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Substantial work has gone into finding techniques for solving real-world sized Nash games.

Stackelberg Equilibria is another important solution concept for game theory models relevant

to Computer Science, but much less progress has been made for solving very large Stackel-

berg games. This thesis is a step in that direction, presenting an algorithm which can find an

OPT−ǫ approximate solution to the NP-Hard problem of perfect information, extensive-form,

pure-strategy Stackelberg games with chance nodes in O(bǫ−2|V |); where b is the maximum

branching factor of the game tree and |V | is the number of nodes in the tree.

ǫ-Reachability is compared both theoretically and through simulations to a previous folly-

polynomial approximation algorithm, which we’ll refer to as FPTAS. FPTAS runs in

O(b( |h∅|
ǫ
)2)|V |), where |h∅| is the height of the game tree. In simulations, this extra |h∅| fac-

tor proves an extremely limiting variable in relation to the run-time of ǫ-Reachability for even

moderate values of |h∅|. This is likely to prevent FPTAS from being feasible on tall game

trees - a likely feature of real-world extensive-form games. As both algorithms are linear in

non-chance and quadratic in chance nodes, they both are sensitive to the frequency of chance

nodes. Again, though, FPTAS’s dependence on |h∅| is likely to cause its run-time to grow

much more quickly than ǫ-Reachability as the proportion of chance nodes increases.
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Chapter 1

Introduction

With computers increasingly being assimilated into the structure of society, it has become

apparent that we must consider not only how technology behaves but also the interaction be-

tween users and technology. Many use cases of technology require the cooperation of multiple

users - users who may not necessarily wish to cooperate. In order to make these use cases

workable, we must develop methods for incentivizing users to cooperate.

Games are a frequent tool used in modelling strategic iteractions between at least 2 self-

interested agents. In a game, each of a set of players must choose between a set of actions in

a way that maximizes their reward. The reward for each player is not determined solely by the

player’s action, but by the interaction of the actions taken by all players.

In Computer Science, games have become an important model for studying a variety of

problems. These include studying congestion characteristics of different network topologies,

designing optimal combinatorial auctions, and designing communication protocols. Especially

important to this thesis are security games, in which an attacker attempts to steal or destroy

some set of resources while a defender attempts to protect them. Security games are used to

models in computer security, as well the protection of endangered wildlife and military targets.
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Figure 1.1 Prisoners’ Dilemma Game

1.1 Normal-Form Games

Normal-form games model one-off situations in which players take a single action before

receiving a reward. We will only consider games with finite players and for which each player

has a finite set of actions. These games have nice theoretical properties, that will be discussed

in later sections.

Two-player normal-form games are often represented in matrix form. Below is the often

discussed Prisoners’ Dilemma game in normal form:

The prisoner’s dilemma models a situation in which two criminals are being interrogated

about a crime. The police have evidence enough to jail both criminals for 2 years, but they

know they believe that they had also committed a more serious crime. To force a confession,

they present each criminal with a proposition: confess that both he and the other criminal had
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committed to a crime and avoid jail time. If only one criminal confesses, though, the non-

confessing criminal gets 10 years of jail. If both confess, they will both be sentenced to 8 years

in jail.

In the diagram above,“lie” and “confess” represent the criminals’ possible actions. Within

each box, the tuple of numbers represent each players possible “rewards”; with the first number

in the tuple being the first criminal’s reward.

More formally, a normal-form game G :=< P,A, µ > is a tuple of players P , possible

action sets A, and reward functions µ. For each player pi, and player specific variable v, we let

vi refer to pi’s instance of v. Also v−i := ×pj∈P\{pi}vi. In this vein, each player pi ∈ P chooses

some action of their possible actions Πi ⊂ A. Each σi ∈ Πi is a pure strategy of player i and

Πi is i’s pure strategy set. If players are allowed to randomize over their strategies, we denote

all such randomized strategies by ∆i; player i’s mixed strategy set. For each player pi, their is

a reward function µi : ×pi∈P (Ai) −→ N .

1.2 Equilibrium Concepts

The structure of games do not inherently lead to a method for deciding how players will

choose their actions - which strategy each player will settle on. To determine this, we may turn

to various equilibrium concepts. An equilibrium is some formula describing how each player

will choose from strategy, dependent on how all other players play.

1.2.1 Nash Equilibrium

The most popular of these is the Nash Equilibrium. Nash Equilibria model competitive

scenarios in which collusion between players is infeasible or unhelpful. They are defined for

both cases in which players can play pure and mixed strategies. A Pure Nash Equilibrium is

defined by a choice of some pure strategy σi by each player pi such that:

∀σ′
i ∈ Πi; µi(σi, σ−i) ≥ µi(σ

′
i, σ−i)

3



where σ−i is the choice of pure strategies by all other players besides pi. A Mixed Nash

Equilibrium is defined similarly, but replacing pure strategy sets Πi with mixed strategy sets

∆i for each player.

1.2.2 Correlated Equilibrium

Another popular equilibrium concept is the Correlated Equilibrium. These form a superset

of Nash Equilibria, but are guaranteed even for games with an infinite player set, in which

each player may have an infinitely-sized pure strategy set [12]. This solution concept deals

with scenarios in which players may coordinate around some public signal - such as may be

provided by a trusted third party. For instance, a common game used in the discussion of

Correlated Equilibria is Chicken:

This game models a contest in which two drivers are dared to drive their cars directly at one

another. The first person to “chicken out” and pull off course will be seen as less courageous,

and so will receive a lesser reward than the person who never breaks from the dare. If neither

chickens out, though, the cars crash into each other. Nobody is a winner in that situation and

so neither driver receives a reward.

Now, imagine there is a trusted third party, committed to making both drivers look good,

who indicates to each driver (separately) which should chicken out in each round. After con-

sidering how best to do this, the third party settles on the following indications to the two

players:

The third party will signal chicken to player 1 and dare to player 2 1/3 of the time, will

signal dare to player 1 and chicken to player 2 1/3 of the time, and chicken to both players 1/3

of the time.

Now, note that both players cannot increase their reward by deviating from these sugges-

tions. When it is indicated that player 1 chicken out, they know that, if player 2 follows their

recommendation, player 1’s expected reward is 1
2
∗ 2 + 1

2
∗ 6 = 4. This is greater than the

expected reward from deviating to “dare,” 1
2
∗ 0 + 1

2
∗ 7 = 3.5. Likewise, when the third
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Figure 1.2 Chicken Game

Figure 1.3 Public Signal
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party suggests that player 1 “dare,” the expected reward is 7, greater than the 6 for deviating to

chicken out. By symmetry, player 2 will also be better off by listening to the third party’s rec-

ommendations, and so both players will choose to follow their suggested strategy at all times -

leading to the Correlated Equilibrium.

1.2.3 Stackelberg Equilibrium

Another equilibrium concept, of course, is the Stackelberg Equilibrium. This is used to

model situations in which one player has a first-move advantage - either acting or committing

to some actions before the other player(s) are able to act. In Stackelberg games, one player

has a special leader designation, which designates that this player selects their strategy before

the other players. The other follower players then choose a best response to the leader’s strat-

egy. Most commonly, Stackelberg games have only two players: a single leader and a single

follower.

In pure strategies, a Stackelberg Equilbrium is a solution to the following equation:

argmax
σ1∈Π1;σ2∈BR(σ1)

µ1(σ1, σ2)

where BR(σ1) is the set of the follower’s best response strategies to σ1. That only the follower

must choose a strategy which is a best response is in contrast to the Nash Equilibrium; in which

each player must choose a strategy which is a best response to every other player’s strategy.

This additional autonomy may allow the leader to increase their reward above that which can

be achieved by a best response. The game in figure 1.4 portrays a specific instance in which

this occurs.

Note that this game contains a single, pure Nash Equilibrium, of course also a mixed strat-

egy, in which the follower plays up and the leader plays right. The leader’s reward, though, is

not the largest reward that the leader can achieve under a Stackelberg Equilibrium. To see this,

6



Figure 1.4 Stackelberg Game

consider the tree representation of the game, in which the leader selects their action before the

follower:

Figure 1.5 Stackelberg Representation of Normal-Form Game

]

If the leader commits to action “left,” then the follower’s best response is the “down” ac-

tion. This results in the leader getting 0 reward, better than the −1 reward of the sole Nash

Equilibrium.

The Stackelberg Equilibrium was first defined, and much of the early work is based on,

the Stackelberg competition. In these games, two firms sell an identical product, and must

determine what quantity to produce in order to maximize profits. One of these firms is a leader,

though, and so sets their production before the follower player.

In Computer Science, the major use of Stackelberg Equilibria is in a Security Game. These

games model the competition between a defender and attacker of some set of resources. In the
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general model, the defender and attacker both have a set of ”units,” often meant to represent

defensive/attack personnel, which they must allocate to the resources. The attacker wishes to

allocate its units to resources which haven’t been allocated by the defender, while the defender

wants the opposite. If the defender sets their defensive policy before the attacker may act,

modelled by a Stackelberg Equilibrium, then we have a Stackelberg Security Game.

More formally, a security game is a game with a defender player and attacker player, each

of which has a set of units, and a set of resources. Both players must choose a probability

distribution over their possible unit allocations. The defender seeks to maximize the expected

number of resources in which both have allocated a unit, while the attacker seeks to minimize

this.

This general model does not capture the wide variety of security game variants, though.

For example, patrol security games involves the “attacker’s” attempt to traverse a graph while

avoiding ever sharing a node simultaneously with the defender.

Stackelberg Security games have a number of different applications relevant to Computer

Science. Stackelberg Security games have been used to model vulnerabilities in offloading of

tasks to the cloud [26]. They have also been used to study eavesdropping/jamming in wireless

networks [19].

1.3 Extensive-Form Games

In contrast to normal-form games, extensive-form games model situations in which players

face a sequence of action choices. These games are often represented with game trees. An

example is given below:

This game begins with player 1 choosing between two actions, A and B. Depending on

which action player 1 chooses, player 2 may either have to choose between C, D, and E or

F and G. Finally, if player 2 has chosen action F , player 1 must choose between the H and

I actions. When one of the tree’s terminal nodes is reached the game ends and both players

recieve some reward. This reward is represented by the pair of numbers at each terminal node;

8



Figure 1.6 Extensive-Form Game

]

with the first number being player 1’s reward at that terminal node and the second being player

2’s reward. Finally, next to the rightmost node in each level of the tree is printed the index of

the player who acts at that level of the tree. an example, if player 1 plays action A and player

2 then plays action D, then players 1 and 2 will receive respectively rewards of 2 and 3.

1.3.1 Equilibrium in Extensive-Form Games

Equilibrium concepts are identified identically in extensive-form and normal-form games.

In fact, one can transform extensive-form games into normal form; although this may cause

exponential blow-up in the size of the representation. The strategies which player’s may use,

though, involve not just a single action, but must account for all nodes in the game tree at which

the player acts.

For a Stackelberg Equilibrium in an extensive-form game, the leader “commits” to not just

a single action, but to the action which they will take from each node in the tree at which they

act. Likewise, the follower chooses a best response from every node in the tree at which they

act.

1.3.2 Extensive-Form Games with a Chance Player

We will be considering extensive-form games with a chance player. A chance player is a

method for modelling probabilistic aspects in a game. At each node in which the chance player
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acts, they will choose their actions according to some pre-defined probability distribution. Be-

low is an example of a game tree with a chance player.

Figure 1.7 Extensive Form Game with a Chance Player

The figure is similar to the previous game tree example. Nodes at which the chance player

acts are designated by a C, and the numbers next to the edges emanating from these nodes

indicate with the probability that the chance player will select the action leading down that

edge.

1.4 Contributions

Very little work has gone into finding strong solutions for real-world sized extensive-form

Stackelberg games. This thesis attempts to make progress towards this with the goal of creating

an algorithm which finds approximates a Stackelberg leader strategy quickly enough to be

feasible to use on these very large cases. Further, the hope is that the algorithm degrades

gracefully, allowing reasonable increases in the size of ǫ as the size of the game grows. To

this aim, we will design such an algorithm, which will run in O(|V |bǫ−2); where |V | is the

number of nodes in the game tree and b is the tree’s maximum branching factor. Simulations

are performed to show that the algorithm runs more quickly, and can handle larger game trees,

than the only other approximation algorithm which could be found in the literature to the

knowledge of this author.

10



Chapter 2

Related Work

With the advent of the internet, game theory has also become an important tool in Computer

Science [21]. Much of this work has gone into the study of combinatorial auctions [9], in which

bidders are given a set of items and can submit bids for subsets of those items. This format has

been used to allocate radio spectrum allocation, employee vacation time, and truck delivery

routes [9].

Games have also found widespread use in the study of network congestion [18], leading to

advances in algorithms for fair bandwidth sharing [11], and congestion-based pricing models

[2]. More broadly, games have been used to model mesh networks [5] and to maximize user-

perceived quality-of-service (QoS) in network control flow [14].

Another area of wide application is in job scheduling [13], treating the task of job schedul-

ing as a game in which a number of players is assigned some jobs and must use some shared

resources to complete them. A problem with a wide variety of applications, games have been

developed to study a variety of different instances. Some instances of these include grid com-

puting with selfish agents [16], multi-processor scheduling [1], job scheduling on un-related

machines [6], and scheduling of jobs in networking manufacturing [27].

Of particular importance when discussing Stackelberg Equilbria are security games. These

games, usually with only 2 players, model situations in which one player, the attacker, seeks

to destroy or steal a set of resources while the other player, the defender, must act to defend

them. Some major applications of security games have been modelling the tactics of poachers

[10], designing optimal security routes for airport security [22], optimal placement of air mar-

shals and other security personnel in transportation networks [24], and defending against false
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information spread in social networks [20]. There are also a number of importance varieties of

security games.

Finding a Stackelberg Equilibrium in extensive-form games is NP-Complete for many

cases, including in pure strategies with a chance player [3]. Mixed integer linear programs

have been put forward to find (mostly mixed) Stackelberg Equilibria in extensive-form games

[4]. Little work has been done in approximating Stackelberg Equilibria in games too large to

be solved this way.

Finding strong strategies in very-large, extemsive-form games under Nash Equilibria has

been studied extensively; espeically in the case of imperfect information about the other players

past moves. One set of techniques focuses on game abstractions; in which nodes are pruned

from the game tree. A number of abstraction techniques have been put forward. Many of these

techniques can even bound the loss to the player from only considering part of the tree, leading

to a sort of approximation algorithm [15]. Abstractions, though, may behave pathologically

[25]. Nash Equilibria strategies in larger abstractions may have less error in relation to an

Equilibrium in the un-abstracted game than those found in those with fewer nodes removed.

Still, abstractions have proven themselves useful in the real world. Node pruning was used in

the AlphaGo model which was the first to defeat a human professional Go player [23].

These techniques have had to be pursued in part because of the PPAD-Completeness of

approximating a Nash Equilbrium with either multiplicative or additive error [8]. It may still

be, though, that is is possible to compute an approximation, within some constant factor, of

a Stackelberg Equilibrium quickly enough to be relevant to large games. For many cases, it

has been proven that an approximate Stackelberg Equilibrium can be found in polynomial time

on extensive-form games [3]. Of these, both pure and mixed Stackelberg Equilibria can be

approximated with additive error in polynomial time for extensive-form games with a chance

player.

There has also been some work in randomized algorithms for finding Stackelberg Equilib-

ria. For instance, [7] described an algorithm which would find a randomized pure strategy for

the follower and showed that this results in approximately a best response from the follower.

12



Chapter 3

Theoretical Work

Games are formalized in sequential form. This formalizes each node as a history. Each his-

tory is, simply, a sequence of the previous actions which were taken to reach that node/history.

Expectedly, edges in the game tree are are formalized as actions. At each history, some player

may choose from some history-specific set of actions. The player’s choice determines which

history will come next in the game.

3.1 Game Framework

Let G be set of all games and G ∈ G be some specific game. Then we will define G to be

the tuple < N,H,Z,A, ρ, µ, C, I >, where:

• N := {p1, p2, pc}: The set of players. Throughout, we assume that player 1 (p1) is the

leader and player 2 (p2) is the follower in relation to a Stackelberg Equilibrium.

• pc ∈ N : A chance player who chooses probabilistically between actions in games with

chance nodes

• A: The set of all actions which may be playable in G.

• H: The set of possible play histories; each history corresponds to some finite sequence

of actions.

• h∅ ∈ H: The root history from which the game begins. h∅ is equivalent to the empty

sequence of actions.

13



– Z ⊆ H: The set of terminal histories - at which the game terminates and each

player receives some reward

– ∀pi ∈ N ;µi : Z → [0, 1]: The set of reward functions assigning a reward between

0 and 1 inclusive to each player pi at each terminal history.

– ρ : H → N : maps histories to the player which acts when that history has been

reached.

– act : H → 2A Is the action function, mapping each history to a set of actions which

may be taken at that history.

– For some h ∈ H with ρ(h) = pi, let a ∈ act(h) be a possible action of player pi at

h.

– ha = h′ ∈ H is the history reached by playing the action a at h.

∗ h′ is the sequence created by appending a to the end of h.

– χ : H → 2H : The children function, defines the set of histories which can be

reached from each h ∈ H by some single action

– par : H → H: The parent function, defines the parent history, for which a given

history is a child

• C : A → (0, 1]: The probabilistic chance function, It defines, for any h ∈ H where

ρ(h) = pc, the (strictly positive) probability that pc will choose each action a ∈ act(h).

Note that Σa∈act(h)C(a) = 1.

For some h ∈ H , define the height of h to be the length of the shortest sequence of actions

from h to some terminal history. Denote this by |h| (i.e., if |h| = 0, then h is a terminal history).

Also, in general, for some history h, let vh be the value of some variable v constrained to

the subgame rooted at h. For example, Zh is the set of terminal histories in the subtree rooted

at h.

14



3.2 Player Strategies

Each player has a set of strategies, corresponding to the different ways that the player can

act at each relevant history. For player pi, this strategy set is denoted by Πi, where the strategy

of player pi is some σi ∈ Πi.

The entire sequence of play is then determined by the strategy pair (σ1, σ2) ∈ Π1 × Π2,

where σ1 is the strategy chosen by player 1 and σ2 is the strategy chosen by player 2, along

with the actions chosen by the chance player.

In a Stackelberg Equilibrium, p2 (the ”follower”) will select their strategy while knowing

how player 1 will act. So, it is natural to expect that they will constrain their strategy choice

to some best response to player 1’s choice. Here, a best response is a choice of strategy which

maximizes player 2’s reward given some strategy for player 1. For some strategy σ1 by player

1, denote player 2’s best response strategies by BR(σ1).

This leads to the idea of a feasible strategy pair.

Feasible Strategy Pair : A strategy pair (σ1, σ2) is feasible iff σ2 ∈ BR(σ1).

3.3 Stackelberg Equilibrium

A Stackelberg Equilibrium models (2-player) strategic situations in which player 1 commits

to and communicates their strategy to player 2 before player 2 can choose their strategy. In

economic contexts, this is often used to model a firm’s choice to enter a market after witnessing

that a competitor has entered the market. In computer science, Stackelberg games are primarily

used to model security scenarios in which an attacker of some system can determine the actions

of the defender before beginning their attack.

Formally, a Stackelberg Equilibrium is a strategy pair (σ1, σ2) which satisfies:

(σ1, σ2) = argmax
σ′
1∈Πi;σ′

2∈BR(σ′
1)

µ1(σ
′
1, σ

′
2)

15



Where µ1(σ
′
1, σ

′
2) is the reward which player 1 receives when player plays according to

strategy σ′
1 and player 2 plays accordig to strategy ′

2.

In chance games, both BR(σ1) and µ1(σ1, σ2) are not well-defined as the terminal history

reached is dependent on the probabilistic actions of the chance player. To remedy this, we will

consider a Stackelberg Equilibrium to be a strategy pair which satisfies:

σ1, σ2 = argmax
σ′
1∈Π1;σ2∈E[BR(σ′

1)]

E[µ1(σ1, σ2)]

where E[BR(σ1)] is the set of responses by p2 with the maximum expected value of µ2

when p1 plays σ1 and E[µ1(σ1, σ2)] is the expected reward to p1 when p1 plays σ1 and p2 plays

σ2. Also, we will substitute E[BR(σ1)] in place of BR(σ1) in the definition of feasible strategy

pair.

3.4 Finding a Stackelberg Equilibrium in Chance Games

(Probabilistic) Reachability: A terminal history z ∈ Z is (probabilistically) reachable iff

there is some feasible strategy pair (σ1, σ2) such that the game terminates at z with positive

probability.

Determining the reachability of terminal histories is a vital part to the regret-bounding

algorithm.

Under a strategy pair (σ1, σ2), there may be multiple reachable terminal histories, corre-

sponding to the possible actions of the chance player pc. Define the set of reachable termi-

nal histories under (σ1, σ2) as Z(σ1, σ2). Also, for each strategy pair, associate a function

π(σ1, σ2)[z] to be the probability of reaching z ∈ Z when the (σ1, σ2) strategy pair is played.

Thus, π(σ1, σ2)[z] > 0 iff z ∈ Z(σ1, σ2). Finally, define < Z(σ1, σ2), π(σ1, σ2) > to be the

terminal history distribution under (σ1, σ2). We will refer to both Z(σ1, σ2) as reachable as

shorthand to mean that all terminal histories in Z(σ1,2 ) are reachable.

We may also refer to the terminal history distribution < Z(σc
1, σ

c
2), π(σ

c
1, σ

c
2) > for a strat-

egy pair (σc
1, σ

c
2) which is only defined from some child c, such as a strategy pair defined in

16



the subgame Gc, as if it were also defined at the parent h of c. In these instances, assume that

(σc
1, σ

c
2) is extended to h so that the action taken at h leads to c.

We will begin by defining an algorithm, Reachability, which is an adaptation of the algo-

rithm described in [17] for games without chance. Reachability determines < Z(σ1, σ2), π(σ1, σ2) >

for all feasible strategy pairs (σ1, σ2). As finding a Stackelberg Equilibrium in pure-strategy

chance games has been shown to be NP-Complete, and we can easily compute a Stackelberg

Equilibrium with this information by simply selecting the reachable terminal history distribu-

tion with greatest expected reward to player 1, this algorithm takes exponential time in the size

of the game tree. Later, our approximation algorithm will approximate this while running in

poly-time.

Reachability is defined recursively, determining the set of reachable terminal histories from

some history h, from the terminal histories which are reachable from the children of h.

Theorem 1. Reachability finds the exact set of terminal history sets which are reachable from

the root history.

Proof. By structural induction on the tree

Let P (n) be the proposition that is the conjunction, for all h of height n, of:

1) Zh(σ1, σ2) ∈ Sh ⇐⇒ (σ1, σ2) is a feasible strategy pair from the subgame rooted at h

2) ∀(σ1, σ2) ∈ Π1,h × BR(σ1)h: πh(σ1, σ2) = pih(σ1, σ2)

Note that Π1,h × BR(σ1)h is simply the set of feasible strategy pairs in the subgame Gh.

Base Case (|h| = 0):

There is only a single strategy pair within the subgame rooted at h - the strategy pair which

takes no action. Thus, this strategy pair is obviously feasible and the probability of termi-

nating at h when playing it is 1. So, P(0) is true.

Inductive Case (Assume P (k − 1)):

Let h be some history with |h| = k.
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Algorithm 1 Reachability

function REACHABILITY {
for h ∈ H

Sh will contain all of the reachable terminal history sets in the subgame rooted at h

if |h| = 0:

Sh = {h}
pih(σ1, σ2)[h] = 1

if ρ(h) = p1:

Set Sh = ∪c∈χ(h)Sc

for each c ∈ χ(h) and Z(σ1, σ2) ∈ Sc :

pih(σ1, σ2) = pic(σ1, σ2)

if ρ(h) = p2:

for each c ∈ χ(h), define :

m(c) := minZc(σ1,σ2)∈Sc
E[µ2(σ1, σ2)]

sh(c) := maxc∈χ(h)\{c} m(c)

for each c ∈ χ(h) and Zc(σ1, σ2) ∈ Sc :

if E[µ2(σ1, σ2)] ≥ sh(c) :

Add Zc(σ1, σ2) to Sh

Set pih(σ1, σ2) = pic(σ1, σ2)

else:

Set pih(σ1, σ2) = 0

if ρ(pc) :

Let X = ×c∈χ(h)Sc

for all Z× ∈ X :

(i.e.: Z× = {Zc1(σ
1
1, σ

1
2), Zc2(σ

2
1, σ

2
2), ..., Zc|χ(h)|

(σ
|χ(h)|
1 , σ

|χ(h)|
2 )})

Sh ← ∪(Z×)Zck(σ
k
1 , σ

k
2) Add the union of all terminal history sets in

Z× to Sh

for each Zck(σ
k
1 , σ

k
2) ∈ Z× :

pih(σ1, σ2) = C(a) ∗ pic(σ1, σ2)
where a is the action taken by pc at h such that ha = ck.

}
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If ρ(h) = p1:

From each c ∈ χ(h), player 1 can force, by their choice of σ1, any stratregy pair (σc
1, σ

c
2)

which is feasible in the subgame rooted at c. This is by P (k − 1).

As player 1 is acting at h, they can cause the game to enter the subgame rooted at any

of the children of h by their choice of action at h.

Therefore, player 1 can cause, for any of these feasible strategy pairs (σc
1, σ

c
2), to be

feasible in the subgame rooted at h.

Likewise, as player 1 only acts with pure strategies, πh(σ
c
1, σ

c
2) = πc((σ

c
1, σ

c
2). As

πc(σ
c
1, σ

c
2) = pic(σ

c
1, σ

c
2)

by P (k − 1),

pih(σ
c
1, σ

c
2) = pic(σ

c
1, σ

c
2)

also.

If ρ(h) = p2:

player 2 must choose some action at h which comprises a best response to the strategy

commitment of p1 in the subgame Gh. That is, given p1’s strategy σ1, it must choose a

strategy which satisfies:

σ2 = argmax
σ′
2∈Π2,h

E[µ2(σ1, σ
′
2)]

We know, by P (k − 1), the set of feasible strategy pairs in the subgame beginning at

each c ∈ χ(h).For a specific child c, this set is equal to Sc.

A feasible strategy pair (σ1, σ2) in Gh must follow the actions of some feasible strategy

pair in the subgame Gc rooted at the child chosen from h. Otherwise, σ2 would not be a

best response to σ1 in Gc. Then, as (σ1, σ2) enters Gc, σ2 wouldn’t be a best response in

Gh.

Fix some c0 ∈ χ(h), and for each ci ∈ χ(h) − {c0}, fix some arbitrary terminal

history set Z(σci
1 , σ

ci
2 ) ∈ Sci . Then, for some Z(σc0

1 , σc0
2 ) ∈ Sc0 we will determine whether
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(σc′

1 , σ
c′

2 ) is feasible. This will then give us a rule to determine if we can commit from each

child of h so that Z(σ1, σ2) ∈ ∪c∈χ(h)Sc is reachable, and therefore (σ1, σ2) is feasible.

As ρ(h) = p2, p2 must choose an action which causes the game to enter a c ∈ χ(h).

In order to be part of a best response strategy, this action must satisfy:

argmax
ci∈χ(h)

E[µ2(σ
ci
1 , σ

ci
2 )]

Intuitively, p2 must choose to enter a child history under which p2’s expected reward

is maximal when playing a best response to the strategy committed to by p1. And so,

Z(σc0
1 , σc0

2 ) ∈ Sc0 is reachable if there is some commitment σci
1 at every other child ci ∈

χ(h)\{c0} by p1 and subsequent best response σci
2 of p2 for which E[µ2(σ

c0
1 , σc0

2 )] ≥

E[µ2(σ
ci
1 , σ

ci
2 )]

From this, it is obvious that a Z(σ1, σ2) ∈ Sc is reachable iff, for each

ci ∈ χ(h)\{c0}

and

(σci,min
1 , σ

ci,min
2 ) = argmin

(σ
ci
1 ,σ

ci
2 )∈Sci

E[µ2(σ
ci
1 , σ

ci
2 )]

we have that

E[µ2(σ1, σ2)] ≥ E[µ2(σ
ci,min
1 , σ

ci,min
2 )]

Of course, E[µ2(σ
c0
1 , σc0

2 )] is greater than all E[µ2(σ
ci,min
1 , σ

ci,min
2 )] iff it is greater than the

maximum of these minimums:

(σci,maxmin
1 , σ

ci,maxmin
2 ) = argmax

ci∈χ(h)\{c0}

E[µ2(σ
ci,min
1 , σ

ci,min
2 )]

.
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But, sh(c) = E[µ2(σ
ci,maxmin
1 , σ

ci,maxmin
2 )]. So, a strategy pair in Sc0 is feasible iff its

expected reward to p2 is at least as great as sh(c0).

As p2 can only act in pure strategies, if Z(σc0
1 , σc0

2 ) is reachable, then pih(σ
c0
1 , σc0

2 ) =

pic(σ
c0
1 , σc0

2 ).

If ρ(h) = pc:

pc will choose to enter each ha = c ∈ χ(h) with positive probability C(a). Thus, for each

combination of feasible strategy pairs played from the children of h, the union of terminal

histories reachable from any of these pairs is reachable from h.

More formally, for each cross product (Zc1(σ
c1
1 , σc1

2 ), Zc2(σ
c2
1 , σc2

2 ), ...) ∈ ×c∈χ(h)Sc,

the union ∪c∈χ(h)Zc(σ
c
1, σ

c
2) is (probabilistically) reachable from h and so the correspond-

ing strategy pair is feasible.

Similarly, each Zc(σ
c
1, σ

c
2) is reachable with probability C(a); where a is the action by

pc such that ha = c.

3.5 Strategy Pruning and Regret - Preliminaries

The complexity of Reachability is roughly proportional to the number of feasible strat-

egy pairs (which explodes in number with the addition of each chance history). One obvious

solution, then, is to limit the number of strategy pairs which we consider.

The approximation algorithm will “prune” strategy pairs at each history, maintaining enough

to guarantee the desired approximation bound while removing enough to reduce the computa-

tional complexity to polynomial in both the number of histories and ǫ.

In order to determine which strategy pairs to consider, we need some measure of solution

quality which allows us to measure the loss of removing a strategy pair from consideration. For

this, we will utilize regret. Let Π′
1 be the set of player 1’s strategies which we are considering,

BR′ be player 2’s un-pruned best responses, and G′ be the pruned game resulting from the

strategy pruning. Then,
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Regret(G→ G′) := argmax
σ
′
1∈Π1;σ

′
2∈BR(σ1)

µ1(σ
′

1, σ
′

2)− argmax
σ”
1∈Π1;σ”

2∈BR(σ”
1)

µ1(σ
”
1, σ

”
2)

3.5.1 Bounding the Regret of a Pruned Strategy Set

Before providing the regret bounding algorithm, we must understand a few preliminary

results on which the regret bound depends. These preliminaries will show which strategy pairs

can and cannot be safely pruned .

Before that we will need to define a few more terms. First, we will utilize the idea of

dominated and dominating strategy pairs.

dominated/dominating strategy pair: A strategy pair (σ1, σ2) is dominated by another strat-

egy pair (σ′
1, σ

′
2) iff there is a history h at which one of the following holds:

µ1(Zh(σ1, σ2)) ≤ µ1(Zh(σ
′
1, σ

′
2)) and µ2(Zhσ1, σ2)) < µ2(Zh(σ

′
1, σ

′
2))

µ1(Zh(σ1, σ2)) < µ1(Zh(σ
′
1, σ

′
2)) and µ2(Zh(σ1, σ2)) ≤ µ2(Zh(σ

′
1, σ

′
2))

Then, we say that (σ1, σ2) is dominated by (σ′
1, σ

′
2).

Intuitively, both player 1 and player 2 prefer Zh(σ
′
1, σ

′
2) to Zh(σ1, σ2) and so each would

choose to play according to the strategy pair (σ′
1, a

′
2) from h over (σ1, σ2). Because of this, we

don’t need to consider a dominated strategy pair as it will never be chosen.

With this, we can define our final terms. For each history h:

s(h) := argmax
c∈χ(h)

s(c)

s−1(h) is the non-dominated strategy pair associated with s(h)

Z(s−1(h)) is the terminal history set associated with s−1(h)

with this we can define the exact class of strategy pairs which can be safely pruned:
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Lemma 1. There is a game G which satisfies the following: if a strategy pair, which is s−1(h)

for some history h in G with ρ(h) = p2 or ρ(h) = pc, is removed to create the pruned game G′,

then Reachability on G′ will choose an equilibrium strategy pair which is non-feasible in G.

Proof. We first need to establish that, for each strategy pair (σ1, σ2), E[µ1(σ1, σ2)] ≥ s(h) ⇐⇒

E[µ1(σ1, σ2)] ≥ sh(c).

For some history h and c ∈ χ(h), a strategy pair Z(σ1, σ2) ∈ Sc is reachable at h iff E[µ1(σ1, σ2)] ≥

sh(c). s(h) = maxc∈χ(h)sh(c), but this is equal to sh(c) unless s−1(h) = (σ1, σ2). In this case,

though, all Sc would be reachable as the Z(σ′
1, σ

′
2) ∈ Sc with minimal reward to player 2 is

s−1(h). Thus, E[µ1(σ1, σ2)] ≥ s(h) ⇐⇒ µ2(σ1, σ2) ≥ sh(c).

Now, assume that h is the root history of G and has two children: c1 and c2. Sc1 and Sc2

both contain a single terminal history set; respectively Zc1(σ
c1
1 , σc1

2 ) and Zc2(σ
c2
1 , σc2

2 ). Also,

µ1(σ
c1
1 , σc1

2 ) > µ1(σ
c2
1 , σc2

2 ) and µ2(σ
c1
1 , σc1

2 ) < µ2(σ
c2
1 , σc2

2 ).

In the original game then, (σc1
1 , σc1

2 ) is not feasible. If (σc2
1 , σc2

2 ) is pruned though, (σc1
1 , σc1

2 )

becomes feasible and will be the feasible strategy pair which maximizes the reward of player

1. Thus, Reachability will choose (σc1
1 , σc1

2 ) as the equilibrium strategy pair.

Lemma 2. For all games G ∈ G, if G is pruned of some strategy pair (σ1, σ2) which is not

s−1(h) for any h ∈ H to create the pruned game G′, then the set of feasible strategy pairs in

G′ is exactly equivalent to the set of feasible strategy pairs besides (σ1, σ2) in G.

Proof. From the proof of theorem 1, we have that E[µ1(σ1, σ2)] ≥ s(h) ⇐⇒ E[µ1(σ1, σ2)] ≥

sh(c).

With this, it is obvious that the removal of (σ1, σ2) from G will not alter the set of feasible

strategy pairs in G′. As we have not removed s−1(h∅), s(h∅) = s(h′
∅); where h′

∅ is the root

history of G′. A strategy pair (σ∗
1, σ

∗
2) is reachable from some history h iff E[µ2(σ

∗
1, σ

∗
2)] ≥

s(h). As s(h∅) = s(h′
∅), E[µ2(σ

∗
1, σ

∗
2)] ≥ s(h∅) ⇐⇒ E[µ2(σ

∗
1, σ

∗
2)] ≥ s(h′

∅). So, the set of

feasible strategy pairs, except (σ1, σ2), is equivalent between G and G′

23



Note that this allows us to design a pruning strategy of arbitrarily many removals for which

Reachability will still correctly compute which non-pruned strategy pairs are feasible. This

pruning strategy must simply ensure that all removals are in accordance with lemma 2. The

regret-bounding algorithm, utilizes this to simultaneously prune strategy pairs while running

Reachability in such a way as to find an additively-approximate pure Stackelberg Equilibrium

while reducing Reachability to poly-time in the inverse of the regret and linear in the size of

H .

3.5.2 Ordering of Feasible and non-dominated Strategy Pairs

Lastly, we must define an ordering of feasible and non-dominated strategy pairs. For this

ordering, we will simply use player 1’s preference relation over these strategy pairs; where

of course player 1 prefers a strategy pair (σ1, σ2) to a strategy pair (σ′
1, σ

′
2) iff µ1(σ1, σ2) >

µ1(σ
′
1, σ

′
2). This creates a unique ordering on these strategy pairs except for when both µ1(σ1, σ2) =

µ1(σ
′
1, σ

′
2) and µ2(σ1, σ2) = µ2(σ

′
1, σ

′
2). As there is no meaningful distinction between the two

in relation to the achievable maximum reward to player 1, we can simply prune one of the

two arbitrarily with 0 regret, and so we will treat one of the strategy pairs as dominated in this

situation. For some history h, let (σ1, σ2)
i
h be the i-th strategy pair in the ordering of feasible

and non-dominating strategy pairs at h.

Note that this ordering contains exactly the set of strategy pairs which are relevant to finding

a Stackelberg Equilibrium in the game. Dominated strategies will always have some dominat-

ing strategy which both players 1 and 2 prefer, and so will never be chosen as the equilibrium

strategy. Likewise, non-feasible strategies do not satisfy the requirements of a Stackelberg

Equilibrium, and so cannot be chosen as the equilibrium strategy.

3.6 Regret-Bounding Algorithm

The regret-bounding algorithm augments Reachability so that only enough strategy pairs

are considered to keep Regret within the desired bound: 0 < ǫ < 1.
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As in the exact algorithm, We will be running Reachability on our game G from the terminal

histories to the root of the tree. But, now we will also be pruning strategies pairs at each history,

to create a pruned game G′, so that the size of Sh is no more than 2 · ⌈1
ǫ
⌉ + 1 at any history h.

Specifically, we will keep track of 2 · ⌈1
ǫ
⌉ strategy pairs and s−1(h) in such a way as to bound

Regret(Gh, G
′
h) ≤ ǫ for all subgames.7

These 2 · ⌈1
ǫ
⌉ will be split into two groups of ⌈1

ǫ
⌉. One of these groups will consist of

strategy pairs (σ1, σ2) which, for each k ∈ [0, ⌈1
ǫ
⌉ − 1] which have µ1(σ1, σ2) ≥ (1 − k ∗ ǫ)

and have µ1 “close enough” to (1 − k ∗ ǫ). The second group is defined similarly, except that

µ1(σ1, σ2) ≤ (1 − k ∗ ǫ). Let the k-th of each set be denoted, respectively, by Sh(k, high) or

Sh(k, low).
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Algorithm 2 ǫ-Reachability

function ǫ-REACHABILITY(:)

Throughout, assume that pih is set for all un-pruned strategy pairs as would be done

in Reachability.

for each h ∈ H :

if |h| = 0 :

for all k ∈ [0, ⌈1
ǫ
⌉ − 1] :

Let (σ1, σ2) be the (only) strategy pair in the subgame

rooted at the terminal history h. Set:

Sh(k, low) = Z(σ1, σ2)
Sh(k, high) = Z(σ1, σ2)
s(h) = µ2(σ1, σ2),

Now, assume that |h| > 0
if ρ(h) = p1 :

s(h) = maxc∈c s(C)
for increasing k from 0 to 1

ǫ
− 1 : Sh(k, high) = setSh(k, “high”) // Defined

below Sh(k, low) = setSh(k, “low”)

if ρ(h) = p2 :

Determine, for what terminal history sets in Sc for each c ∈ χ(h) as is done in

Reachability.

for each c ∈ χ(h) :

for each Sc(k, low) and Sc(k, high) found infeasible by Reachability :

Set Sc(k, •) to be the strategy pair (σ′
1, σ

′
2) ∈ Sc which is reachable

from h and has maximum µ1(σ
′
1, σ

′
2).

With these updated Sc, proceed as if ρ(h) = p1.

if ρ(h) = pc :

Assume that |h| = 2. If not, expand h into a series of histories each with two

children.

With pr as the probability of the chance player selecting c1, set

s(h) = pr ∗ s(c1) + (1− pr) ∗ s(c2)

We will perform Reachability as in the exact solution, but select each

strategy pair as was done for the ρ(h) = p1 case. In other words, we determine

what each Sh(k, low) and Sh(k, high) will be according to the rules in the

ρ(h) = p1 case, but consider all strategies in the cross product of Sc1 and Sc2 .

26



function setSh(k, type):

if type == “high” :

In order of preference, return one of the following:

1): Between all ci ∈ χ(h), the Sci(k, high) that is non-dominated and

has µ1(Sc1(k, high) ≥ (1− k ∗ ǫ). If multiple children satisfy this, then

choose the Sci(k, high) with minimal µ1(Sci(k, high)).
2): Between all ci ∈ χ(h), the Sci(k, high) which is non-dominated. If

all children satisfy this, then choose the one with maximum

µ1(Sci(k, high)).
3) If Sci(k, high) are dominated for all children, then set

Sh(k, high) = Sh(k − 1, low) (which corresponds to the dominating

strategy pair).

if type == “low” :

In order of preference, return one of the following:

1) Between all ci ∈ χ(h) and Sh(k, high), the Z(σ1, σ2) which is

non-dominated and has µ1(σ1, σ2) ≤ (1− k ∗ ǫ). If all satisfy this, then

choose the one with maximum µ1.

2) Between all ci ∈ χ(h), the Sci(k, high) for which ci is

non-dominated. If both children satisfy this, then choose the one with

minimal |µ1(Sci(k, high))− (1− k ∗ ǫ)|.
3) If, for all children c ∈ χ(h), Sc(k, low) is dominated, then set

Sh(k, low) = Sh(k, high) (which corresponds to dominating strategy

pair).
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Theorem 2. If OPT is the reward to player 1 under an optimal strategy pair, then ǫ-Reachability

computes a feasible strategy pair (σ1, σ2) with µ1(σ1, σ2) ≥ OPT − ǫ.

Proof. Throughout we will write (σ′) as shorthand for the strategy pair (σ′
1, σ

′
2).

for each subgame Gh, we will show that the following invariant holds:

Invariant:

For each feasible, non-dominated strategy pair (σ′) which is pruned in G′
h, for some k ∈

⌈1
ǫ
⌉ either:

1) (1− (k + 1) ∗ ǫ) ≤ µ1(Sh(k, low)) ≤ (1− k ∗ ǫ) ≤ µ1(σ
′)

and µ1(σ
′)− µ1(Sh(k, low)) ≤ ǫ

2) (1− k ∗ ǫ) ≤ µ1(Sh(k, high)) ≤ µ1(σ
′) ≤ (1− (k − 1) ∗ ǫ)

Let (σ′) be a feasible, non-dominated strategy in Gc for some c ∈ χ(h) which is pruned in G′
c.

Let (σ”) be a feasible, non-dominated strategy in Gh and Gc for some c ∈ χ(h) but which is

pruned in G′
h.

If ρ(h) = p1:

For (σ′):

If (σ′) satisfies 1 in G′
c:

As there is some (1−k∗ǫ)c(k, low) ≤ (1−(k−1)∗ǫ), it will be that Sh(k, low) is chosen

such that µ1(Sc(k, low)) ≤ Sh(k, low) ≤ (1−(k−1)∗ǫ) and µ1(σ
′)−µ1(Sh(k, low) ≤

ǫ.

If possible, Sh(k, low) is chosen from some child ci ∈ χ(h) to be the Sci(k, low) which

satisfies:

Sh(k, low) := min
ci∈χ(h)

(1− k ∗ ǫ)− µ1(Sci(k, low))

s.t. µ1(Sh(k, low)) ≤ (1− k ∗ ǫ)
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As µ1(Sc(k, low)) ≤ (1− k ∗ ǫ), there is a child which satisfies the constraint. So, we

will have Sh(k, low) chosen such that:

µ1(Sc(k, low)) ≤ µ1(Sh(k, low)) ≤ (1− k) ∗ ǫ)

As µ1(Sc(k, low)) ≤ µ1(Sh(k, low)) ≤ (1−k∗ǫ) ≤ µ1(σ
′) and µ1(σ

′)−µ1(Sc(k, low)) ≤

ǫ, we will have µ1(σ
′)− µ1(Sh(k, low)) ≤ ǫ. Thus, (σ′) satisfies 1 in G′

h.

If (σ′) satisfies 2 in G′
c:

As there is some (1− k ∗ ǫ) ≤ Sc(k, high) ≤ µ1(σ
′) ≤ (1− (k − 1) ∗ ǫ), Sh(k, high)

will be chosen so that (1− k ∗ ǫ) ≤ Sh(k, high) ≤ µ1(σ
′) ≤ (1− (k − 1) ∗ ǫ).

If possible, Sh(k, high) is chosen from some child ci ∈ χ(h) to be the Sci(k, low)

which satisfies:

Sh(k, high) := min
ci∈χ(h)

µ1(Sci(k, high))− (1− k ∗ ǫ)

s.t. (1− k ∗ ǫ) ≤ µ1(Sh(k, low))

As (1− k ∗ ǫ) ≤ µ1(Sc(k, high)), we have some ci that satisfies the constraint. So, we

will have Sh(k, high) chosen such that:

(1− k ∗ ǫ) ≤ Sh(k, high) ≤ Sc(k, high) ≤ µ1(σ
′) ≤ (1− (k − 1) ∗ ǫ)

So, 2 holds for (σ′).

For (σ”):

Without loss of generality, assume (σ”) is removed from the Sc for some specific child

c ∈ χ(h) and that k is chosen so that (1− k ∗ ǫ) ≤ µ1(σ”) ≤ (1− (k − 1) ∗ ǫ).

If (σ”) = Sc(k, high):
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As shown in the argument for a pruned (σ′) satisfying 2, if Sc(k, high) is not chosen

as Sh(k, high), then some other strategy pair must be chosen such that

(1− k ∗ ǫ) ≤ Sh(k, high) ≤ Sc(k, high) ≤ (1− (k − 1) ∗ ǫ)

Thus (σ”) satisfies 2 in G′
h.

If (σ”) = Sc(k, low):

As shown in the argument for a pruned (σ′) satisfying 2, if some (σ”) is removed

then it must be that

(1− k ∗ ǫ) ≤ Sh(k + 1, high) ≤ Sc(k, low) ≤ (1− (k − 1) ∗ ǫ)

Thus, (σ”) satisfies 2.

If ρ(h) = p2:

Note that we do not need to consider (σ”) separately from that ρ(h) = p1 case, as (σ”)

cannot both satisfy it is defined to be feasible at Gh.

Assume that Sc(k, ·) is the terminal history set which satisfies the invariant for (σ′) in Gc.

We need to ensure that Sc(k, ·) cannot become infeasible while (σ′) remains feasible.

µ2(σ
′) ≤ µ2(Sc(k, ·) as both are non-dominated and µ1(Sc(k, ·) ≤ µ1(σ

′). A strategy pair

(σ∗) remains feasible unless µ2(σ
∗) < sh(c). If µ2(Sc(k, ·) < sh(c) then µ2(σ

′) < sh(c).

Thus, Sc(k, ·) cannot become infeasible while (σ′) remains feasible.

After removing infeasible strategy pairs, both Reachability and ǫ-Reachability proceed

identically to the case where ρ(h) = p1. Thus, as the invariant holds during the additional

beginning steps of the ρ(h) = p2 case, it will hold for all remaining steps of the ρ(h) = p2

case.
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If ρ(h) = pc:

For (σ′):

We assume that h has at most two children, c1 and c2.

Let (σ′
c1
) and (σ′

c2
) be the sub-strategy pairs played from each child of h in (σ′) (note

that at least one of these must also be pruned in their respective subgame). By the

invariant, there will be some (σc1) ∈ Sc1 with µ1(σc1) ≤ µ1(σ
′
c1
) and µ(σc1)−µ1(σ

′
c1
) ≤

ǫ and some (σc2) ∈ Sc2 with µ1(σc2) ≤ µ1(σ
′
c2
) and µ(σc2) − µ1(σ

′
c2
) ≤ ǫ. Let (σ) be

the strategy pair in Gh created by following (σc1) from c1 and (σc2) from c2. If pr is the

probability that the chance player selects c1, then:

0 ≤ µ1(σ)− µ1(σ
′) =

pr

(

µ1(σ
′
c1
)− µ1(σc1)

)

+ (1− pr)

(

µ1(σ
′
c2
)− µ1(σc2)

)

≤ pr ∗ ǫ+ (1− pr) ∗ ǫ = ǫ

Thus, 0 ≤ µ1(σ
′
1)− µ1(σ1) ≤ ǫ.

If there is some q such that (1− q ∗ ǫ) ≤ µ1(σ) ≤ µ1(σ
′) ≤ (1 − (q − 1) ∗ ǫ), then as

with the case where ρ(h) = p1, Sh(q, high) will be chosen such that

(1− q ∗ ǫ) ≤ Sh(q, high) ≤ µ1(σ)

So, (1− q ∗ ǫ) ≤ Sh(k, high) ≤ µ1(σ
′) ≤ (1− (q− 1) ∗ ǫ) and 2 of the invariant holds.

But it may also be that there is no q satisfying the above but only a q such that (1 −

(q + 1) ∗ ǫ) ≤ µ1(σ) ≤ (1− q ∗ ǫ) ≤ µ1(σ
′) ≤ (1− (q − 1) ∗ ǫ). In this case, though,

Sh(k, low) will be chosen such that:

(1− (q + 1) ∗ ǫ) ≤ µ1(σ) ≤ µ1(Sh(k, low) ≤ (1− q ∗ ǫ) ≤ µ1(σ
′)
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As µ1(σ
′) − µ1(σ) ≤ ǫ, it will also be that 0 ≤ µ1(σ

′) − µ1(Sh(k, low)) ≤ ǫ and so

(σ′) satisfies 1 of the invariant.

For (σ”):

Let (σ”c1) ∈ Sc1 and (σ”c2) ∈ Sc2 be the sub-strategy pairs which are played from

each child of h in the strategy pair (σ”) and let k be such that (1− k ∗ ǫ) ≤ µ1(σ”) ≤

(1− (k − 1) ∗ ǫ). As (σ”) was not chosen as Sh(k, high), it will be chosen such that:

(1− k ∗ ǫ) ≤ µ1(Sh(k, high)) ≤ µ1(σ”) ≤ (1− (k − 1) ∗ ǫ)

So, (σ”) satisfies 2 of the invariant.

Lemma 3. ǫ-Reachability runs in O(bǫ−2|V |); where b is the maximum branching factor of the

game tree and |V | is the number of histories.

Proof. We will show that, for any history h, the time complexity of computing Sh is no greater

than O(bǫ−2).

Note that Sh will include 1
ǫ

terminal history sets - possible including duplicates.

If |h| = 0:

All we must do is fill in the table with the rewards for players 1 and 2 into the 1
ǫ

spots. This

can obviously be done in O(1
ǫ
) steps.

If ρ(h) = p1:

For each Sh(k, low) and Sh(k, high), we consider no more than 4b strategy pairs from the b

children of h. As there are a multiple of 1
ǫ

strategy pairs in Sh, this will take O(bǫ−1).

If ρ(h) = p2:

The algorithm for determining Sh for these histories is identical to p1, except for an addi-

tional step in which it is determined which strategy pairs have become infeasible and replace

them in each Sc.

It will take no longer than O(b ∗ ǫ−1) to compute s(h).
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Then, it will take no longer than O(b ∗ ǫ−1) to determine the infeasible strategy pairs - by

simply iterating through them.

Finally, it will take no longer than O(b ∗ ǫ−1) to replace the newly-infeasible strategy pairs

in each Sc.

As the additional step for ρ(h) = p1 takes O(b ∗ ǫ) and this is equivalent to the worst-case

complexity when ρ(h) = p1, the complexity is O(b ∗ ǫ)

If ρ(h) = pc:

We assume for these histories that h has exactly 2 children. If the branching factor is some

b ≥ 2, we expand h into a series of histories histories with two children. This will be linearly

larger than b. Thus, if we can compute Sh for our h in O(f(n)) where f(n) grows at least

linearly fast, then we can compute Sh in O(b ∗ f(n)) even for h with more than 2 children.

Let c1 and c2 be the two children of h.

As |h| = 2, we will have ǫ−2 pairs of strategy pairs in the cross product of Sc1 and Sc2 . Each

of these combinations will have some reward µ1(σ), which, for some k ∈ ⌈1
[
ǫ⌉ it will be

(1 − (k − 1) ∗ ǫ) ≤ µ1(σ) ≤ (1 − k ∗ ǫ). If, for each of these σ, we compare it against

the current value of Sh(k − 1, high) and Sh(k, low) (where each start out empty), we can

determine, for each such k, the strategy pair which bests fits in each. This will take O(ǫ−2).

There may still be spots in Sh which are not filled. Iterating from Sh(
1
ǫ
, high) to Sh(0, low)

and then in the opposite direction, these can be filled by choosing the best strategy pair from

the slot above or below each slot which was not filled during the previous step. This will take

O(ǫ−1). Thus, Sh can be computed in O(ǫ−2) and for arbitrary |h| = b, Sh can be computed

in O(bǫ−2).
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Chapter 4

Simulations

Simulations were performed to determine the running time of the ǫ-Reachability algorithm

and compared against an FPTAS (Fully Polynomial Time Appoximation Scheme)[3] for the

task of approximating a pure Stackelberg Equilibrium in extensive-form games with a chance

player. Running times are compared between ǫ-Reachability and the FPTAS while varying a

number of relevant parameters.

4.1 FPTAS Algorithm for Pure Stackelberg

Equilibrium in Extensive-Form Games

The NP-Hardness result of finding a pure Stackelberg Equilibrium in extensive-form games

with chance nodes was shown in [17] by a reduction from KNAPSACK, and the FPTAS

is closely related to the classic approximation scheme for the KNAPSACK problem.

The algorithm begins by scaling all of player 1’s rewards, but not player 2’s, by some factor

D. Equivalently, it discretizes the payments into multiples of 1
D

. As with the approximation

scheme for KNAPSACK, the approximation error of the FPTAS is dependent on the size

of D as well as the height of the game tree. For this reason, we must have D ≤ ǫ
|h∅|

, where |h∅|

is the height of the tree, to achieve a result which is within an additive error of ǫ of the optimal

solution.

After discretization, the algorithm works by creating, for each subtree T , a table TblT with

n = ⌈ |h∅|
ǫ
⌉ entries. For each q ∈ ⌈ |h∅|

ǫ
⌉, TblT [q] satisfies two guarantees:
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1) the leader has a strategy from T which attains, under some best response by the follower

TblT [q] reward to the follower and at least q reward to the leader.

2) No leader strategy from T can offer the follower strictly more that TblT [q] while the

leader attains at least q + |T | reward; where |T | is the height of T .

As with ǫ-Reachability, we assume that chance nodes (in which the chance player acts)

have exactly two children. If there are more children than this, we expand the chance node into

multiple levels of chance nodes, each with exactly two children. Per node, this results in only

a small increase in the size of the game tree.

Similar to ǫ-Reachability, the values of TblT are defined recursively and relative to the

subtree’s root node type (player action, chance, or terminal).

With hT
∅ as the root of the subtree:

if hT
∅ is terminal (|hT

∅ | = 0):

Let µ1, µ2 be the rewards to players 1 and 2. Then, for each q ∈ [0, n]:

TblT [q] :=











µ2 if q ≤ µ1

−∞ otherwise

Obviously, this can be computed in O(1) at each relevant node.

If ρ(hT
∅ ) = p1:

TblT [q] := max
hc
∅
∈c(hT

∅
);i≥k

Tblc[i]

This can be computed in O(bn) at each relevant node, where b is the maximum branching

factor of the tree.

If ρ(hT
∅ ) = p2:
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For each child hc
∅ ∈ c(h) and each q ∈ [0, n], define:

Tblc[q] ↓µ:=











Tblc[q] if q ≥ µ

−∞ otherwise

m(hc
∅) := max

hc
∅
∈c(hT

∅
)\{hc

∅
}

(

min
q∈[0,n]

Tblc[q]

)

Then,

TblT [q] := max
hc
∅
∈c(h)

Tblc[q] ↓m(c)

This can be completed in O(bn) at each relevant node.

If ρ(hT
∅ ) = pc:

If there are more than two children of a chance node, we expand the node into multiple

levels of binary trees.

Let hc1
∅ and hc2

∅ be the root nodes of the two subtrees emanating each from a child of hT
∅ .

Then, for each i, j ∈ [0, n], and with pr as the probability that the chance player chooses

to enter hc1
∅ :

TblT [q] := max
i,j
{pr ∗ Tblc1(i) + (1− pr) ∗ Tblc2 [j]) | pr ∗ i+ (1− pr) ∗ j ≥ k}

This can be computed in O(bn2). As with ǫ-Reachability, expanding a node with more

than 2 children into a series of nodes with 2 children results in only linearly more nodes.

Thus, the expansion of the b children will take O(b) and so the entire step will take O(bn2)

Altogether, this results in a time complexity of O(|V |bn2) = O(|V |b( |h∅|
ǫ
)2), where |V | is

the number of nodes in the tree.
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4.2 Simulation Parameters

Relevant factors to determine the FPTAS run-time are |V |, b, |h∅|, and 1
ǫ
. Simulatios

will show how the altering of these variables (except b, which will always equal 2) affects the

run-time of the algorithm. With the difference in complexity for determining Tbl at chance

(O(bn2)) and player action (O(bn)) nodes, we also need to consider the proportion of chance

nodes in the game tree. For both algorithms, rewards are floating point numbers in the range

[0, 1]; representing the normalized rewards assumed in the proof of correctness for both algo-

rithms.

Likewise, ǫ-Reachability, which runs in O(ǫ−2|V |), also has ǫ, |V |, and the proportion of

chance nodes to player action nodes as relevant factors in run-time. It, though, does not depend

on |h∅|. This will prove a major improvement on FPTAS for tall trees.

Both algorithms are implemented in Python 3. Simulations are run on a standard Google

Cloud n1-highmem-8 (with 8 vCPUs and 52Gb Memory) VM instance. All game trees are full,

binary trees. This simplification is used because all trees can be expanded into binary trees and

it is simpler to determine the size of and height of a binary tree. Simulation run-times are all

averaged over 20 iterations.

Each node h is assigned as either a chance or player action node according to a pre-set

probability, prc. Player action nodes are then set between ρ(h) = p1 and ρ(h) = p2 with equal

probability.

In the next sections, we will see simulations testing the run-times of the two algorithms

under varying combinations of the above parameters, as well as comparisons between the two

when appropriate. The chapter will conclude with a comparative discussion of the two approx-

imation schemes in terms of their suitability for approximating Stackelberg Equilibria in very

large extensive-form games.
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4.3 Simulation Results

When each parameter is fixed, they will usually be set to “base” values for ease of compar-

ison. For each factor this is:

• |V | = 212 − 1 - As game trees are full and binary, |V | = 2|h∅|+2 − 1

• |h∅| = 10

• b = 2 - for all non-terminal nodes

• ǫ = 0.1

• prc = 0.5

These were all chosen because they are small enough that simulations run quickly while

being large enough to see variations in the other variables.

4.3.1 Tree Size/Height Comparisons

Figure 4.1 Comparisons with varying tree height (|h∅|)
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The above graph shows the running time of the FPTAS (red blocks) and ǫ-Reachability

(blue circles) for increasingly values of |h∅|.

The FPTAS is quadratic in the height of the game tree, and this shows in the run times.

While both algorithms have run times that roughly double as each level is added to the (full)

binary tree, the FPTAS run time also grows quadratically in the height of tree.

It is difficult to see from the graph, but the the running time of the algorithm for |h∅| = 10 is

almost four times longer for the FPTAS, at 0.4 seconds, than ǫ-Reachability, at 0.13 seconds.

4.3.2 ǫ Comparisons

Figure 4.2 Comparisons with varying ǫ

There is a clear difference between the ǫ-Reachabiility and FPTAS run time as ǫ shrinks,

the growth rate of the FPTAS’s run-time substantially outpaces that of ǫ-Reachability for

smaller values. It becomes more than three times as long at ǫ = 0.01.

4.3.3 Prc Comparisons
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Table 4.1 Prc comparisons

Tests were performed with values of 0.1 and 0.9 for prc. For ǫ-Reachability, the time

complexity on non-chance action nodes is O(bǫ−2) for chance nodes and O(bǫ−1) for player

action nodes. FPTAS is simlar, execpt with an additional factor of |h∅| to make the complexity

O(b |h∅|
ǫ
) on non-chance player nodes and O(b( |h∅|

ǫ
)2) on chance nodes. This difference can

clearly be seen in the run-times of the algorithm with varying values of prc - the probability that

each node is a chance node. Both algorithms run on games with less chance nodes substantially

faster than those with more chance nodes. FPTAS, though, grows much more quickly with

prc. This growth rate increaes with the height of the tree.

4.3.4 Discussion

For all trees of height greater than 2, FPTAS must maintain a substantially larger table

than ǫ-Reachability. While the run-time of both algorithms are similar for each table entry,

this larger table of FPTAS makes it grow much more quickly than ǫ-Reachability. Even for

trees of a relatively modest height of 10, it can be seen from simulations that FPTAS runs

substantially slower than ǫ-Reachability.

It appears that ǫ-Reachability is a possible solution to expanding the size of extensive-

form games for which we can approximate pure Stackelberg Equilibria. It’s run-time has a

substantially less steep growth curve in ǫ−1, even for a relatively modest tree height of 15.

FPTAS is also much slower even for moderate levels of |h∅| and ǫ. This may also allow
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it to degrade its approximation more gracefully for large games than would be possible with

FPTAS.
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Chapter 5

Conclusion

In this thesis ǫ-Reachabilitty was introduced as a new OPT − ǫ approximation algorithm

for pure Stackelberg Equilibria in extensive-form games. It was shown that the algorithm was

O(|V |bǫ−2), where |V | is the number of nodes in the game tree and b is the maximum branch-

ing factor. ǫ-Reachability was found to theoretically outperform the previous approximation

algorithm FPTAS in the worst case, having greater than linear complexity in only ǫ−1 while

the previous algorithm was polynomial in both ǫ−1 and the height of the game tree |h∅|. In

simulations, it was shown that the run-time of the approximation algorithm grows much more

quickly with decreasing ǫ than ǫ-Reachability. This larger run-time was greatly exacerbated

by growing values of |h∅|, and the inclusion of |h∅| in the complexity of FPTAS is likely

responsible for the consistently longer run-time.

These results suggest that ǫ-Reachability is a strong alternative to FPTAS; especially on

trees which are at least moderately tall. For these trees, the run-time of ǫ-Reachability increases

more slowly in both |h∅| and ǫ. This suggests that ǫ-Reachability may be quick enough for use

on trees for which a combination of these parameters has made the previous approximation

algorithm infeasible.
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