the inference with a cutoff of 50% 

membership, any pixel with a susceptibility value greater than or equal to 50% is considered a 

landslide susceptible area.  The resulting landslide susceptibility map for the Kaixian area 

(Figure 4.4) has a success rate of 66.67%, capturing 14/21 of the landslide sample points.  The 

generated combination layer had the greatest influence on the susceptibility map, and was a 

strong predictor of the presence or absence of a landslide. 

              

Figure 4.4:  The inferred landslide susceptibility map for Kaixian.  The white areas are ≥ 50% 

susceptible to a landslide event. Red dots are outside of landslide susceptible areas, blue dots 

are within landslide susceptible areas. 
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 4.4 Inferred Landslide Susceptibility Map for Three Gorges 

 To test the robustness of this methodology, the fuzzy membership curves derived from 

the Kaixian area were applied to the larger Three Gorges area (Figure 4.5).  Selecting those 

landslides within ≥ 50% susceptible areas captured 74/205 landslides, a success rate of roughly 

36%.  The lower success rate indicates that the method is not as easily transferable as the 

knowledge based approach, but we do see again that the generated combination layer is a much 

more prominent influence than either the included slope gradient or slope height layers. 

                            
Figure 4.5:  The inferred landslide susceptibility map for Three Gorges using fuzzy membership 

functions derived from Kaixian. 

 

 4.5 Logistic Regression Comparison  

 Despite the problems previously listed concerning the established statistical methods, it is 

useful in this case to compare a logistic regression output with the proposed methodology.  This 

is mainly because the statistical methods are well understood, and can provide a benchmark to 

compare how successful the proposed methodology is in achieving its goals.   

 Unique random samples of 21 non landslide pixels were generated for each trial to train 

the logistic regression algorithm.  Buffers were created around existing landslides and each 

randomly generated sample point to ensure no sample point could be generated within half a 
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kilometer from each other, or an existing landslide point.  The samples were created using 

ArcGIS’s CreateRandomPoints_management function, and the logistic regression itself was 

performed using Python, Pandas, and the Statsmodel APIs. 

 Five trials of logistic regression were run on the Kaixian data (Table 4.2).  In general, 

pseudo R
2
 values greater than .2 indicate a good fit (Clark and Hosking, 1986).  Trial 3 had the 

lowest standard error for the combination layer and a pseudo r-squared value of .2193, so it was 

chosen to create a susceptibility map (Figure 4.6).  The resulting map was then classified into 

areas with low, medium, and high chance of landslide susceptibility using Jenks natural breaks 

classification method, each category capturing 0, 7, and 14 landslide points respectively.  

Table 4.2:  The output data for the Kaixian logistic regression trials. 
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When the map is restricted to a binary output, counting only areas of high landslide 

susceptibility or no susceptibility, the output is essentially the same as was seen with the 

proposed methodology (14/21 landslide captured).  This suggests that the proposed methodology 

is at least on par with logistic regression for determining landslide susceptibility.  

 

 

Figure 4.6:  The landslide susceptibility map created using logistic regression for Trial 3.  The 

blue dots are those landslides within highly susceptible areas; the red dots are within areas of 

medium susceptibility. 

 

 As was seen with the previous maps, it’s interesting to note the generated combination 

layer was consistently the most heavily weighted out of the three variables, and there was a very 
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high confidence in the link between its presence and the presence of a landslide.  Using this layer 

alone could yield decent susceptibility maps.  Considering the ease with which this layer can be 

generated, this may be a way to create quick landslide susceptibility maps by mining existing 

data layers, though further refinement of the technique is required.    

 The logistic regression coefficients generated in trial three from the Kaixian area were 

then applied to the Three Gorges area to create a landslide susceptibility map (Figure 4.7).  The 

resulting map captured 69/205 landslides, for an accuracy of 33.65%.  This is slightly less 

accurate than the knowledge based data mining method (See tables 4.3-4.4). 

                 

Figure 4.7:  Landslide susceptibility map for the Three Gorges area using the logistic regression 

coefficients from Kaixian.  The blue dots are those landslides within highly susceptible areas 

 

 

Table 4.3:  Accuracy comparison for the Kaixian area. 

 

Method 
Landslides 
Captured 

Accuracy 
Percentage 

Logistic Regression 14/21 66.66% 

Knowledge Based Data 
Mining 14/21 66.66% 
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Table 4.4:  Accuracy comparison for the Three Gorges area 

Method 
Landslides 
Captured Accuracy 

Logistic Regression 69/205 33.65% 

Knowledge Based Data 
Mining 74/205 36.09% 
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Chapter 5: Conclusion and Future Direction 

 

 5.1 Conclusion  

 The main goal of this research was to determine if fuzzy membership functions could be 

built using landslide observation data in lieu of the knowledge based approach to reliably 

determine areas which are highly susceptible to landslides.  A methodology was developed that 

distilled the available data layers into a combination layer which incorporated several of the key 

environmental variables into one formula.  This layer combined with slope gradient and slope 

height served as inputs into the FCM process.  The output clusters from the FCM process were 

then ranked according to landslide density, and their ranked centroid values served as optimality 

points to build fuzzy membership functions. 

 The initial results demonstrated that data mining can be used to identify clusters of higher 

landslides incidents and construct a suitable landslide susceptibility map.  The accuracy in the 

model development area is comparable with that from a logistic regression model. However, the 

approach achieves a slightly higher accuracy when it is ported to the Three Gorges area in 

comparison with the logistic regression model. This implies there is validity in extracting 

knowledge from the landslide occurrence data for knowledge-based approach to landslide 

susceptibility mapping. 

 

 5.2 Future Direction 

 The research was conducted with limited data (21 landslide occurrences in the Kaixian 

area). Future work could test this approach for areas with large sample data size and with more 

diversity of environmental settings. 



29 
 

 

 The use of limited number of environmental predisposing factors may also contribute to 

the low accuracy of the new approach.  Further work should develop other means to encoding 

predisposing data to add more dimensions in ability to characterize environments which leads to 

landslide occurrences.   
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