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ABSTRACT 

Swine are an important host in influenza virus ecology since they are susceptible to infections with both avian 

and human influenza A viruses. In 2011 and 2012, clusters of human infection with a swine-origin influenza 

A(H3N2) variant virus (H3N2v) containing the matrix (M) gene from the 2009 H1N1 pandemic virus were 

reported in the United States (US). The likelihood of introduction of H3N2v virus into the EU, and subsequent 

exposure and infection of EU pig herds was assessed. The overall likelihood of a pig holding in the EU being 

infected by exposure to H3N2v virus through either imported infectious pigs or humans coming from the US 

was estimated to be low. Efficient separation of imported pigs for 30 days would reduce the likelihood of 

exposure to a negligible level. The likelihood that H3N2v would spread to other pig holdings was judged to be 

high, assuming frequent movements of pigs between holdings. Currently, applied real time RT-PCRs can detect 

all swine influenza A viruses and, combined with gene sequencing, would identify the emergence of H3N2v 

virus. However, sequencing is not done on a routine basis in EU. Experimental studies in pigs show that the 
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infection is purely of respiratory nature and follows a relatively mild course with fever, coughing and 

inappetence, similar to that of the endemic swine influenza viruses. Immunity resulting from vaccination with 

European vaccines may provide some cross-protection against infection with H3N2v virus whereas vaccines 

based on US swine H3N2 strains would offer superior protection. It is not possible to predict which changes 

within H3N2v virus might enable it to develop pandemic properties. Hence, it is not possible at present to set up 

a specific system to monitor such a risk. Nevertheless, it is recommended to reinforce the monitoring of 

influenza strains circulating in pigs in EU. 

© European Food Safety Authority, European Centre for Disease Prevention and Control, and European 

Medicines Agency, 2013 
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SUMMARY 

Following a request from the European Commission, the Panel on Animal Health and Welfare 

(AHAW) was asked to deliver a scientific opinion on the possible risks posed by the Influenza 

A(H3N2)v virus for animal health and its potential spread and implications for animal and human 

health. 

In 2011, the United States of America reported a cluster of cases of human infection with a swine-

origin influenza A(H3N2) variant virus H3N2v containing the matrix (M) gene from the 2009 H1N1 

pandemic virus (A(H1N1)pdm09). In 2012, 309 influenza H3N2v virus infections in humans were 

identified in the US and 12 cases in 2013. Most of the human infections occurred in persons that had 

contact with live pigs at county fairs, especially children.  

Swine are an important host in influenza virus ecology since they are susceptible to infections with 

both avian and human influenza A viruses and can play a role in interspecies transmission. This can 

lead to co-infection and genetic reassortment of viruses of swine, human or avian origin. Today, 

influenza is a common infection of pigs worldwide, sometimes causing severe respiratory disease in 

non-immune animals. Infection is maintained in endemic cycles without clear seasonality. Currently, 

H1N1, H1N2 and H3N2 are the predominant subtypes of swine influenza viruses (SIVs) worldwide, 

but other virus subtypes have also been isolated occasionally from pigs in some parts of the world, e.g. 

H9N2 and H5N1. 

Following the detection of human cases of influenza H3N2v virus, this virus has subsequently been 

detected in pigs in several US states designated H3N2pM virus. With respect to significance for the 

health of pigs of the occurrence of H3N2v virus, if the pig population is completely naïve, it can be 

assumed that the significance of infection with H3N2pM virus will be comparable to infection of a 

naïve population with other swine influenza viruses (SIV), as happened in the past in Europe or US.  

In field infections with H3N2pM in pigs in the USA (agricultural fairs) a subclinical course was very 

common, and when clinical signs were observed (coughing, fever), they were generally mild, with low 

morbidity and no mortality.  

Pathogenicity studies in naive pigs experimentally inoculated with H3N2v show that the infection is 

purely of respiratory nature and shows a relatively mild course with fever, coughing and inappetence 

similar to that of other SIVs currently circulating in the swine population. Thus the impact of 

H3N2pM, if introduced, on the health of the European pigs is not expected to differ significantly from 

the impact of already circulating, endemic SIVs. 

With respect to the risk of introduction of H3N2v in EU, the likelihood of a possible introduction 

of H3N2v virus into EU pig holdings by movement of live pigs according to EU animal health import 

legislations was assessed qualitatively and considered to be low. Moreover, in particular, the 

likelihood of pig holdings in the EU being exposed to H3N2v virus by persons working in the pig 

sector or regularly visiting pig fairs in the USA was judged to be low, whereas the likelihood was 

considered negligible for other persons travelling from the USA. Efficient separation of imported pigs 

for 30 days upon the farmers‘ decision would reduce the likelihood of exposure of EU pigs to a 

negligible level.  

However, given that the a first holding has become infected, the likelihood of spread of H3N2pM from 

pigs of that holding to pigs in a second holding located in the same Member State was expected to be 

high, assuming frequent movement of pigs between holdings and a high likelihood for pigs in a second 

holding to be susceptible.  

With respect to the diagnostic capabilities to early detect H3N2v incursion in EU, early detection 

of H3N2pM/H3N2v in the EU is not likely due to the limited current surveillance effort in 
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combination with routine use of diagnostic approaches which are not able to specifically identify this 

new strain. 

Currently applied real time RT-PCRs based on the matrix (M) or the nucleoprotein (NP) gene are 

capable of detecting all of the influenza A viruses known to be endemic in European pigs plus 

emergent strains such as rH3N2p from North America. However, neither these tests nor real time RT-

PCRs based on H3 or N2 genes are able to specifically identify the H3N2pM as being different from 

European strains. The panel of serological reagents for conventional typing will reliably type all H3N2 

strains and the H3N2pM will raise a different reactivity profile in such assays, due to its antigenic 

differences when compared to European H3N2 SIVs.   

Only by combining currently applied diagnostic approaches with gene sequencing will it be possible to 

identify H3N2pM should it occur in Europe either in pigs or in humans. All of these diagnostic 

approaches are relevant to the timely identification of variant viruses or new strains that may appear in 

European pigs. This combination is not done on a routine basis and there is no official surveillance for 

SIV as this is not a listed disease. It is recommended to reinforce the monitoring of influenza strains 

circulating in pigs in EU. 

With respect to the implications and consequences of the possible evolution of H3N2v virus on 

pig health such as clinical manifestation and transmission between pigs, it is considered likely that 

the H3N2pM virus would have the potential to cause disease, to spread and to become endemic. As 

seen with other SIVs, host selection pressures may drive genetic evolution of the strain, especially in 

the gene segments encoding the external glycoproteins (HA and NA). 

According to the risk assessment developed, given that a first holding has become infected, the 

likelihood of spread of H3N2pM virus to second holdings was expected to be high assuming a 

frequent movement of pigs between holdings of the same Member State, and there is a high likelihood 

for pigs in a second holding to be susceptible.  

With respect to the risk that animals from a herd which was infected with influenza A (H3N2v) 

virus spreads the virus after the last clinical signs of disease have been observed, it is concluded 

that, independent of whether clinical signs are present or not, the virus excretion in individual pigs 

may last up to 7 days post infection. Furthermore, clinical signs, when present, do not entirely cover 

the period of virus excretion.  Consequently, an absence of clinical signs cannot be used as evidence of 

absence of virus excretion. At farm level SIV infections can be maintained with a continuous 

introduction of susceptible pigs. Therefore, the risk of spread from holdings can remain high for an 

extended period of time even after cessation of clinical signs. This takes place particularly when 

susceptible pigs continuously enter the fattening unit. 

With respect to the possibility, efficacy and efficiency of vaccination in pigs, using the existing 

vaccines or newly developed vaccines against influenza A(H3N2v) virus, immunity resulting from 

vaccination with commercially available European SIV vaccines is expected to provide no or only a 

low level of cross-protection against infection with the H3N2pM influenza viruses, whereas vaccines 

based on North American swine H3N2 viruses would offer superior protection. Such vaccines may 

significantly reduce H3N2pM replication in the lungs of vaccinated animals. However, voluntary 

vaccination of pigs with existing vaccines has not succeeded in halting the circulation of SIV in the 

swine population and this limitation is also considered valid for H3N2pM. 

According to the available data, H3N2pM/H3N2v is not present in the European swine population and 

no measures are needed with regard to vaccination. If such a virus should enter Europe and spread in 

the pig population, then use of US licensed vaccines based on closely related H3N2 strains could be 

useful. 

With respect to the use of vaccines in relation to the possible evolution of variants of influenza 

viruses posing a risk to public and animal health, vaccination might increase antigenic drift of 
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circulating influenza strains, and newly appearing variant might not be neutralized by vaccine-induced 

antibodies. However, based on current knowledge there is no indication that the latter has happened 

with the use of the available SIV vaccines in the European pig population. Furthermore, based on the 

likely divergent evolution of H3N2pM in pigs compared to humans, it is unlikely that virus with 

increased transmissibility to humans would evolve.  

With respect to the most important factors to be monitored that would suggest a risk for the  

emergence of a new pandemic influenza strain from the influenza A(H3N2v) virus, the new 

influenza strains emerge through natural reassortment and/or mutations and past experience has shown 

that reassortment events involving inter-species transmission are necessary steps in the evolution of 

new pandemic strains. However, it is not always clear in which species these events occur. Monitoring 

for reassortant viruses should therefore include as important target species both pigs and poultry. 

Several molecular markers in influenza virus genes have been reported to be associated with biological 

properties related to virulence and transmission. However, these associations have been inconsistent 

between strains and virulence traits appear to be polygenic. 

Currently, the number and type of mutations, as well as the genetic constellation that would be needed 

for efficient human-to-human transmission of H3N2v is unknown.  

It is currently not possible to predict which changes (mutations or reassortments) within the H3N2v 

could enable it become a new pandemic influenza virus. Hence it is not possible to set up a system to 

monitor ―the most important factors (…) that would suggest a risk for the emergence of a new 

pandemic influenza strain from the influenza A (H3N2v)‖.  
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BACKGROUND AS PROVIDED BY EUROPEAN COMMISSION 

Swine are an important host in influenza virus ecology since they are susceptible to infections with 

both avian and human influenza A viruses and are often involved in interspecies transmission. The 

maintenance of these viruses in pigs and the exchange of viruses between pigs and other species are 

facilitated by certain husbandry practices that have a limited biosecurity level and regular contact with 

humans. This cross species transfer of virus can lead to co-infections involving viruses of swine, 

human or avian origin with subsequent opportunities for genetic reassortment of influenza A viruses; 

as a result a new virus can emerge. Following interspecies transmission to pigs, some influenza viruses 

may be genetically extremely unstable, giving rise to variants able to again breach the species barrier.  

In 2011 the United States of America (US) - International Health Regulation National Focal Point 

reported a cluster of cases of human infection with an influenza A(H3N2) variant virus (H3N2v) 

containing the matrix (M) gene from the 2009 H1N1 pandemic virus (A(H1N1)pdm09). This M gene 

might confer increased transmissibility to and among humans. The same influenza A(H3N2v) virus 

has been detected in swine in several US states.  

In 2012, between August and October, 307
5
 influenza A (H3N2v) infections in humans were identified 

in the US. Ten States reported confirmed human cases. Currently the state of Indiana, with 138 human 

cases, is the most affected. 16 persons were hospitalised and one person with underlying risk factors 

died from the infection. It is reported that most of the human infections occurred in persons that had 

contact with live pigs at county fairs, especially children. Though limited person-to-person spread with 

this virus has occurred, no sustained community spread of influenza A (H3N2v) virus has been 

detected at this time. 

Influenza A viruses of subtype H1N1 and H3N2 have been reported world-wide in pigs, associated 

sometimes with mild clinical disease. At present there is no evidence suggesting that in pigs the 

influenza A (H3N2v) virus behaves in a different way from the other influenza viruses, even though 

influenza viruses are notorious for their unpredictability. What makes this virus of particular concern 

is not only its zoonotic nature but also its zoonotic potential due to the fact that its M gene originates 

from the 2009 H1N1 human pandemic influenza virus strain. In addition, current CDC (US Centers 

for Disease Control and Prevention) data indicate that seasonal vaccines formulated in accordance 

with the latest recommendations of the WHO
6
 may only provide limited protection against infection 

with the influenza A (H3N2v) virus among adults and no protection in children.  

A quite comprehensive scientific monitoring programme in pigs is on-going in the EU in the 

framework of research projects such as ESNIP3 (preceded by ESNIP and ESNIP2) and FLUPIG on 

influenza viruses. At present, the influenza A (H3N2v) virus strain currently causing human infections 

in some parts of the United States, has not been detected in EU pig herds or reported from other 

European countries.  

In order to be prepared for a possible emergence and to enable limiting of the spread of the influenza 

A(H3N2v) virus in an effective and proportionate manner, the Commission needs scientific advice and 

a risk assessment concerning the potential spread and the implications for animal and human health of 

this zoonotic virus showing increased pandemic potential. It should further be examined which factors 

may contribute to the emergence of this influenza virus and which of these factors need to be 

monitored.  

  

                                                      
5  CDC, Centre for Disease Control and Prevention, Atlanta, USA: http://www.cdc.gov/flu/swineflu/h3n2v-case-count.htm  

(H3N2v) human case count (as of 05/10/2012).  
6  http://www.who.int/influenza/vaccines/virus/recommendations/2012_13_north/en/index.html 

http://www.cdc.gov/flu/swineflu/h3n2v-case-count.htm
http://www.who.int/influenza/vaccines/virus/recommendations/2012_13_north/en/index.html
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TERMS OF REFERENCE AS PROVIDED BY EUROPEAN COMMISSION 

In view of the above, and in accordance with Article 29 of Regulation (EC) No 178/2002, the 

Commission asks EFSA for a scientific opinion and to specifically assess: 

1. the significance for the health of pigs of the occurrence of influenza A (H3N2v) virus in a naïve pig 

population;  

2. the current situation in the EU as regards the risk of a possible introduction of influenza A (H3N2v) 

virus in particular to EU pig herds and the diagnostic capabilities to early detect an incursion;  

3. the implications and consequences of the possible evolution of the influenza A (H3N2v) virus on 

pig health such as clinical manifestation, transmission between pigs and specifically the risk that 

animals from a herd which was infected with influenza A (H3N2v) virus spreads the virus after the 

last clinical signs of disease have been observed;  

4. the possibility, efficacy and efficiency of vaccination in pigs, using the existing vaccines or newly 

developed vaccines against influenza A(H3N2v) virus, also in relation with the possible evolution of 

variants of influenza viruses posing a risk to public and animal health; 

5. which are the most important factors to be monitored that would suggest a risk for the emergence 

of a new pandemic influenza strain from the influenza A(H3N2v) virus. 
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ASSESSMENT 

1. Introduction and assessment approach 

Infection of pigs with influenza A virus (swine influenza virus, SIV) is common worldwide, often 

causing severe respiratory disease in non-immune animals. Infection is maintained in endemic cycles 

without clear seasonality. Currently, H1N1, H1N2 and H3N2 are the predominant subtypes in pigs 

worldwide, but other subtypes have also been found in pigs in some parts of the world, e.g. H9N2 and 

H5N1. 

In Europe, swine H3N2 viruses were occasionally detected in pigs in the early 1970s as a result of 

cross-species transmission from humans to pigs of viruses derived from the 1968 pandemic Hong 

Kong influenza virus. Around 1984, reassortment between the H3N2 viruses and the avian-like 

Eurasian H1N1 virus gave rise to H3N2 viruses with much greater potential to spread in the European 

pig population (de Jong et al., 2007). 

Influenza H3N2 viruses were uncommon in US pigs until 1998, when triple-reassortant (TR) viruses 

containing segments from human seasonal, avian and classical swine H1N1 viruses emerged and 

became endemic in the pig population (Zhou et al., 1999). 

Pigs have long been hypothesised as mixing vessels for influenza A viruses of mammalian and avian 

origin. This hypothesis was corroborated by the emergence of the swine-origin pandemic 

A(H1N1)pdm09 virus in 2009. A substantial amount of evidence has now accumulated that clearly 

demonstrates that pigs do not constitute a closed environment for influenza viruses but rather a 

platform that supports the persistence of typical swine-adapted viruses while allowing for a dynamic, 

bi-directional exchange of viruses with both avian and other mammalian species that may eventually 

lead to the generation of viruses with increased potential for transmission in pigs and/or humans. 

The approach followed to reply to the five terms of reference (ToRs) had to consider that: 

 The terms of reference cover biologically linked areas (e.g. significance of disease in ToR1 

with implications and consequences from ToR3, the risk of spread in ToR2 with the 

consequences of the possible evolution in ToR3). 

 The general information in this document supports the reply to one or more ToRs. 

 The risk assessment developed to reply to the question in ToR2, ―current situation in the EU 

as regards the risk of a possible introduction of influenza A (H3N2v) virus in particular to EU 

pig herds‖ needs information from several sections of the general information and data. 

 The reader needs a clear understanding from where each of the conclusions and 

recommendations were taken and what is the scientific evidence. 

It was therefore decided to write the general information common to all ToRs at the beginning of this 

document. After the descriptive chapters, the ToRs are addressed in each of their chapters. ToR1, 

ToR3, ToR4 and ToR5 are answered in a descriptive way based on the general information. For ToR2, 

regarding risk of introduction, a qualitative risk assessment has been carried out. The assumptions, 

methodology, risk flow pathways and results are described in a specific chapter (Chapter 10). In order 

to facilitate the link between this general text and the final conclusions and recommendations, a 

summary of the main aspects related to the ToR extracted from each section were highlighted inside 

text boxes included at the end of each descriptive chapter.  
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2. Origin and characterisation of H3N2v virus 

From 1998 until 2009 the majority of H3N2 viruses isolated from swine in the USA contained the 

triple-reassortant internal genes (TRIGs). Multiple distinct lines of TR H3N2 viruses have been 

identified in swine (Richt et al., 2003), suggesting that several introductions of different human 

seasonal H3N2 viruses into swine had taken place. During this period human infections with swine 

H3N2 viruses were only occasionally reported (Cox, 2011). 

Following the pandemic expansion in humans of the A(H1N1)pdm09, this virus has been shown to be 

frequently transferred back to swine worldwide (Nelson et al., 2012a). This has given rise to new 

reassortants between A(H1N1)pdm09 and existing H1N1 and H3N2 swine viruses, including the US 

H3N2v strain that has acquired the M gene from A(H1N1)pdm09. Reassortant A(H1N1)pdm09/H3N2 

viruses were first detected in pigs in 2009 (Dukatez, 2011) and in human cases of influenza as of July 

2011 (Liu et al., 2012a; Nelson et al., 2012b). Reassortants between A(H1N1)pdm09 and swine H3N2 

viruses have also been described from other parts of the world, e.g. Canada (Tremblay et al., 2011), 

China (Fan et al., 2012) and Europe (Starick et al., 2012). 

In the present document, the following nomenclature will be followed to indicate the H3N2 viruses 

under discussion, either when isolated from pigs or when having been transmitted to and isolated from 

humans: 

a) Triple-reassortant (TR) H3N2. Swine influenza viruses originated around 1998 in the USA as 

a result of reassortment between avian, human and swine influenza viruses. These strains 

carry the following gene combination: human HA, NA and PB1; swine NS, NP and M; and 

avian PB2 and PA (see Glossary). 

b) Triple reassortant internal gene (TRIG) cassette. This acronym stands for the internal set of 

genes (PA, PB1, PB2, NP, NS and M) derived from the original TR H3N2 viruses. This 

genetic constellation is found combined with various haemagglutinins (HAs) and 

neuraminidases (NAs), forming TR H1N1, H1N2 and H3N2 lineages currently circulating in 

the pig population in the USA.  

c) rH3N2p. This represents all strains isolated from swine and characterised by a genetic 

constellation derived from the enzootic US swine TR H3N2 genetic reassortment events with 

A(H1N1)pdm09 (the number of A(H1N1)pdm09 genes contained in these isolates varies 

according to the genotype). This group includes H3N2pM isolates. 

d) H3N2pM. This represents the US swine TR H3N2 virus which has reassorted with the 

pandemic A(H1N1)pdm09 virus from which only the M gene has been acquired. It represents 

one of the rH3N2p genotypes isolated from swine. The H3N2pM isolates carry seven genes 

from TR H3N2 and only the M gene from A(H1N1)pdm09. 

e) H3N2v. This denotes the porcine H3N2pM virus strain after it has been transmitted from pigs 

to humans and has been isolated from infected humans. The gene segments of A H3N2v are 

thus considered as being the same as of H3N2pM.  

Since 2009, the pandemic M gene (pM) has frequently reassorted with endemic SIVs, both H1N1 and 

H3N2. Nelson et al. (2012b) examined an extensive set of sequence data from swine influenza viruses 

isolated during 2009–2011 and found that the frequency of the pM gene increased significantly during 

this period, being present in approximately half of all H3N2 strains by the end of the period. Over the 

same period a significant increase in the relative frequency of isolation of H3N2 over H1N1 subtypes 

was observed.  
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3. Description of the H3N2v/H3N2pM natural infections in the USA 

Laboratory characterisation showed that the matrix gene was derived from the A(H1N1)pdm09 virus. 

Although this was the first identification of this virus from people in the USA, this virus had 

previously been isolated from pigs in the USA in November 2010 (CDC, 2012a).  

3.1. Influenza virus infection in pigs 

3.1.1. Clinical signs of influenza in pigs in general 

Swine influenza is a disease of the respiratory tract. The onset of disease is typically sudden, and 

general signs include anorexia, inactivity, fever, respiratory distress, coughing, conjunctivitis, nasal 

discharge and weight loss (Olsen et al., 2006). The disease incubation period is between one and three 

days, with rapid recovery beginning five to seven days after onset. Swine influenza is a herd disease 

characterised by high morbidity and generally low mortality rates. However, the H3N2 viruses 

introduced into North American swine herds in the late 1990s initially induced severe disease in the 

naive population, which resulted in abortion and an unusually high mortality rate in mature sows 

(Richt et al., 2003).  

The severity of disease differs depending on the size and density of the population on the farm and the 

age of the pigs. Fattening pigs, particularly when experiencing a first influenza virus infection in the 

second half of the fattening period, may show the most severe signs with fever, inappetence, coughing 

and severe dyspnoea. Secondary bacterial infections can prolong the disease. Morbidity approaches 

100 % and mortality 2–3 %. Recovery follows after four to seven days.  

The virus may persist at the farm level. This takes place particularly when susceptible pigs, often pigs 

with declining maternal immunity, continuously enter the fattening unit. However, there are 

indications that SIVs frequently disappear from farrow-to-finish herds to be reintroduced at a later 

time (Kyriakis et al., 2013). Endemic SIVs may also become part of the multi-aetiological so-called 

porcine respiratory disease complex in feeder pigs (Van Reeth et al., 1996).  

3.1.2. Clinical signs of H3N2pM infection in pigs  

In field infections with H3N2pM in pigs in the USA (agricultural fairs) a subclinical course was very 

common, and when clinical signs were observed (coughing, fever), they were generally mild, with low 

morbidity and no mortality.  

Clinical signs of SIV-associated disease in general are variable and may include anorexia, fever and 

respiratory distress, and the duration of clinical signs, if present, is variable.  

Field infections with H3N2pM in pigs in the USA had a subclinical course with low morbidity and no 

mortality. 

3.1.3. Surveillance in pigs in the USA 

The United States Department of Agriculture (USDA), in cooperation with US administration and 

industry, conducts voluntary surveillance for SIV in the USA. This surveillance is not conducted to 

define prevalence—the goal is to identify viruses that may be circulating in pigs, and gain knowledge 

to contribute to improved animal health diagnostics and vaccines. The agency first identified H3N2pM 

virus isolates collected in late 2010 and have continued to find them across the USA since then. 

USDA‘s SIV Surveillance Program has tested 12 662 samples from 3 766 swine diagnostic laboratory 

submissions collected from October 2010 until July 2012. Over that time period, 1 488 case 

submissions were identified as positive for influenza A infection. Overall, 73 H3N2-positive 

submissions were detected between October 2010 to September 2011 and 138 from October 2011 to 

July 2012. Of the 138 H3N2 cases identified and tested to date, 57 contain the pandemic M gene and 
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were classified as H3N2pM (USDA, online). The USDA SIV Surveillance Program continues to 

collect and test samples to monitor for the type and distribution of all influenza viruses in pigs. 

There is currently no information on the prevalence of endemic swine influenza and A(H1N1)pdm09 

viruses in wild boar. No experimental studies have been performed on the susceptibility of wild boar 

to A(H1N1)pdm09. 

Surveillance in the USA is conducted not to define prevalence but to identify viruses that may be 

circulating in pigs, and gain knowledge to contribute to improved animal health diagnostics and 

vaccines. 

From all samples collected and analysed in the USA between October 2010 and July 2012, there were 

211 H3N2-positive out of 1 488 influenza-positive submissions, and H3N2pM was identified in 57 of 

138 H3N2 isolates tested (41 %) indicating that H3N2pM is quite prevalent among the H3N2 strains 

circulating in the USA. 

3.2. Infection with H3N2v in humans 

Detection of novel influenza A viruses in humans has been notifiable in the USA since 2007 and 

suspected cases are reportable to the Centers for Disease Control and Prevention (CDC). Between July 

and December 2011, the CDC confirmed 12 human cases of a novel swine-origin influenza A H3N2 

variant virus (H3N2v) (Nelson, 2012a). 

Infection with swine influenza A viruses has occasionally been detected in humans since the 1950s 

(Myers et al., 2007; Krueger and Gray, 2013). Cases of swine influenza in humans occur after a 

history of exposure to pigs with direct, close or indirect contact (Van Reeth, 2007). Novel influenza 

viruses appearing in humans have to be reported by countries under the World Health Organization 

(WHO) International Health Regulations of 2005. 

In 2012, 309 cases of H3N2v virus were identified. Two of the cases were reported between April and 

July 2012. Both infected individuals were found to have been exposed to swine prior to onset of 

illness. A total of 305 cases of H3N2v were reported between July and September 2012. Two more 

cases were reported in November 2012. 

Exposure data for the cases identified that 273 of the 305 (90 %) had attended an agricultural fair and 

that 73 % (205/279) of those for whom information was available had direct contact with swine prior 

to onset of clinical symptoms (Jhung M, Epperson S, Biggerstaff et al., CDC, personal 

communication). These reports coincided with information from animal health officials that febrile 

illness had been identified among some pigs at one of the first implicated fair events. The preliminary 

results showed that samples collected from some of these ill animals were positive for H3N2pM 

(Bowman et al., 2012). This SIV was found to be similar to virus later isolated from the human cases.  

In the USA, exposure data for the human cases of H3N2v identified that 273 of the 305 (90 %) had 

attended an agricultural fair and that 73 % (205/279) of those for whom information was available had 

direct contact with swine prior to the onset of clinical symptoms. 

The symptoms and severity of H3N2v infection were similar to those of seasonal influenza, with 

frequent reports of fever, cough and fatigue, often in combination. The incubation period was 

approximately two to three days, and in most cases the duration of illness was five days. Sixteen of the 

309 cases were hospitalised; one died (CDC, 2012b). People at high risk include children younger than 

five years, 65 years and older, pregnant women and people with certain long-term health conditions.  

In 2013, 17 influenza H3N2v infections in humans were reported until August 30 in USA. All new 

cases had been in close contact with pigs.  
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The Epidemiology and Prevention Branch in the Influenza Division at CDC collects, compiles and 

analyses information on influenza activity year round in the USA and produces FluView
7
, a weekly 

online influenza surveillance report. The US influenza surveillance system is a collaborative effort 

between CDC and its many partners in state, local and territorial health departments, public health and 

clinical laboratories, vital statistics offices, health care providers, clinics and emergency departments. 

4.  Pathogenesis of influenza virus infections in pigs 

4.1. Pathogenesis of swine influenza in general 

In general, replication of SIV is limited to epithelial cells of the upper and lower respiratory tract of 

pigs—the nasal mucosa, tonsils, trachea and lungs—and virus excretion and transmission occur 

exclusively via the respiratory route. Infectious virus can thus be isolated from the tissues mentioned, 

as well as from bronchoalveolar lavage (BAL) fluid, and nasal, tonsillar or oropharyngeal swabs 

(Brown et al., 1993; Heinen et al., 2001; Landolt et al., 2003; Richt et al., 2003; De Vleeschauwer et 

al., 2009; Khatri et al., 2010). In most experimental studies, the virus can be isolated from one day 

post infection (dpi) onwards and becomes undetectable after day 7. SIV has a preference for the lungs 

over the upper respiratory tract (De Vleeschauwer et al., 2009; Khatri et al., 2010). The virus is 

unlikely to spread beyond the respiratory tract and there is generally no detectable viraemia. 

In experimental SIV infection studies, the kinetics of virus replication and nasal virus excretion, as 

well as the viral loads in various parts of the respiratory tract, are dependent upon the inoculation route 

and dose, and so are the severity of lung inflammation and disease. That is, virus can be recovered 

from the nasal mucosa and nasal swabs from day 1 after intranasal inoculation, but only at day 2 or 3 

and at lower titers (De Vleeschauwer et al., 2009). Lung virus titers, in contrast, peak more rapidly and 

are generally higher after intratracheal inoculation. This route reproducibly leads to typical swine flu 

symptoms - tachypnea and dyspnoea with a forced abdominal respiration, fever exceeding 41 °C, 

dullness and loss of appetite (Haesebrouck et al., 1985; Van Reeth et al., 1998, 2002; De 

Vleeschauwer et al., 2009). 

In experimental SIV infection studies, nasal virus excretion becomes undetectable a few days after the 

disappearance of clinical signs. SIV shedding is generally associated with the clinical signs. However, 

clinical signs are often absent or mild and their duration is variable (i.e. until 3 dpi in mild cases and 

5–6 dpi in severe cases) (Van Reeth and Ma, 2012). If other viruses or bacteria cause super-/co-

infection, the duration of clinical signs may be prolonged, without increasing the period of virus 

shedding. In pigs with post-infection immunity from previous exposure to different European SIV 

subtypes (European H3N2 SIV in particular), or in SIV-vaccinated pigs, the duration of virus 

excretion is likely to be shortened (see Chapter 8). 

4.2. Pathogenesis of H3N2v in pigs 

The pathogenesis of the infection with H3N2v in pigs is based on one study carried out with this strain 

(Kitikoon et al., 2012) and is very similar to that upon infection with known SIV strains. Kitikoon et 

al. (2012) examined, in experimentally infected pigs, the pathogenesis and transmission of the novel 

H3N2v isolated from humans and compared different aspects of those induced by two H3N2 isolates 

from pigs collected in 2010–2011. The three viruses were (1) a representative of TR H3N2 SIV, (2) a 

representative of rH3N2p, containing three gene segments from the TR H3N2 (HA, NA, PB2) and five 

genes from the 2009 A(H1N1)pdm09 virus (M, NP, NS, PA, PB1) and (3) an H3N2v virus isolated 

from humans. All isolates induced mild illness with fever, coughing and inappetence, similar to that 

obtained with other SIVs. Lung lesions were most pronounced for TR H3N2, intermediate for rH3N2p 

and least severe for H3N2v. Virus titers were, in BAL and nasal swabs, highest with TR H3N2 and 

lowest with rH3N2p. All three viruses were transmitted in a similar pattern to contact-naive pigs, but 

TR H3N2 exhibited the most efficient transmission. The novel H3N2v virus isolated from a human 

appeared to be the least pathogenic.  

                                                      
7 http://www.cdc.gov/flu/weekly/ 
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By analogy with other SIVs and based on the single pathogenesis study with H3N2v in pigs, it can be 

assumed that the virus excretion in individual pigs lasts up to 7 dpi, whether or not they show clinical 

signs (Van Reeth et al., 2006; De Vleeschauer et al., 2009). 

Pathogenicity studies in pigs experimentally inoculated with H3N2v, which has the same gene 

constellation as H3N2pM, show that the infection is purely of respiratory nature and shows a variable 

but relatively mild course with fever, coughing and inappetence similar to that of the endemic SIVs 

currently circulating in the swine populations worldwide. 

By analogy with other SIVs and based on the limited pathogenesis studies with H3N2v in pigs, it can 

be assumed that the virus excretion in individual pigs lasts up to 7 dpi, whether or not they show 

clinical signs.  

Clinical signs are generally associated with viral shedding; however, virus excretion does not entirely 

coincide with presence of clinical signs (may start earlier or last longer than clinical signs). 

Consequently, an absence of clinical signs cannot be used as evidence that pigs are not infectious.  

4.3. Virus distribution in organs and tissues 

Influenza A infection in swine is respiratory with no virus dissemination to muscles or edible organs 

(Vincent, 2009; EFSA, 2010). It is safe to accept that, with regard to food safety, the information for 

the A(H1N1)pdm09 virus also applies to other strains of SIV including H3N2pM. However, low-level 

virus contamination of meat by respiratory secretions from infected pigs may be possible at slaughter 

or processing. If ingested with food, the virus has to overcome several hurdles such as acidic pH in the 

stomach and bile salts in the duodenum, which reduce the infectivity. As oropharyngeal tissues are 

known ports of entry for mammalian influenza viruses, food that passes such tissues, if contaminated 

with influenza virus, could hypothetically transmit a respiratory infection to humans. So far, there is 

no epidemiological evidence that this theoretical possibility has contributed to the zoonotic spread of 

this infection. Normal cooking procedures inactivate the virus in food. Commercially available 

disinfectants used for cleaning of equipment after contact with meat products rapidly destroy influenza 

viruses. Since these statements are generally accepted to apply to SIVs, there is no reason to change 

them for H3N2pM. 

5. Transmission of H3N2pM/H3N2v virus 

5.1. Transmission between pigs (within herds and between herds) 

As described in Chapter 4, transmission of H3N2v from experimentally infected naive pigs to contact 

naive pigs has been demonstrated. In addition, detection of H3N2pM in several farms in the USA 

indicates that the virus has spread between pigs and between herds. 

Infection with H3N2pM in pigs is essentially not different from infection with other SIV subtypes in 

the US and EU swine population. This implies that infection with H3N2pM in swine is respiratory in 

nature and that the route of transmission can be assumed to be mostly, if not exclusively via the 

respiratory route (contact or aerosol). 

5.2. Transmission from pigs to humans 

Early reports in July 2012 associated with the 305 human cases of H3N2v indicated that many affected 

persons had attended agricultural fairs at which pigs were present. These reports coincided with 

information from animal health officials of febrile illness among some pigs at one of the first 

implicated fair events. Preliminary results from samples collected from some of these ill animals were 

positive for H3N2 virus containing the A(H1N1)pdm09 matrix gene (CDC, 2012c). This strain 

(H3N2pM) was found to be identical to virus later isolated from the human cases (H3N2v). Additional 

swine and human sampling associated with a fair in Ohio documented similar findings (Bowman et 
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al., 2012). Of those reporting direct or indirect exposure to pigs (see Section 3.1), 65 % reported 

exposures on multiple days during the seven days prior to illness onset. Ultimately, the investigation 

identified 37 fairs in the nine states associated with the cases, although some cases had attended more 

than one fair. In 2013, 12 influenza H3N2v infections in humans were reported in June in Indiana, 

USA. All new cases had been in close contact with pigs.  

As of 9 October 2013, no influenza H3N2v virus infections have been reported among humans in the 

EU. Novel influenza viruses appearing in humans have to be reported by countries under the WHO 

International Health Regulations of 2005 (WHO, 2005). Infection with swine influenza A viruses have 

occasionally been detected in humans since the 1950s (Myers et al., 2007). There are only five recent 

reports of human infection with swine-origin influenza A infections in Europe (ECDC, 2012c). Cases 

of swine influenza in humans occur after a history of exposure to pigs with direct, close or indirect 

contact (Van Reeth, 2007).  

5.3. Transmission from humans to pigs 

Transmission of influenza A viruses from humans to pigs has been described both for seasonal human 

influenza strains and in particular for the pandemic A(H1N1)pdm09 strain (Nelson et al., 2012a). No 

documented transfers of H3N2v to pigs have been reported, but, given that this strain is a swine-

adapted virus that has been transmitted to humans, back-transmission from humans to pigs must be 

considered possible. 

5.4. Human-to-human transmission  

There has been some evidence of limited (sporadic) person-to-person transmission of H3N2v but none 

for sustained human-to-human transmission. The investigations in 2011 identified two clusters of 

children with probable person-to-person transmission; one cluster of two cases and the second cluster 

of three cases (CDC, 2011a, b). However, in the former instance the second case experienced onset of 

symptoms 10 days after the onset of clinical symptoms in the index case. The investigations in 2012 

identified 15 cases of possible human-to-human transmission, all in children less than 10 years old 

(CDC, 2012c). Fourteen of these cases reported one or more contacts, including contact with swine, 

contact with another ill household member or contact with an extended family member who reported 

influenza-like illness. One case identified an extended family member who had contact with swine, 

although the case did not.  

5.5. Transmission in experimental models 

In ferrets, H3N2v shows the capacity for efficient replication and transmission and these mammals are 

considered good models for how influenza behaves in humans (Pearce et al., 2012). Pearce et al., 

(2012) analysed the virulence and transmissibility in ferrets of four swine-origin influenza H3N2 

viruses isolated from humans: one from 2009, two from 2010 and on from 2011. The isolates obtained 

in 2009 and 2010 were TR H3N2 viruses, while the 2011 isolate was an H3N2v. All four isolates 

replicated to high titres and were transmitted through direct contact. Furthermore, both the 2010 TR 

H3N2 and 2011 H3N2v isolates showed efficient respiratory droplet transmission, comparable to that 

observed with seasonal influenza viruses in ferrets, although only the latter contained the pM segment.  

Although a few cases of human-to-human transmission have been reported, there are no reports of 

sustained human-to-human transmission of influenza H3N2v virus in the USA. Most human cases 

have been associated with direct exposure to pigs.  
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6. Epidemiology of H3N2 influenza viruses in pigs in the EU 

Surveillance data issued by the European Surveillance Network for Influenza in Pigs (ESNIP) since 

2000 have shown that avian-like swine H1N1, human-like reassortant swine H1N2 and human-like 

reassortant swine H3N2 subtypes, as well as A(H1N1)pdm09 since 2009, constitute the dominant 

lineages in Europe (Van Reeth et al., 2008; Kuntz-Simon and Madec, 2009; Kyriakis et al., 2011; 

Kyriakis et al., 2013).  

The human-like swine H3N2 viruses isolated from European pigs some years after the Hong Kong 

pandemic reassorted in 1984 with the avian-like swine H1N1 virus, acquiring six internal protein 

genes from latter strain. This human-like reassortant swine H3N2 has now become the dominant 

genotype of H3N2 virus in European swine populations (Castrucci et al., 1993; de Jong et al., 2007).  

The current virological passive surveillance (targeted to pig farms where acute respiratory symptoms 

were observed) conducted from November 2010 to October 2012 (see Table 1) under ESNIP 3 (FP7-

funded project due to complete 31 October 2013) allowed the detection of 1 533 influenza A virus-

positive farms out of 4 413 farms examined in 13 countries (35 % of farms were positive). A total of 

1 062 viruses have been subtyped, revealing that the H1N1 and H1N2 subtypes are the most prevalent 

viruses. Influenza A(H1N1)pdm09 viruses were isolated at an increasing frequency in some countries, 

probably indicating that this subtype has become established in the European pig population. In 

contrast, the H3N2 subtype has been isolated less frequently or not at all in some regions, whereas it 

remains prevalent in other parts of Europe.  

Table 1:  Overview of swine influenza viruses subtyped in 13 European countries from November 

2010 to October 2012—ESNIP 3 consortium 

Country Number of 

subtyped 

viruses 

Influenza A subtypes and lineages within subtypes 

H1N1 H3N2 H1N2 Others 

Avian-like 

swine 

H1N1 

Reassortant 

swine H1N1 

(human-like 

HA) 

pdm-

like 

swine 

H1N1 

Human-

like 

reassorted 

swine 

H3N2 

Human-

like 

reassortant 

swine 

H1N2 

Reassortant 

swine H1N2 

(avian-like 

HA) 

Reassortant 

pdm-like 

swine HxNx 

UK 39 2 ? 27 0 10 ? ? 

Belgium 20 11 ? 0 8 1 ? ? 

Netherlands 30 16 ? 0 7 3 ? ? 

France 185 128 1 5 1 44 6 0 

Italy 121 57 1 6 24 29 4 0 

Denmark 170 44 0 50 0 0 63 10 

Poland 13 11 0 0 1 1 0 0 

Slovakia 1 1 0 0 0 0 0 0 

Spain 19 6 0 0 9 4 0 0 

Germany 443 273 2 15 41 75 7 30 

Finland 2 1 0 1 0 0 0 0 

Hungary  16 11 0 2 2 0 0 1 

Greece 3 0 0 0 3 0 0 0 

Total 1 062 561 4 106 96 167 80 41 

%  52.8 0.4 10.0 9.0 15.7 7.5 3.9 

pdm: A(H1N1)pdm09 

 

Thus, the European pig population has variable immune status to H3N2 viruses. The European swine 

H3N2 viruses are antigenically (by haemagglutination inhibition test - HI) closely related to H3N2 

viruses that circulated in the human population in the early 1970s (see Chapter 8). They have 

undergone a lower rate of evolution than their counterparts in humans and currently show highly 

significant antigenic differences from contemporary human H3N2 viruses, and from H3N2v. 
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Furthermore, levels of specific immunity to the EU H3N2 are likely to be low or even absent in swine 

populations in the regions of Europe where this virus has been absent for some years (see Table 1).  

New reassortant viruses within the three main enzootic SIVs or between SIVs and A(H1N1)pdm09 or 

seasonal human influenza viruses have recently been detected in several countries, with evidence of 

further spread through the swine population for some of them. Co-circulation of enzootic SIVs with 

A(H1N1)pdm09 has resulted in various reassortants that have mainly exchanged HA and/or NA genes 

(Howard et al., 2011; Moreno et al., 2011; Bányai et al., 2012; Starick et al., 2012, 2011).  

Most recently, reassortant viruses very similar to H3N2pM have been isolated from healthy slaughter 

pigs in Korea (Pascua et al. 2013). Both the North American TR H3N2 and A(H1N1)pdm09 have also 

been recovered from pigs in Korea and it is therefore not possible to conclude whether the H3N2pM 

has been generated locally or whether it was brought in by import of live pigs. This study also 

highlights the importance of including healthy pigs in a systematic monitoring. 

 Based on all these experiences with SIVs, it is to be predicted that an H3N2pM virus has a chance to 

persist in the European swine population after entry. However, it remains to be seen if all these 

influenza virus types can co-circulate in a pig population. If H3N2pM becomes endemic, it can be 

expected that, as seen with other SIVs, host selection pressures will drive this strain to evolve whereby 

changes in the gene segments, especially those encoding the external glycoproteins (HA and NA), will 

appear. 

In some European countries or in some geographical areas of some European countries with intensive 

pig production the European H3N2 virus has been circulating at low levels or has been absent in 

recent years. Therefore, the European pig population has variable immune status to European H3N2 

viruses. These above-mentioned areas might have herds which are more susceptible to H3N2pM than 

regions where all three European (H1N1, H3N2, H1N2) SIVs are prevalent. 

In predicting the potential evolution of H3N2pM on the health of the European pig populations, it is 

relevant to make a comparison with similar events that have occurred historically after emergence or 

transmission of influenza viruses (avian H1N1, A(H1N1)pdm09, H3N2, H1N2) in pig populations. It 

has been observed that these influenza viruses, upon adaptation to swine, have become endemic and 

thus persist in the population despite some degree of existing population immunity.  

If H3N2pM is introduced into the European swine populations, it is likely that the virus will be 

maintained in the swine population together with the current endemic European SIVs.  

7. Influenza surveillance and diagnostic capabilities in Europe  

7.1. Surveillance in pigs 

There are no rules for control of influenza in pigs in the EU legislation. However, under the auspices 

of ESNIP 3, guidelines have been prepared to attempt to harmonise SIV surveillance following the 

spread of A(H1N1)pdm09 to pigs in most EU/European Economic Area (EEA) countries 

(www.esnip3.com) 

The level of surveillance programmes varies between EU/EEA countries. However, all countries 

within Europe that test for influenza in pigs use a passive surveillance system based on reporting of 

acute respiratory disease in pigs. Monitoring as defined by Hoinville et al. (2013) of healthy pigs is 

extremely limited. The case identification varies between countries. Sampling for virus detection 

includes numerous specimen types, such as nasal swabs from sick animals or, where 

morbidity/mortality is recorded, tissue sampled from the lungs and/or the upper respiratory tract. 

These samples may also be accompanied by acute and/or convalescent sera to support the virological 

surveillance.  

file:///C:/Documents%20and%20Settings/dhollso/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/F9Y6UK4J/www.esnip3.com
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In some countries the passive surveillance is organised at a national level, i.e. the UK, France and 

Finland, with private practitioners liaising with specified laboratories over the description and 

identification of cases meeting a set of clinical criteria that will result in the submission of samples. 

Vaccine manufacturers also contribute to the network by enhancing the flow of material from the field 

to the laboratories. 

It is important to remember that not all strains of influenza A virus will necessarily induce clinical 

signs in all production systems. Therefore, the currently applied sampling will probably not give a full 

picture of circulating virus strains. This is relevant when considering the ability to detect early 

incursion of a virus.  

Previous incursions of novel influenza A viruses into pigs probably occurred some years before their 

detection due to the type of surveillance used and the need for virus adaptation before they are 

associated with more severe disease/infection kinetics (Brown, 2000). Some steps towards early 

detection of new strains have been made in Europe by means of the consecutive concerted action 

projects, ESNIP 1, 2 and 3 (ESNIP, 1999, 2006, 2010). Although this network is predominantly based 

on voluntary submission of diagnostic samples, the data collected from the surveillance programmes 

provide a greater understanding of the epidemiology of SIVs at the global level and alert to the 

emergence of new reassortants. However, the project is based on research funding and therefore 

represents only a temporary solution to the long-term need to monitor influenza viruses in animals. 

Surveillance for influenza in pigs within Europe uses a passive surveillance system based on reporting 

of acute respiratory disease in pigs. Monitoring of healthy pigs is extremely limited.  

7.2. Diagnostic capabilities for surveillance of SIVs 

Standardised diagnostic tools have been established for the detection and diagnosis of influenza A 

viruses in pigs through ESNIP 1 and ESNIP 2. Further harmonisation and proof of laboratory test 

standardisation has been conducted in ESNIP 3. Essentially, clinical material submitted from 

virological passive surveillance is screened using PCR technology. Most partners are using standard 

real time RT-PCRs that are capable of detecting all of the influenza A viruses known to be endemic in 

European pigs plus emergent strains such as rH3N2p from North America. These assays are largely 

based on the M or the NP gene, which are highly conserved across these viruses and known to be fit 

for the purpose of detection of endemic SIVs, including A(H1N1)pdm09-like strains, and therefore 

have direct relevance to the detection of H3N2pM/H3N2v (Munch et al., 2001; Slomka et al., 2010; 

Pol et al., 2011). 

Testing algorithms have been developed following initial screening by M or NP gene RT-PCR. 

Several laboratories run RT-PCRs, specific for HA and NA genes, for a rapid molecular subtyping. 

Thus, real-time RT-PCRs have been developed to specifically detect H1 and N1 genes of 

A(H1N1)pdm09 (Hoffman et al., 2010; Slomka et al., 2010; Pol et al., 2011) and conventional 

multiplex RT-PCR assays allow the identification of HA and NA genes of European enzootic strains, 

i.e. avian-like swine H1N1, human-like reassortant swine H1N2 and human-like reassortant swine 

H3N2 (Chiapponi et al., 2012). When combined, these specific RT-PCR molecular tools also allow 

users to rapidly detect reassortant viruses that would have exchanged their HA or NA genes 

(reassortant between endemic strains or between endemic strains and A(H1N1)pdm09).  

Clinical materials are subject to more detailed analyses, primarily through the culture of virus in either 

cells or embryonated fowl‘s eggs. Amplified viruses from these in vitro systems are then characterised 

using a range of tools, including standard typing through haemagglutination inhibition test (HI) using 

panels of sera developed through the various ESNIP programmes over the last 14 years and recently 

reviewed to ensure fitness for purpose and relevance to the accurate identification of virus subtypes 

circulating in European pigs (H1N1, H3N2, H1N2 and A(H1N1)pdm09). Thus, reference panels of 

sera and antigens have been made available to ESNIP 3 partners. Finally, preliminary subtyping using 
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these molecular and serological tools is supported through targeted gene sequencing, primarily of the 

HA and NA genes, but also internal gene sequencing, to better understand the potential emergence of 

novel genotypic variance that may be indicative of reassortment between contemporary and/or 

new/novel viruses.  

Within ESNIP 3 a ring trial for M (or NP) gene RT-PCR was organised and has demonstrated that 

most partners participating in surveillance programmes deployed tests that were capable of detecting 

all of the relevant circulating SIV subtypes. Subsequent work done within the network has 

demonstrated that H3N2pM viruses obtained from colleagues in North America are also reliably 

detected with these assays. This is perhaps not surprising given that the H3N2pM virus from North 

America possesses the M gene from the pandemic strain, which was itself acquired from an ancestral 

virus believed to have circulated in Europe. Therefore, the utility of the assays being deployed within 

the ESNIP 3 consortium are demonstrated as being fit for the purpose of detecting H3N2pM virus 

should it occur in European pig herds.  

From in silico analyses, it appears that primers designed to detect H3 and N2 genes from European 

SIVs in multiplex RT-PCR assays should also match with H3 and N2 genes from H3N2pM (and 

rH3N2p), as they were designed in conserved regions from these HA and NA subtypes. Experimental 

demonstration remains to be done, but it can be hypothesised that H3N2pM would be detected as a 

European H3N2 SIV. As genetic lineages within the H3N2 subtype could not be differentiated at this 

analysis step, further H3 and N2 gene sequencing would be necessary to identify H3N2pM amongst 

endemic H3N2 SIVs. Development of molecular tools specific to H3N2pM, especially targeting H3, 

N2 and/or M genes from this strain, would be necessary for rapid discrimination. 

The panel of serological reagents for conventional typing will reliably type H3N2. However, the 

H3N2pM will raise different reactivity profiles in such assays, owing to its antigenic differences when 

compared with European H3N2 SIVs. Currently, the ESNIP 3 network is preparing appropriate 

reagents specific for H3N2pM in order to enhance speed and accuracy of detection. 

Thus, it should be stressed that all these approaches, together with gene sequencing, would identify the 

emergence of H3N2pM should it occur in Europe. Furthermore, all of these diagnostic approaches are 

relevant to the timely and appropriate identification of variant viruses or new strains that may appear 

in European pigs. This potentially includes second-generation reassortants from the endemically co-

circulating strains that also include H3N2, H1N1 and H1N2. 

Currently applied real time RT-PCRs based on the matrix (M) or the nucleoprotein (NP) gene are 

capable of detecting all of the influenza A viruses known to be endemic in European pigs plus 

emergent strains such as rH3N2p from North America. However, neither these tests nor real time RT-

PCR based on H3 or N2 are able to specifically identify the H3N2pM as being different from 

European H3N2 strains. 

The panel of serological reagents for conventional typing will reliably type all H3N2 strains. The 

H3N2pM will exhibit a different reactivity profile in such assays, owing to its antigenic differences 

when compared with European H3N2 SIVs. Specific reagents for detecting H3N2pM are being raised. 

Currently applied diagnostic approaches, together with gene sequencing, will identify the emergence 

of H3N2pM should it occur in Europe either in pigs or in humans. Furthermore, all of these diagnostic 

approaches are relevant to the timely identification of variant viruses or new strains that may appear in 

European pigs. 

A series of EU-funded networks through the ESNIP programme has greatly strengthened and enabled 

harmonisation of approaches for diagnosis of and surveillance for swine influenza. 
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7.3. Influenza surveillance in humans in the EU/EEA countries 

The surveillance of influenza activity in Europe relies on virological and syndromic surveillance 

(influenza-like illness (ILI) and acute respiratory infections (ARIs). The population under surveillance 

consist of patients seeking care in sentinel networks of primary care. The surveillance is not targeted 

to any specific group, such as people in contact with pigs. The human influenza surveillance results 

are reported weekly to The European Surveillance System (TESSy) hosted at the European Centre for 

Disease Prevention and Control (ECDC). ECDC publishes weekly influenza surveillance overviews 

during the influenza season and fortnightly overviews during the inter-seasons. 

Following the detection of H3N2v in humans infected from pigs in the USA in 2012, ECDC and 

European reference laboratories (the Community Network of Reference Laboratories for human 

influenza in Europe, CNRL) ensured that there was at least the capacity in national reference 

laboratories for human influenza (National Influenza Centres) to readily detect H3N2v should it 

appear in humans in Europe. Although surveillance is in place, it is unlikely to detect sporadic cases 

infected with H3N2v if not presenting with influenza-like illness and notified through a sentinel 

surveillance general practitioner (GP). The surveillance systems in Europe will certainly be able to 

detect outbreaks like those observed in the USA. Enhanced surveillance of humans in close and 

frequent contact with animals would be needed for a more risk-based surveillance. However, this 

might not be feasible at the country level and would need to be reviewed strategically. 

To ensure that novel influenza A infections can be detected in European primary diagnostic and 

influenza reference laboratories, further capacity building will be needed. Based on a survey done in 

2012, the detection capacity of the H3N2v virus as influenza A viruses in the EU/EEA countries is 

good, but the subtyping capability is significantly reduced compared to type A-specific detection 

(ECDC, 2012a). 

The survey indicates that with current capabilities, the variant viruses would be detected as influenza 

A viruses; however some of them would not be subtyped and identified as H3N2v viruses other than 

by sequencing (ECDC, 2012b). 

If a human infection with H3N2v were to be detected in the EU, a vigorous response would be 

triggered, including activation of the laboratory network to increase the national capability for 

detection, distribution of standard and control material, shipment of the variant viruses to the WHO 

Collaborating Centres, etc. For the serological detection of past or present cases, probably the 

appropriate Consortium for the Standardization of Influenza Seroepidemiology (CONSISE; 

http://consise.tghn.org/about/) protocols would be deployed. However, it should be noted that it is 

likely that such infections would be detected with some delay. The epidemiological response would 

include rapid studies to assess the severity, risk factors in humans and transmissibility of the virus at 

an early stage.  

The human population under surveillance consist of patients seeking care in sentinel networks of 

primary care. The surveillance is not targeted to any specific group, such as people in contact with 

pigs.  

ECDC and European reference laboratories (CNRL) ensured that there was at least the capacity in 

National Influenza Centres to readily detect H3N2v should it appear in humans in Europe. Although 

surveillance is in place, it is unlikely to detect sporadic cases infected with H3N2v if not presenting 

with influenza-like illness and notified through a sentinel surveillance general practitioner. 

The survey indicates that, with current capabilities, the variant viruses would be detected as influenza 

A viruses but H3N2v, if present, would not be identified as such by routine diagnostic methods.  

 

http://ecdc.europa.eu/en/healthtopics/seasonal_influenza/epidemiological_data/pages/weekly_influenza_surveillance_overview.aspx
http://ecdc.europa.eu/en/publications/Publications/1204-TER-CNRL-H3N2-Questionnaire.pdf
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8. Cross-immunity to North American H3N2 swine influenza viruses in European pigs 

There are no experimental cross-protection studies in which pigs are first inoculated with a European 

H3N2 SIV and then challenged with the H3N2pM virus. Therefore, we can only make assumptions 

about cross-protection based on (1) data about the antigenic and genetic relatedness of these viruses; 

(2) data about serologic cross-reaction between these viruses; and (3) extrapolations from cross-

protection studies with other antigenically distinct H3N2 influenza viruses from pigs. The available 

data regarding these three points are summarised below. 

1) Data about the genetic relationship in the HA and NA of relevant H3N2 viruses are shown in 

Tables 2 and 3 respectively (Kristien Van Reeth, unpublished data). The selected virus strains are 

representative of an endemic European H3N2 SIV, a North American TR H3N2 SIV (cluster IV) 

and an H3N2v virus (similar gene constellation as TR H3N2 SIV, but with pandemic M gene). 

Both the HA and NA of the H3N2v virus are closely related to those of the cluster IV TR H3N2 

SIV, whereas there is relatively low homology between the first two viruses and the European 

H3N2 SIV. 

Table 2:  Comparison of the HA genes of a European H3N2 SIV (sw/Gent/172/08), a North 

American cluster IV TR H3N2 SIV (sw/Ontario/33853/05) and H3N2v (A/Indiana/08/11) 

 sw/Gent/172/08 sw/Ontario/33853/05 A/Indiana/08/11 

nt aa nt aa nt Aa 

sw/Gent/172/08 100* 100     

sw/Ontario/33853/05 85 85 100 100   

A/Indiana/08/11 83 83 97 97 100 100 

 nt, nucleotide; aa, amino acid. * % homology. 

 

Table 3:  Comparison of the NA genes of a European H3N2 SIV (sw/Gent/172/08), a North 

American cluster IV triple reassortant H3N2 SIV (sw/Ontario/33853/05) and H3N2v 

(A/Indiana/08/11) 

 sw/Gent/172/08 sw/Ontario/33853/05 A/Indiana/08/11 

nt aa nt aa nt Aa 

sw/Gent/172/08 100* 100     

sw/Ontario/33853/05 85 86 100 100   

A/Indiana/08/11 84 83 96 96 100 100 

nt, nucleotide; aa, amino acid. * % homology. 

 

2) Table 4 shows the antigenic relationship in cross-HI tests between the three viruses that were 

compared at the genetic level (unpublished data, Kristien Van Reeth). There was minimal cross-

reactivity between the European H3N2 SIV and each of the other two H3N2 viruses. The low 

antigenic cross-reactivity between endemic European H3N2 SIVs on the one hand and H3N2v on 

the other hand has also been confirmed in HI tests with hyperimmune swine sera against the 

European H3N2 SIVs (Table 5). The sera had antibody titres of < 10, 10, 20, 40 or 80 against 

H3N2v, compared with titres of 320–5 120 against the homologous virus. 
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Table 4:  Serological cross-reactivity between H3N2 virus of three different lineages  

 

HI titres with hyperimmune/post-infection serum to 

sw/Gent/172/08 

(S
a
) 

 

sw/Gent/172/08 

(S
b
) 

sw/Ontario/33853/05 

(S
b
) 

 

A/Indiana/08/11 

(F) 

 

sw/Gent/172/08 1 280 320 < 10 10 

sw/Ontario/33853

/05 
20 10 320 40 

A/Indiana/08/11 20 10 40 640 

Sa, swine hyperimmune serum; Sb, swine post-infection serum; F, ferret post-infection sera. 

nd, not determined; sw/Gent, European SIV; sw/Ontario, TR H3N2; A/Indiana, H3N2v  
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Table 5:  HI antibody titers to European H3N2 swine influenza viruses (SIVs) with swine hyperimmune or post-vaccination sera 

Virus HI antibody titer 

Hyperimmune serum Post-vaccination serum 

sw
/G

en
t/

1
/8

4
 

V
-0

2
-5

1
9
 

1
0

/0
9

/0
2
 

sw
/F

la
n

d
er

s/
1

/9
8

 

V
-0

1
-3

6
3
 

1
7

/1
2

/0
1
 

sw
/G

en
t/

8
3

/0
0

 

V
-0

1
-3

5
5
 

2
6

/1
1

/0
1
 

sw
/G

en
t/

8
0

/0
1

 

V
-0

1
-3

5
1
 

1
0

/1
2

/0
1
 

sw
/G

en
t/

1
3

1
/0

5
 

V
-6

8
-0

6
 

0
2

/0
6

/0
6
 

sw
/G

en
t/

1
7

2
/0

8
 

V
-0

9
-1

0
4

2
 

2
8

/0
1

/1
0
 

A
/I

n
d

ia
n

a
/0

8
/1

1
 

F
er

re
t 

3
8

/1
1

 

P
o

rt
 C

h
a

lm
er

s/
7

3
 

G
ri

p
o

v
a

c 

P
ig

 5
0

6
 (

0
7

/0
1

/0
8

) 

 P
o

rt
 C

h
a

lm
er

s/
7

3
 

S
u

v
a

x
y

n
 F

lu
 

P
ig

 5
1

4
 (

0
7

/0
1

/0
8

) 

S
w

/B
el

g
iu

m
/2

2
0

/9
2

 

R
es

p
ip

o
rk

 F
lu

 

P
ig

 5
1

6
 (

0
8

/0
1

/0
8

) 

S
w

/B
a

k
u

m
/1

7
6

9
/0

3
 

R
es

p
ip

o
rk

 F
lu

3
 

P
ig

 5
2

2
 (

0
8

/0
1

/0
8

) 

H3N2 SIV field isolates 

sw/Gent/1/84 5120 5 120 640 160 5 120 2 560  640 1 280 160 40 

sw/Flanders/1/98 640 2 560 320 160 1 280 1 280  80 320 160 40 

sw/Gent/83/00 640 2 560 320 160 1 280 1 280  160 320 160 40 

sw/Gent/80/01 1 280 2 560 640 320 2 560 2 560  160 320 320 80 

sw/Gent/131/05 1 280 2 560 640 160 2 560 2 560  160 640 320 80 

sw/Gent/172/08 1 280 5 120 640 160 2 560 2 560  160 640 320 80 

sw/Gent/538/10 1 280 5 120 640 320 1 280 1 280  160 320 160 40 

sw/Gent/167/12  640 2 560 320 160 1 280 1 280  80 320 160 40 

            

A/Indiana/08/11* 10 80 10 <10 40 20 1 280 < 10 160 < 10 < 10 

H3N2 vaccine strains 

A/Port Chalmers/73 320 640 80 20 320 160  640 640 20 10 

sw/Belgium/220/92 640 2560 320 160 1 280 1 280  80 320 160 40 

sw/Bakum/1769/03 1 280 5 120 640 160 2 560 2 560  160 320 160 80 

*HI tests against A/Indiana/08/11 were performed with turkey red blood cells instead of chicken red blood cells. 
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3) The Laboratory of Virology at Ghent University has performed a preliminary experiment to 

examine the extent of cross-protection between H3N2 SIVs from Europe and the North American 

TR H3N2 (cluster IV). A group of four conventional, influenza-negative pigs was inoculated 

intranasally with sw/Gent/172/08 at the age of six weeks. Eleven weeks later, the pigs were 

challenged with sw/Ontario/33853/05 by the intranasal route. Table 6 shows the serological results 

at the time of challenge with the North American H3N2 SIV.  

Table 6:  Serological profile 11 weeks after inoculation with sw/Gent/172/08 

Pig no Antibody titers to 

sw/Gent/172/08 sw/Ontario/33853/05 

HI VN NI HI VN NI 

1 80 128 320 10 2 < 10 

2 160 384 640 10 3 < 10 

3 80 128 80 <10 < 2 < 10 

4 80 128 80 20 < 2 < 10 

Geomean 95 168 190 10 2 < 10 

HI: haemagglutination inhibition test; VN: virus neutralisation test; NI: neuraminidase inhibition test 

 

Table 7 shows virus titers in nasal swabs of the individual pigs during the first week post challenge. 

There was no challenge control group in this preliminary study, but TR H3N2 SIV and other SIVs are 

usually detected in nasal secretions from day 1 through to day 5 or 6 post challenge. Although the pigs 

had minimal cross-reactive antibody titers against the challenge virus before challenge, excretion of 

the challenge virus was undetectable in three of the four pigs. 

Table 7:  Nasal virus excretion after challenge with sw/Ontario/33853/05 in pigs with infection 

immunity to sw/Gent/172/08 

Pig no. 

Day post challenge 

0 1 2 3 4 5 6 7 

1 < 1.7* < 1.7 1.7 3.5 1.8 < 1.7 < 1.7 < 1.7 

2 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 

3 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 

4 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 < 1.7 

Mean < 1.7 < 1.7 < 1.7 2.1 < 1.7 < 1.7 < 1.7 < 1.7 

* Virus titer (log10 TCID50/100 mg) 

 

These data (Kristien Van Reeth, unpublished data) indicate that cross-protection can occur between 

two given influenza viruses with important genetic and antigenic differences in the HA and NA and 

other viral genes, and in the absence of cross-reactive HI antibodies in serum. The immune 

mechanisms mediating this cross-protection remain to be determined, but they will probably include 

mucosal antibodies and cell-mediated immune mechanisms. 

Based on these results, it appears that a single infection with a European H3N2 SIV will not induce 

cross-reactive serum antibodies against H3N2v that can be detected in HI, VN or NI tests. However, 

the data shown in Tables 6 and 7 further support the notion that infection with a European H3N2 SIV 

can, in the absence of detectable cross-reactive antibodies in serum, induce partial cross-protection 

against the North American TR H3N2 SIV and H3N2v. 

It is unlikely that a single infection with a European H3N2 SIV would induce cross-reactive antibodies 

(detectable by HI, VN or NI tests) against TR H3N2 or the closely related H3N2pM. 

Preliminary data, however, support the notion that infection with a European H3N2 SIV may induce 

partial cross-protection against the North American TR H3N2 SIV and H3N2pM, even in the absence 

of detectable cross-reactive antibodies in serum, indicating that cell-mediated immunity or mucosal 
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immunity can also contribute to protection. 

It is expected that a history of previous SIV infection in a herd would reduce the disease impact of an  

infection with H3N2v/H3N2pM. However, because of the antigenic differences between H3N2pM 

and the H3N2 viruses that have been circulating in European pigs since the mid-1980s it is considered 

likely that H3N2pM would have the potential to cause disease and to become endemic in the European 

pig population, 

8.1. Cross-protection against H3N2pM using current European swine influenza vaccines in 

EU pigs 

8.1.1. General information on SIV vaccines 

Commercially available SIV vaccines are inactivated vaccines with an adjuvant. Most vaccines are 

whole virus preparations with an oil-based adjuvant. However, unlike human influenza vaccines, SIV 

vaccines are not standardised for antigenic dose and vaccine strains. In keeping with the antigenic and 

genetic differences between SIVs in Europe and North America, the vaccines for each geographic 

region are produced locally and they contain entirely different strains. Within each continent, the 

vaccine strains may differ among different products; the exact adjuvant formulation and antigen dose 

may also vary. Autogenous vaccines are used in the USA but not in Europe. 

The immune response induced by these killed influenza vaccines is fundamentally different from that 

induced by infection with live influenza virus and it consists mainly of serum antibody to the viral HA. 

In theory, the vaccines should also induce antibodies to the NA, but the NA antibody response to 

human influenza vaccines appears to be inconsistent (Dormitzer et al., 2011) and there are no data for 

SIV vaccines. Unlike an infection with live influenza virus, the vaccines fail to induce mucosal 

antibodies or virus-specific CD8+ T cells and a cytotoxic T lymphocyte response. On the other hand, 

serum HI and VN antibody titers are generally higher after a double vaccination of SIV-naive pigs 

than after infection (reviewed in Van Reeth and Ma, 2012). The antibodies are passively transferred to 

the mucosae of the respiratory tract by transudation, where they can contact and neutralise influenza 

virus. The process of transudation of serum IgG is supposed to be more efficient in the lung than in the 

nasal mucosa (reviewed in Graham and Crowe, 2007). It is therefore believed that killed SIV vaccines 

mainly reduce pulmonary virus replication and the associated disease, whereas reduction of virus 

replication in the upper respiratory tract and prevention of virus transmission are more difficult to 

achieve. In general, post-vaccination HI antibody titers in the serum of individual pigs correlate with 

the reduction in lung virus titers upon intratracheal challenge, provided that HI tests are performed 

against the challenge strain (reviewed in Van Reeth and Ma, 2012). High HI titers may completely 

block virus replication in the lungs, while lower titers reduce lung virus replication sufficiently to 

prevent the typical symptoms, which are highly dependent on the viral load in the lungs. In some SIV 

vaccination-challenge studies (using various challenge methods), nasal virus excretion was also 

reduced (Macklin et al., 1998; Kitikoon et al., 2006; Lee et al., 2007) or blocked (Larsen et al. 2001; 

Kitikoon et al., 2009). Virus transmission to or from vaccinated pigs is not traditionally assessed, but 

one recent study showed a significant reduction of transmission from unvaccinated, challenged pigs to 

pigs vaccinated with a commercial SIV vaccine (Romagosa et al., 2011). 

Table 8 presents an overview of the major commercial SIV vaccines in Europe in 2011. The genetic 

relationship between the HA of the H3N2 strains used in European SIV vaccines and H3N2v is shown 

in Table 9. 
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Table 8:  Commercially available swine influenza virus vaccines in Europe 

Manufacturer 
Product 

name 
Influenza virus strains Adjuvant 

Antigenic content
(d)

 per 

vaccine dose 

Merial Gripovac
(a)

 
A/New Jersey/8/76 (H1N1) 

A/Port Chalmers/1/73 (H3N2) 
Oil 

H1N1: ≥ 1.7 HIU 

H3N2: ≥ 2.2 HIU 

Pfizer Olot Suvaxyn Flu 
sw/Netherlands/25/80 (H1N1) 

A/Port Chalmers/1/73 (H3N2) 
Oil 

H1N1: 4 μg HA 

H3N2: 4 μg HA 

Hipra Gripork 
sw/Olost/84 (H1N1) 

A/Port Chalmers/1/73 (H3N2) 
Oil 

H1N1: 3  10
7
 EID50 

H3N2: 2.5  10
7
 EID50 

Impfstoffwerk 

Dessau-Tornau 

Respiporc 

Flu
(b) 

sw/Belgium/230/92 (H1N1) 

sw/Belgium/220/92 (H3N2) 

Aluminium 

hydroxide -  

oil 

H1N1: ≥ 256 HAU 

H3N2: ≥ 256 HAU 

Impfstoffwerk 

Dessau-Tornau 

Respiporc 

Flu3
(b),(c) 

sw/Haselunne/2617/03 (H1N1) 

sw/Bakum/1769/03 (H3N2) 

sw/Bakum/1832/00 (H1N2) 

Carbomer 

H1N1: ≥ 10
7 
TCID50 

H3N2: ≥ 10
7 
TCID50 

H1N2: ≥ 10
7 
TCID50 

(a) Production stopped in 2010. 
(b) Produced in cell culture; other vaccines are produced in eggs. 

(c) The vaccine is marketed by Merial under the trademark Gripovac 3. 
(d) HIU, haemagglutination inhibiting units as determined by measuring the HI antibody response after administration of the 

vaccine to pigs. 

HAU, haemagglutinating units before inactivation as determined in a haemagglutination assay with chicken red blood cells; 

TCID50, tissue culture infectious dose 50 % before inactivation; EID50, egg infectious dose 50 % before inactivation. 

8.1.2. Protection against H3N2pM viruses using commercially available North American and 

European SIV vaccines 

A study was performed to evaluate the efficacy of the US commercial inactivated SIV vaccines 

against challenge with a swine reassortant virus rH3N2p that contains the A(H1N1)pdm09 matrix 

gene (Loving et al., 2013). The effectiveness was evaluated by the capacity by which vaccinated-

challenged pigs prevented aerosol transmission to naive pigs in an indirect contact model. One vaccine 

provided significant partial protection, as measured by reduction of nasal virus titers in vaccinated as 

compared with non-vaccinated pigs. Two other vaccines provided limited efficacy. None of the 

vaccines was able to prevent transmission of virus to naive pigs in an indirect contact model. Clinical 

signs were not observed either in the vaccinated-challenged pigs or in the unvaccinated controls. It 

was concluded that the vaccines may reduce viral shedding, but none was able to prevent indirect 

transmission of rH3N2p challenge virus to naive pigs. 

Table 16 in Appendix A gives a detailed overview of the major licensed SIV vaccines in the USA in 

2011. The vaccines contain at least one H3N2 strain and one vaccine contains two different H3N2 

strains. The H3N2 vaccine strains belong to the so-called cluster I or cluster IV of the North American 

swine H3N2 lineage. Compared with the European vaccines, the H3 of these vaccine strains and of 

cluster IV strains in particular is much more related to H3N2pM. The H3 of the cluster IV strains 

shows about 97 % amino acid identity with that of the H3N2pM virus. 

Experimental vaccination-challenge studies with European SIV vaccines and H3N2pM virus have so 

far not been performed. Therefore one can only try to estimate the extent of cross-protection based on 

1) serological examinations of pigs vaccinated with European vaccines and 2) extrapolation from 

vaccination-challenge studies with European vaccines and heterologous H3N2 SIVs.  

1) Table 5 shows antibody titers against different H3N2 viruses, including H3N2pM, in serum 

from pigs vaccinated with different European SIV vaccines. Sera were collected two weeks 

after a double vaccination (three- to four-week interval) of conventional influenza negative 

pigs. Only one vaccine, based on Port Chalmers/73 (Suvaxyn Flu), induced cross-reactive HI 

antibodies against H3N2pM. Cross-reactive antibodies were undetectable with the other Port 

Chalmers/73-based commercial vaccine. This demonstrates that the potency of commercial 
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SIV vaccines is determined not only by the vaccine strain, but also by other factors such as the 

adjuvant and antigen amount, which differ between different commercial products. 

2) In challenge studies with European SIVs, several of these commercial vaccines have shown 

the ability to provide protection against H1N1 and H3N2 SIVs isolated over many years and 

with considerable antigenic and genetic drift compared to the vaccine strains. Independent 

studies with Port Chalmers/73-based vaccines showed significant virological protection 

against challenge with H3N2 SIVs isolated in 1984, 1996, 1998, and 2008 (reviewed in Van 

Reeth and Ma, 2012). The challenge viruses were 84–92 % similar to the Port Chalmers strain 

in amino acid sequence of their HA1. As shown in Table 9, the H3N2v virus shows only 79–

83 % identity with the European H3N2 vaccine strains.  

Table 9:  Genetic relationship between the H3N2 strains in European SIV vaccines and H3N2v 

 % identity with H3 of A/Indiana/08/11 

Virus strain Nt aa 

A/Port Chalmers/1/73 86 83 

sw/Belgium/220/92  82 81 

sw/Bakum/IDT1769/2003 82 79 

nt, nucleotide; aa, amino acid. 

 

In summary, the HA of the H3N2pM is genetically and antigenically very distinct from that of H3N2 

viruses strains present in the European SIV vaccines. It is therefore to be expected that the latter 

vaccines will provide suboptimal, if any, protection against H3N2pM. Still, some protection cannot be 

excluded, as demonstrated by the finding that one of the European vaccines based on the Port 

Chalmers strain/73 was able to induce a cross-reactive HI antibody titer of 160 (see Table 5). 

Difference in efficacy between vaccines based on the same strain may be due to aspects at preparation 

such as antigen quantity and type of adjuvant. 

Cross-infection studies with the well-known endemic European H3N2 SIVs indicate that prior 

infection with these viruses may confer some cross-protection against infection with the 

H3N2pM/H3N2v viruses.  

Immunity resulting from vaccination with commercially available European SIV vaccines is expected 

to provide no or only a low level of cross-protection against infection with the H3N2pM influenza 

viruses whereas vaccines based on the North American swine H3N2 viruses would offer superior 

protection. Such vaccines may significantly reduce H3N2 replication in the lungs and disease in the 

individual animal. However, voluntary vaccination of pigs with existing vaccines has not succeeded in 

halting the circulation of SIV in the swine population and this limitation is also considered valid for 

H3N2pM. 

According to the available data, H3N2pM and H3N2v are not present in the European pig population 

and no measures are needed with regard to vaccination.  

8.2. Cross-immunity in humans 

The H3N2v virus differs antigenically from currently circulating H3N2 human viruses, thus seasonal 

influenza vaccines are not expected to provide significant protection. Only modest increases in cross-

reactive antibodies to H3N2v viruses were detected in individuals of any age who received seasonal 

trivalent inactivated vaccine (CDC, 2012; Skowroski et al., 2012). The HA of H3N2v has an amino 

acid homology of 89 % compared with current human seasonal influenza H3N2 vaccine virus 

(A/Perth/16/2009) (Lindstrom et al., 2012). Lina et al. (2011) compared the HA1, which contains all 

HA antigenic sites, of various 2011 human isolates of H3N2v to all human H3N2 vaccine reference 

strains since 1972 to 2011 and a representative swine TR H3N2 isolate from 2010. The group of 

human strains isolated between 1986 and 1998 presented the highest homology to H3N2v, with 
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A/Wuhan/359/95 being the most closely related strain (5.5 % nucleotide divergence, consistent with 

the time of emergence of TR H3N2 in the USA). Human strains isolated before 1983 and after 1999 

had nucleotide divergences ranging from 8 to 11 %, with current human H3N2 vaccine strain 

A/Perth/16/2009 having a 9.3 % nucleotide divergence with H3N2v. Lindstrom et al. (2012) 

evidenced no measurable inhibition to H3N2v by ferret antiserum primed against the current human 

seasonal influenza H3N2 vaccine virus (A/Perth/16/2009). Houser et al. (2013) challenged ferrets, 

previously vaccinated with the 2011–2012 trivalent inactivated influenza vaccine (TIV), with a 2011 

H3N2v human isolate and suggested that this vaccine may provide minimal to no cross-protection 

against H3N2v virus. 

Evidence from serological studies indicates that young children can be expected to have little 

immunity to these H3N2v viruses (CDC, 2012d; Skowronski et al., 2012; Waalen et al., 2012). 

However there is evidence to suggest that young adults, aged 20 to 40 years, may have cross-reactive 

antibodies to H3N2v, most likely due to exposure to human H3N2 viruses that circulated in the early 

to mid-1990s. Middle-aged (> 50 years old) and older adults have lower levels of cross-protective 

antibodies and may therefore be more susceptible.  

8.3. Influence of H3N2 naivety or immune status in the European swine population related 

to possible H3N2pM entry 

The level of immunity to H3N2 virus in European pigs varies across regions and the following three 

scenarios are the most likely, based on the current geographical prevalence of SIVs: 

1) A totally SIV-naive pig population that has not been infected with any of the European SIVs 

circulating in pigs in Europe. 

It is expected that the introduction of H3N2pM would cause a typical clinical picture as has been 

observed when the European pig population was for the first time confronted in 1979 with the H1N1 

avian-like influenza virus or in the mid-1980s with the human Port Chalmers/73-like H3N2 

reassortant. In this case, influenza symptoms are observed, characterised by an acute and a rapidly 

spreading respiratory disease, high fever, anorexia, inactivity, tachypnea, dyspnea and coughing.  

2) An H3N2-naive pig population which has not been infected with the European H3N2 subtype but 

which has been infected with the other endemic SIV subtypes (H1N1 and/or A(H1N1)pdm09 

and/or H1N2). The European H3N2 subtype is presently not detected in some Member States or in 

regions within some Member States (see Table 1 from ESNIP 3). 

It is to be expected, in such cases, that a limited cross-protection might be observed despite the 

absence of HI or VN antibodies to H3N2. Limited cross-protection has previously been documented 

between European H1N1, H1N2 and H3N2 viruses (Heinen et al., 2001; Van Reeth et al., 2003, 2006; 

reviewed in Van Reeth and Ma, 2012)  

If the H3N2pM were to enter such pig populations, the clinical disease would be expected to be milder 

than that described above for naive pigs, with less virus being produced in the respiratory tract, and for 

a shorter time.  

3) A pig population which is immune after infection with all SIVs (H3N2 virus included) 

endemically present in Europe and/or a population which has been vaccinated with European 

vaccines.  

If H3N2pM were to enter such a population, infection immunity would be expected to provide a 

certain but variable and unreliable degree of cross-protection. Earlier studies (reviewed in Van Reeth 

and Ma, 2012) and data presented in Table 7 confirm that, in the absence of cross-reactive HI 

antibodies in serum, cross-protection can occur between the US TR H3N2 and the EU H3N2 influenza 

viruses, despite substantial genetic and antigenic differences in the HA and NA and in other viral 
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genes. However, no challenge experiments have been performed to evaluate the degree of cross-

protection against H3N2pM. On the other hand, when only vaccination immunity induced by 

European SIV vaccines is present, and thus in the absence of infection immunity, no or only a very 

low level of cross-protection against H3N2pM is to be expected. 

In this scenario 3, with European H3N2 infection immunity, it is to be anticipated that the H3N2pM in 

the European swine population will cause infections with possible reduced virus replication in the 

respiratory tract and mild to subclinical respiratory disease with some fever, variable morbidity and no 

mortality.  

It should also be stressed that the level and effectiveness of cross-protection is expected to be very 

variable from one country to the other and from one farm to the other depending on the prevalence of 

SIV infections, the subtypes/lineages involved and the frequency of reinfections. 

Upon entry of H3N2pM into Europe, scenario 1 (no immunity to any of the SIVs) would lead to a 

typical influenza outbreak; scenario 2 (immunity only to SIV subtypes other than H3N2) would be 

anticipated to afford very limited cross-protection; and scenario 3 (immunity to one or more SIVs 

including H3N2 and/or immunity after vaccination) would be expected to provide a significant but 

varying degree of cross-protection.   

Because of the antigenic differences between H3N2pM and the H3N2 viruses that have been 

circulating in European pigs since the mid-1980s, it is considered likely that, should H3N2pM enter 

the European pig population, it would have the potential to cause disease, to spread and to become 

endemic. 

9. Emergence of a new pandemic strain from H3N2v 

A large array of viral, host and environmental factors influence intra- and inter-species transmission of 

influenza viruses. HA receptor-binding specificity, in conjunction with cellular receptor expression, 

influences host and tissue tropism (upper respiratory versus intestinal tract). However, other structural 

and non-structural proteins involved in replication and transcription of the viral genome also affect the 

host range, level of viral replication, temperature permissiveness and excreted titre (Neumann and 

Kawaoka, 2006; Yassine et al., 2010). Transmission and establishment of an infection in a population 

can also be influenced by the prevailing specific immunity of the population. 

Following the establishment of A(H1N1)pdm09 virus in domestic pigs worldwide (originating from an 

as yet unidentified source), a significant number of A(H1N1)pdm09 and enzootic swine influenza 

reassortants (involving both H1 and H3 subtypes) has been described over the last three years in the 

USA (Ducatez et al., 2011; Kitikoon et al., 2012; Nelson et al., 2012b), Canada (Tremblay et al., 

2011), Europe (Starick et al., 2012) and Asia (Fan et al., 2012; Liu et al., 2012a). H3N2pM is one 

example of a reassortant that has become established in US swine herds. This strain carries seven 

genes originating from TR H3N2 SIVs and the M gene from A(H1N1)pdm09, which originally 

derives from the Eurasian swine lineage (Garten et al., 2009). Thus, the presence of A(H1N1)pdm09 

in pigs constitutes a public health risk for the emergence of new influenza strains with pandemic 

potential (Chou et al., 2011). This strain is able to provide one or more genes to new reassortants that 

might increase transmissibility to humans of any subtype occurring in pigs, including H1, H3, H5 or 

H9 (Vijaykrishna et al., 2010; Liu et al., 2012). 

At present, two simultaneous and collaborating projects are developing risk assessment 

framework/tools for ranking influenza A viruses circulating in animals; namely the influenza risk 

assessment framework (IRAF) within the EFSA-funded project FLURISK and the CDC influenza risk 

assessment tool (IRAT). Data on epidemiological and virological risk factors are being gathered 

(through literature reviews and expert knowledge) to contribute to developing these evidence-based 
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tools. Components of these under-development assessments are presented in this document to 

contribute to the response to ToR5. 

9.1.  Inter-species transmission 

Influenza A viruses infect a large variety of species, including humans, wild and domestic birds, pigs, 

horses, seals, whales, cats, ferrets, dogs and mink. Generally, each strain shows a certain level of 

restriction to the host species in which it is circulating (Neumann and Kawaoka, 2006).  Inter-species 

transmission occurs readily among avian species and, more seldom, from the avian to the mammalian 

host. 

In order for a virus to transmit from an animal to humans, it has to be able to attach, replicate, 

counteract the host immune response and efficiently exit this new host. And in order to spread from 

human to human it has to be airborne. Each of these steps depends on polygenic interactions. 

Therefore, adaptation to a new host species usually requires a series of genetic adaptations to become 

successful, and these adaptations are the result of accumulating genetic changes (mutations and/or 

reassortment) that represent a complex polygenic viral trait (Forrest and Webster, 2010; Yassine et al., 

2010), which may take several years to occur (Smith et al., 2009). 

Most of the studies on influenza A adaptation to other species than their natural reservoir have been 

focused on the avian-to-human species jump and the mutations and reassortment deemed necessary for 

this event. Notwithstanding the probable emergence of A(H1N1)pdm09 from pigs, very few published 

studies are found regarding adaptation of swine viruses to humans, and data in this field of study are 

scarce. It is important to highlight, nonetheless, that human and swine influenzas share some common 

molecular markers (i.e. similar mutations arise in avian strains when replicating in swine and humans, 

e.g. HA mutations in the receptor-binding site (RBS), mutations in PB2). 

It is important to highlight that SIVs of different subtypes have been isolated not only from humans, 

but also from mink, waterfowl and turkeys. Proximity between farms or presence of other animals 

than swine (e.g. turkeys) in the farm have been theorised on several occasions to be the reason for the  

inter-species transmission, but no risk factors have been quantified (e.g. Olsen et al., 2003; Yassine et 

al., 2007; Gagnon et al., 2009; Tremblay et al., 2011). Few case–control studies, conducted either in 

Europe or in the USA, have been carried out to elucidate risk factors associated with SIV transmission 

to humans and occupational exposure has repeatedly been identified as a risk factor (Olsen et al., 

2002; Myers et al., 2006; Gerloff et al., 2009). So far, H3N2pM viruses have been isolated only from 

humans and the virological mechanisms behind this event or potential human-to-human transmission 

in the future are currently unknown. 

The CDC influenza risk assessment tool (IRAT) and the influenza risk assessment framework (IRAF) 

within the EFSA-funded project FLURISK take into account a range of virological characteristics as 

risk elements which are described below. 

9.2. Cellular receptors 

Influenza A viruses bind through the viral HA to N-acetylneuraminic acid, a type of sialic acid (SA) 

found on the glycan chains of host cellular receptors. Differential binding is observed depending on 

whether the SA is linked through the hydroxyl group of carbon-3 (α2–3) or carbon-6 (α2–6) of the last 

galactose on the glycan chain. Avian and equine viruses preferentially bind to receptors having the 

α2–3 glycosidic linkage, whereas swine and human viruses preferentially bind to receptors with α2–6 

linkage (Connor et al., 1994; Matrosovich et al., 1997). Mutations in or near the RBS of the virus may 

change their binding preference. Similar RBS mutations that shift receptor preference from α2–3 SAs 

towards α2–6 SAs are seen in human and swine strains, as both species present similar receptor 

distribution, α2–6 SAs being the predominant type in their upper respiratory tract. It has been 

suggested that an increase and/or shift in receptor preference towards α2–6 SAs is a prerequisite for 

human-to-human transmission (Matrosovich et al., 2000). Other receptor characteristics can influence 

binding affinity, such as the glycan species linked to the SA and glycan topology. The HA segment in 
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TR SIVs and thus in H3N2pM/v circulating in the USA derives from a human seasonal H3N2 virus 

and has retained the amino acid motif which confers α2–6 SA receptor preference, typically found in 

human seasonal strains (Pearce et al., 2012). Currently it is not known if the HA of SIV lineages needs 

further modifications to attach efficiently to human receptors. Nevertheless, it is important to highlight 

that several in vitro studies have evidenced similar attachment patterns to synthetic receptors between 

SIVs and seasonal human influenza viruses (both H1 and H3 subtype) (Bateman et al., 2010; Chen et 

al., 2011; Pearce et al., 2012). 

9.3. Replication and release 

Following binding of influenza virus to the host cell SA receptor, the virion is internalised in an 

endocytic vesicle and, as a result of several conformational modifications the ribonucleoprotein 

complex (RNP, i.e. viral RNA segments coated with the nucleoprotein (NP) and the RNA-dependent 

RNA polymerase: PB1, PB2 and PA; Bouvier and Palese, 2008), is released into the cytoplasm. 

Viruses rely on the host‘s intracellular machinery for replication, and the viral RNP requires adaption 

to numerous intracellular factors (Moncorgé et al., 2010). 

Like most swine and human strains, TR H3N2, including H3N2pM, carries mutations in the PB2 gene 

that are important for mammalian replication (Liu et al., 2012b). It is currently not known how, and if, 

swine strains need further mutations to gain overall efficient replication in humans. 

Progeny virions assemble and bud at the plasma membrane (Neumann et al., 2009). The NA 

contributes to the release of progeny virus from the host cell and prevents viral particle aggregation 

(Bouvier and Palese, 2008). The released viral progeny can then infect neighbouring cells or exit the 

host to infect a new organism. NA‘s functions are correlated with HA, and its substrate preference is 

in accordance with HA binding preference. Kobasa et al. (1999) identified a residue in the NA of N2 

human and European swine subtypes that increases preference towards α2–6 SA without affecting α2–

3 activity. As the NA in TR SIVs originates from a seasonal human influenza virus, and this residue is 

conserved in circulating H3N2 SIVs, including H3N2pM, it is reasonable to suggest that it serves the 

same function in H3N2v/H3N2pM. Nonetheless, the relative importance of this mutation in species 

jump is still to be ascertained. 

Virological characteristics governing airborne transmissibility are so far largely unknown. It has 

recently been proposed that the presence of the M gene from the Eurasian swine H1N1 lineage is 

possibly associated with the airborne transmission of A(H1N1)pdm09 virus (Chou et al., 2011). 

Additionally, both NA and M Eurasian genes may contribute to transmissibility and release of these 

viruses (Lakdawala et al., 2012). Point mutating the A(H1N1)pdm09 M gene to residues found in 

Eurasian and/or American TR swine lineages reduced plaque size, growth rate and overall virus 

replication (Bialas et al., 2012). On the other hand, an in vivo transmission study in ferrets infected 

with H3N2 strains isolated from human cases of swine influenza did not evidence a transmission 

ability difference between a human H3N2 isolate carrying the M gene of A(H1N1)pdm09 and two 

other H3N2 human isolates bearing a TR swine lineage M gene (see study by Pearce et al. (2012) in 

Section 5.4). Therefore, it is difficult to ascertain the role of the A(H1N1)pdm09-M gene within the 

H3N2v genetic background. 

HA, PB2 and NA and M mutations, mentioned throughout these sections, have not been studied in an 

H3N2v/pM genetic background; thus, their possible effect on the phenotype of these strains, as well as 

their possible contribution to potential human-to-human transmission, is currently unknown. 

Nevertheless, an H3N2v isolate has been shown to be able to replicate efficiently in human cells in 

vitro and in ferrets in vivo, and to be transmitted through respiratory droplets to naive ferrets (Pearce et 

al., 2012). Further work, using a broader spectrum of H3N2v, H3N2pM and TR H3N2 isolates, is 

needed to clarify the transmission phenotype of this strain (both using naive ferrets and ferrets primed 

against human H3N2 seasonal strains).  
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In addition, all of these molecular markers (or similar) are found in all swine strains, except for the 

A(H1N1)pdm09-M gene, which is found only in rH3N2p viruses circulating in swine in the USA (and 

in a subset of isolates in Europe and Asia). Therefore, it is currently unknown what makes H3N2pM 

more prone to jump to humans than other rH3N2p or TR H3N2 strains. It is not possible to state which 

modifications (in terms of further reassortment and/or mutations) this strain needs for acquiring 

human-to-human transmission (owing to the intricacy of the issue and scientific data paucity) and 

whether its evolution will ever lead to such an event.  

It is currently unknown if H3N2v (and SIVs in general) is able to modulate the human innate immune 

response as efficiently as a human seasonal strain. Regarding adaptive immune response, as already 

described in Chapter 8 (Section 8.4), there is an age-related presence of cross-protective antibodies 

against H3N2v in the human population, with children < 10 years old being most susceptible and, to a 

lesser extent, adults > 50 years old. Less vulnerable are people aged 20–40 years (CDC, 2012d; 

Skowronski et al., 2012; Waalen et al., 2012). Therefore, this may represent a barrier to the human-to-

human transmission of this virus. 

9.4. Animal models for human disease 

At present, detailed studies of the relevance of the various molecular markers to pathogenesis and 

transmission in influenza virus can be undertaken only in animal models. As a model for influenza in 

man, the ferret is regarded as the most appropriate because (1) it is naturally susceptible to all strains 

of influenza virus without the need for prior adaptation, (2) clinical signs and illness parallel those 

which are produced in humans infected with the same strains and (3) the distribution of receptor types 

in the respiratory tract is similar to that in humans (i.e. predominance of α2–6 receptors in the upper 

tract and both α2–3 and α2–6 receptors in the lower tract). As already described in Section 5.4 and 

referred to in Section 9.3, an in vivo study in ferrets evidenced both TR H3N2 and H3N2v human 

isolates as capable of respiratory transmission between ferrets. This does not reflect exactly what has 

been seen in the field at the animal–human interface and highlights that aerosol transmission is a 

polygenic trait and the complexity of studying influenza transmission in the laboratory.  

9.5. Significance of molecular markers 

A large number of mutations and molecular markers of the influenza virus genes have been linked to 

various properties of the virus, such as receptor binding, host and tissue tropism, virulence, modulation 

of the host immune response, and efficiency of replication and transmission (Reperant et al., 2012). In 

most cases, however, the phenotypic manifestation of particular characteristics is polygenic and does 

not rely on single mutations. Therefore, it cannot be concluded that a specific mutation will have 

exactly the same phenotypic consequence regardless of the genetic make-up of the strain within which 

it is found or that the same mutation will be essential in each and every transmission event (e.g. it was 

commonly believed that the PB2-627K mutation was a fundamental marker of mammalian adaptation 

and the emergence of A(H1N1)pdm09, carrying other mutations in the PB2 than 627, demonstrated 

the unpredictability of these viruses and the difficulty of applying molecular markers as paradigms to a 

broad influenza spectrum). Although some human-adaptive signature amino acids can be found in 

H3N2v (see previous paragraphs for reference), as has been formerly highlighted, the phenotypic 

consequences of these genetic markers have been studied in genetic backgrounds other than H3N2v 

and we cannot be certain that these mutations will have the same effect on this strain. Neither can it be 

assumed that the emergence of mutations not yet seen in H3N2v and which have been recognised as 

important for human adaptation in other zoonotic strains (e.g. PB2-627K) will be of any significance 

for the emergence of a pandemic virus from H3N2v. 

9.6. Reassortment 

Since the genome of influenza A consists of eight separate RNA molecules (the genome segments), 

mixed infection by two viral strains within the same cell can lead to reassortment. The rules that 

govern reassortment dynamics are largely unknown. The emergence and characteristics of progeny 

viruses are unpredictable and may therefore contain previously unknown genetic profiles. 
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Viruses possessing the triple reassortant internal gene (TRIG) cassette with several combinations of 

surface proteins (H1, H3, N1, N2) have been circulating in swine in the USA since 1998, and their 

emergence led to an end to the 80 years of predominance of classical swine H1N1 virus circulation. 

This has led Ma et al. (2009) and Kimble et al. (2011) to suggest that this genomic combination allows 

for easy surface protein reassortment and may endow an infection/transmission advantage on swine 

viruses possessing the TRIG cassette. H3N2v possess all TRIG except for the M gene, which derives 

from A(H1N1)pdm09. The role of the A(H1N1)pdm09-M gene within the H3N2v/pM genetic 

background and of potential further reassortment is currently not known. 

New influenza virus strains emerge through natural genetic reassortment and/or mutations. 

Past experience has shown that reassortment events involving inter-species transmission are necessary 

steps in the evolution of new pandemic strains. Studies in animal models have shown that the 

correlation between the molecular markers and biological properties is not absolute. Virulence and 

pathogenesis are not the properties of a single gene or protein. They are polygenic and the specific 

gene constellation is also important.  

Currently, the number and type of mutations, as well as the genetic constellation needed for efficient 

human-to-human transmission, are unknown. Consequently, no single genetic marker or genetic 

constellation can be reliably associated with increased pathogenicity or transmissibility of influenza 

virus strains in humans.  

10. Risk of introduction of H3N2v/H3N3pM in EU 

EU legislation on imports from third countries of ungulates including breeding pigs is laid down in 

Regulation (EU) No 206/2010.
8
 The USA was not included in the list of third countries from where 

imports of breeding pigs into the EU may be authorised until a recent amendment of the import rules 

by Regulation 102/2013.
9
 This amendment introduced specific provisions in relation to vesicular 

stomatitis, which include a pre-export quarantine of pigs intended for export of at least 30 days in a 

quarantine station, during which time the pigs must be tested for that disease. The USA was thus 

included in 2013 in the list of third countries from where imports can take place provided the 

supplementary guarantees for vesicular stomatitis are fulfilled. 

In addition, after importation the animals must be conveyed without delay to the holding of 

destination, where they shall remain for a minimum period of 30 days before further movement 

outside the holding, except in the case of animal dispatched directly to the slaughterhouse or of 

animals transiting the EU en route from one third country to another third country. However, in case 

pigs are moved to another Member State official animal health examination and certification before 

dispatch is required. 

There are no legal requirements determining if, during this 30-day period or part thereof, imported 

pigs must be kept separate from pigs already present on the holding of destination.  

ToR2 concerns the following questions: What is ―the current situation in the EU as regards the risk of 

a possible introduction of influenza A (H3N2v) virus in particular to EU pig herds and the diagnostic 

capabilities to early detect an incursion?‖. The question on risk of introduction was split into two parts 

and the risk is understood as likelihood and does not include consequences: 

                                                      
8 Commission Regulation (EU) No 206/2010 of 12 March 2010 laying down lists of third countries, territories or parts 

thereof authorised for the introduction into the European Union of certain animals and fresh meat and the veterinary 

certification requirements. OJ L 73, 20.3.2010, p. 1-121.  
9  Commission Implementing Regulation (EU) No 102/2013 of 4 February 2013 amending Regulation (EU) No 206/2010 as 

regards the entry for the United States in the list of third countries, territories or parts thereof authorised for the 

introduction of live ungulates into the Union, the model veterinary certificate ‗POR-X‘ and the protocols for testing for 

vesicular stomatitis. OJ L 34, 5.2.2013, p. 4-11.  
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Part 1: What is the likelihood of viable H3N2v (humans) or H3N2pM (pigs) virus entering the EU, 

followed by exposure and infection of the first pig holding? 

Part 2: What is the likelihood of H3N2pM (pigs) virus spreading through the movement of infected 

pigs from the first infected holding followed by exposure and infection of the second holding? 

The consecutive events that may lead to the infection of a first holding (Part 1) and spread to a second 

holding (Part 2) in the EU are combined into two risk pathways (Section 10.2), the first for two 

scenarios, after taking into account several assumptions (Section 10.1.1).  

10.1. Methodology 

Owing to data gaps and the fact that some events in the risk pathway are hypothetical, since the import 

of breeding pigs is only newly implemented, it was decided to use a qualitative risk assessment 

approach. Qualitative approaches for risk assessment have proved useful for many examples of animal 

health-related questions (EFSA, 2011, 2013) and provide a useful tool for risk managers to identify 

ways to mitigate the risk and to communicate their decisions.  

10.1.1. Assumptions 

The following assumptions were made while developing this risk assessment: 

 It is expected that only a limited number of breeding pigs will be imported, as they are 

primarily imported for genetic improvement. These breeding pigs are moving from holdings 

in the USA that are usually of a high biosecurity standard to pig breeding holdings in the EU 

of comparable biosecurity standard. From these holdings, after having remained at the holding 

of destination for a minimum period of 30 days, imported pigs can be moved to pig holdings 

of any biosecurity level. 

 It is assumed that both infectious humans and infectious pigs would be moved from the USA 

by aeroplane, and the entire duration of the journey was expected to take only one or two 

days. Infectious humans can possibly infect pigs in holdings with a high biosecurity level, or 

pigs in holdings with a lower level of biosecurity, including free-range holdings.  

 There is no exposure posed by pig products (no viraemia), semen, wild boar or migratory 

birds.  

 The likelihood of introduction of the virus into the EU through illegal import of live breeding 

pigs cannot be excluded a priori (even though we can reasonably assume it to be highly 

unlikely), but there is no information available and therefore this path is not included in the 

risk assessment pathway. 

 Surveillance for detection of infectious humans at the airport checks is not feasible (according 

to ECDC) and therefore this event was not included in the risk assessment pathway. 

 Although a few cases of human-to-human transmission have been reported, no sustained 

human to human transmission has been observed (see Section 5.4). Therefore, amplification of 

the infection among humans was not considered in the model. 

 Humans travel directly from the USA to the EU without intermediate stops.  

10.1.2. Model input parameters 

The likelihood that the several events in the risk pathway will occur is known to depend on multiple 

risk factors. The estimates of these likelihoods were initially assessed by considering available 

relevant published data or information. Whenever there were no published data or information, those 
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likelihoods were estimated based on experts‘ opinion. Experts were asked to give likelihood estimates 

for the events in the risk pathway, in response to specific questions, as presented in Table 17 in 

Appendix B, according to the categories presented in Table 10. Then, the final estimate of the 

likelihood of each event was based on the consensus value agreed between the Working Group 

members. These likelihood estimates are indicated in Table 17 in Appendix B and also in the risk 

pathway presented in Figures 1, 2 and 3, inside the pink boxes ( ).  

Table 10:  Definition of likelihood categories 

Likelihood 

category 

Interpretation  

Negligible (N) Probability of event sufficiently low to be ignored or event only possible in exceptional 

circumstances  

Low (L) Occurrence of event is a possibility in rare cases 

Moderate (M) Occurrence of event is a possibility  

High (H) Occurrence of event is clearly a possibility  

 

Besides estimating the likelihoods for each event to happen, the uncertainty associated with the 

estimate considered was given to prevent misinterpretation and over-confidence in the outcomes of the 

risk assessment and to highlight areas with poor data quality or disagreement between experts. 

Definitions of these uncertainty categories are presented in Table 11. These uncertainty values are 

indicated in Table 17 in Appendix B and also in the risk pathway presented in Figures 1, 2 and 3, 

inside the blue boxes in the risk pathway presented in Figures 1 and 2 ( ).  

Table 11:  Definition of uncertainty categories 

Uncertainty 

category  

Interpretation  

Low (L) Solid and complete data available; strong evidence provided in multiple references; authors 

report similar conclusions  

Medium (M) Some but no complete data available; evidence provided in small number of references; 

authors report conclusions that vary from one another  

High (H) Scarce or no data available; evidence is provided not in references but rather in unpublished 

reports, based on observations, or personal communication; authors report conclusions that 

vary considerably between them  

10.1.3. Combination of likelihood estimates 

The risk model formalises the combination of likelihood estimates downstream through the events of 

the risk pathway (hierarchical model). To construct the general model, three components were 

defined: 

 deriving total likelihood estimates of events influenced by multiple independent horizontally 

related events in the pathway (horizontally related events indicate that these events may 

happen at the same time); 

 combining likelihood estimates of dependent vertically related events in the pathway 

(vertically related events indicate that the events happen chronologically subsequent of each 

other); 

H

L 
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 combining likelihood estimates of non-dependent vertically related events in the pathway.  

A combination matrix is used to combine vertically related events in the pathway. It uniquely defines 

the resulting likelihood estimate for any binary combination of input likelihoods. Combination 

matrices standardise the evaluation of resulting risk along events constituting a specific pathway. 

Hence, they may contribute to the reliability/repeatability of the overall risk estimation. Once the rules 

in the matrix are established, application of this approach to sequentially combine the likelihoods may 

limit the need to interpret the outcomes. Therefore, the specific combination rules implemented in the 

model by combination matrices (Tables 13 and 15) was discussed and agreed by the Working Group.  

10.1.3.1. Deriving total likelihood estimates of events influenced by multiple independent, 

horizontally related events in the pathway  

If several independent events which could happen at the same time contribute to the likelihood 

estimate of a given event in the risk assessment, the greatest likelihood estimate of these independent 

events was used in the downstream calculations and determined the likelihood estimate of the given 

event. 

Table 12:  Example 1: Exposure of the first pig holding in the EU to H3N2pM/H3N2v  

 

Three independent horizontally related events in the pathway may contribute to the event in the risk 

pathway ―the exposure of pigs at the first pig holding in the EU to H3N2pM/H3N2v‖, namely contact 

between infected humans (non-professionals and/or professionals) and pigs and/or contact between an 

infected imported pig and a susceptible pig (in a EU pig holding). These events could happen at the 

same time. To determine the risk estimate of the event ‗exposure of the first pig holding‘, the greatest 

likelihood is used to define the overall risk. In the example below, the likelihood for exposure of 

susceptible pigs is low (N + L + N = L).  

10.1.3.2. Combination of likelihood estimates of dependent vertically related events in the pathway 

If a risk pathway consists of events that are completely dependent on the outcome of the previous 

event, then the principles of conditional probabilities can be applied. There are animal health-related 

examples where such combination matrices were applied (EFSA, 2011, 2013) and the risk matrices 

described by Wieland et al. (2011) were used to combine pairs of events in the risk pathway that 

described an exclusive cascade of events (e.g. ―exposure of the first holding‖ followed by 

―susceptibility of pigs from first holding‖ leads into ―first infected holding‖). Table 13 provides the 

matrix applied to combine likelihood estimates of such cascading, or dependent, events.  

With this matrix, increase of likelihood along a pathway is not possible. The matrix principle transfers 

the multiplication of conditional probabilities to combinations of qualitative likelihood levels.  

 

 

Event in risk pathway Event Probability that 

event will occur 

Exposure of the first pig holding in 

the EU to H3N2pM/H3N2v  

Non-professional in contact with pigs of first 

pig holding 

N 

Professional in contact with pigs of first pig 

holding 

L 

Breeding pig of US in contact with pigs of 

first pig holding 

N 
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Table 13:  Combination matrix 1, used to evaluate two likelihood estimates based on the assumption 

that the second event is conditional on the first event  

Event 1 Event 2 

Negligible Low Moderate High 

Negligible Negligible Negligible Negligible Negligible 

Low Negligible Low Low Low 

Moderate Low Low Moderate Moderate 

High Low Moderate Moderate High 

Matrix 1, based on Wieland et al. (2011), was adapted to four likelihood categories, and agreed by the Working Group. 

Application: if event 1 has an estimate ―low‖ and event 2 an estimate ―moderate‖, the combined estimate of the sequence 

event1 and event 2 will be ―low‖. 

 

The matrix was also applied to combine events assessing the efficacy of risk mitigation measures. 

Usually these measures have to be assessed in a logical order (clinical signs, identification animal by 

vet at border inspection post and effective measures to mitigate the further progression along the 

pathway) leading to an effective case detection and response. The corresponding likelihood estimates 

of those consecutive events are combined with matrix 1 (Table 13). 

Table 14:  Example 2: Detection and response at BIP exporting country 

 

It is assumed that there are three events representing the effectiveness of confirming a case and every 

event depends on a previous one (identifying a case, reporting a case and confirming a case). 

According to the model, combination matrix 1 is applied stepwise to combine the estimates. In the 

example shown above, the probability of being effective in confirming a case was ―low‖. In this case 

the risk estimate for detection and effective response at the border inspection post (BIP) of the 

exporting country will be L x H x H = L. 

10.1.3.3. Combination of likelihood estimates of non-dependent events that are vertically related in the 

risk pathway 

This approach considers pairs of events in the risk pathway that describe independent events. 

Where an increase in the overall risk is possible between events, for example because of an increased 

number of infected animals (spread of disease), there is a need to reflect such a scenario in the 

combination matrix used to combine the likelihood estimates of non-dependent events. An example of 

such a matrix was presented by Zepeda-Sein (1998) (Table 15). 

Table 15 provides the matrix applied to combine likelihood estimates of such non-dependent events. If 

the risk estimate of one event is ―low‖ but that of the second event is ―high‖, the combined likelihood 

will be ―moderate‖. Hence, the overall risk is assumed to be between ―low‖ and ―high‖. The matrix 

principle transfers the average of independent probabilities to combinations of qualitative risk levels.  

 

 

Event in risk pathway Event Probability that 

event will occur 

Detection and response at 

BIP exporting country 

Infectious pig to be exported shows clinical signs L 

Animal with clinical signs is/gets identified H 

Effective measures in place to prevent infected pig to be 

exported 

H 
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Table 15:  Combination matrix 2 is used to evaluate two likelihood estimates that were independent 

of each other.  

Event 1 Event 2 

Negligible Low Moderate High 

Negligible Negligible Low Low Moderate 

Low Low Low Moderate Moderate 

Moderate Low Moderate Moderate High 

High Moderate Moderate High High 

Matrix 2 was based on Zepeda et al. (1998) and agreed by the working group. Application: if event 1 has estimate ―low‖ and 

event 2 has estimate ―moderate‖, the combined estimate of event 1 or event 2 worsening the situation will be ―moderate‖. 

 

 

 

 

 

 

 
 

 

Figure 1:  Example 3: Spread of H3N2pM/H3N2v into unaffected areas  

It is assumed that two events influence the likelihood of further spread of the disease into unaffected 

areas: ‗no detection of first infected holding and no response‘; and ‗infected pig(s) moves to second 

holding‘. The events independently influence the risk for unaffected areas. Therefore, combination 

matrix 2 has to be applied to combine the estimates. In this example, the probability of a pig from a 

second holding being exposed to pigs infected would be ―H‖. 

In the risk flow pathway developed for the current risk assessment (Figures 2, 3 and 4), if the event in 

the risk pathway relates to a human involvement, the boxes are coloured yellow and if they involve 

pigs are coloured purple. The estimates of the basic events are combined using either matrix 1 (Table 

13), indicated by green, dashed arrows chaining consecutive events, or matrix 2 (Table 15), indicated 

by orange dotted arrows coupling events that represent independent events. 

The estimate for the effectiveness of a mitigation measure related to an event is first converted into the 

opposite outcome (e.g. ―effective response‖  ―non-effective response‖, shown by two adjacent boxes 

linked with a black arrow). The corresponding effectiveness estimate is converted into a risk estimate 

by taking the reminder of 1 (e.g. ―low‖  ―1 – low = high‖) (see Table 4 of Wieland et al., 2011). 

10.2. Results 

Part 1: What is the likelihood of viable H3N2v (humans) or H3N2pM (pigs) virus entering the EU, 

followed by exposure and infection of the first pig holding? 

Two risk pathways were developed, considering two possible scenarios for Part 1 in terms of 

biosecurity and/or management measures implemented by the farmer during the initial 30 days that 

pigs imported into the EU must remain at the holding of destination. Details of the likelihood 

estimates given by the experts are provided in Table 17 in Appendix B. 

The first scenario (Figure 2) assumed application of adequate biosecurity and an efficient separation 

of the imported pigs from those already present in the holding during the whole 30-day period in 

which these pigs are required to remain at the holding before being allowed to move from the holding. 

During the separation the imported pigs would always be kept in isolation without direct or indirect 

contact with other pigs to prevent the transmission of pathogens while the animals were undergoing 

observation and, if the farmers decided that it would be needed, testing and treatment. It must be 

Event 1: How likely is it that the first infected holding is not 

detected and therefore without an effective response? 

H 

  

Event 2: How likely is it that pigs from first infected holding 

move to other holdings in the same Member State? 

H 
H  H = H 
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noted, as mentioned above, that legislation requires only that imported pigs remain for 30 days on the 

holding, but no requirements are laid down for what measures are to be applied during this period.  

 

Figure 2:  Part 1, scenario 1. Risk pathway for entry of influenza A (H3N2pM/H3N2v) virus in the 

EU and exposure and infection of the first pig herd in the EU, when the imported pigs have to remain 

in the holdings in effective separation for 30 days after import.  

The risk assessment differentiated the likelihood of entry of H3N2v through travelling of two 

categories of people to the EU from the USA. The first category comprised people who are not 

working in the pig sector and without a specific interest in pig fairs. The second category comprised 

people professionally involved in the pig sector or people regularly visiting pig fairs. The likelihood 

that H3N2v would be present within the first category of people travelling to the EU was considered 
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negligible compared with a low likelihood of H3N2v presence within the second category of people. 

This difference would be mainly due to the more frequent and intense contact with pigs expected from 

the second category of people.  

Besides the possible entry of H3N2v through infectious people travelling from USA to the EU, import 

of infectious breeding pigs was also considered as a potential pathway for entry of H3N2pM. 

Considering the low likelihood of H3N2pM being present in pigs to be exported from the USA, the 

fact that H3N2pM infection does not necessarily induce clinical signs in pigs, the fact that the duration 

of the journey assumed will allow some pigs to get clear from the infection, and the high likelihood 

that infectious breeding pigs pass through the visual inspections both at the exporting holding and at 

the importing BIP, the overall risk of importing infectious pigs was considered to be low. 

Given that infectious breeding pigs would pass undetected with a low likelihood of being detected 

through the visual inspections  both at the exporting holding and at the importing BIP, and assuming 

that breeding pigs imported from any third country, including the USA, are kept in effective separation 

for 30 days upon decision of the farmer at the first pig holding in the EU, the likelihood that the 

breeding pigs in separation will remain infectious at the end of that time was considered to be 

negligible. Following this, the likelihood of consequent exposure of the pigs in the first EU holding to 

H3N2pM would be negligible. 

The overall likelihood of a first holding in the EU being infected after exposure to H3N2pM/H3N2v 

through either imported infectious pigs or humans coming from the USA was expected to be low.  

The experts judged that the pigs in the EU would be highly susceptible to H3N2pM as only limited 

cross-immunity would be present.  

The second scenario (Figure 3) included only one difference, namely there was no initial separation 

of the imported pigs in the holding and so the imported pigs would be immediately housed together 

with the other pigs in the holding. This resulted in a low likelihood that pigs in EU would be exposed 

to H3N2pM, compared with the negligible likelihood of exposure of pigs in the EU to H3N2pM 

through contact with infectious breeding pigs from US pigs in scenario 1 (Figure 2), where a 

separation of the imported pigs was considered. 
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Figure 3:  Part 1, scenario 2. Risk pathway for entry of influenza A (H3N2pM/H3N2v) virus in the 

EU and exposure and infection of the first pig holding in the EU, without prior separation of the 

imported pigs  

It should be noted that the model is highly sensitive to the estimated prevalence of H3N2pM/H3N2v in 

imported pigs and travelling humans; however, this estimated prevalence is associated with a high 

uncertainty. Increasing this estimate would increase the likelihood of exposure of the pigs in the first 

holding, especially when there is no initial separation of the imported pigs at the farm level. 
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The use of matrix 1 for combining the likelihoods of dependent events that are vertically related may 

have led to an underestimation of the risk of a first EU holding to become infected, as this matrix was 

designed to evaluate the effectiveness of actions taken to mitigate risk of introduction only. 

Part 2: What is the likelihood of H3N2pM (pigs) virus spreading through the movement of infected 

pigs from the first infected holding followed by exposure and infection of a second holding? 

The likelihood of spread of H3N2pM by pigs to second holdings (in the same Member State) from the 

first holding was expected to be high since an intense movement of pigs from the first holding is 

expected, and there is a high likelihood that pigs in a second holding will be susceptible (Figure 4). 

 

Figure 4:  Part 2. Risk pathway for the spread of influenza A (H3N2pM/H3N2v) virus, from an 

infected holding to second pig holdings in the same Member State (applicable for both scenarios of 

Part 1) 

Legislation for movements of pigs to another Member State requires official animal health 

examination and certification prior to movement which will increase the likelihood of detection of 

infection in the first holding and lead to a response (prohibit dispatch) in case clinical signs are 

observed. The overall likelihood of a first holding in the EU being infected after exposure to 

H3N2pM/H3N2v through either imported infectious pigs or infectious humans was considered to be 

low. Effective separation of imported pigs from other pigs at farm level for a period of 30 days 

reduces the likelihood of exposure to newly entered influenza strains. 

 

When no initial separation of the imported pigs is considered (scenario 2), the likelihood of pigs from 

the first holding being exposed to H3N2pM through imported infectious pigs would be low (compared 

with negligible in scenario 1, where a separation of the imported pigs is considered). 

Should the virus be introduced in a first pig holding, the likelihood of spread of H3N2pM by pigs to 

second holdings from the first holding is expected to be high. The model is highly sensitive to the 
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estimated prevalence is associated with a high uncertainty. Increasing this estimate would increase the 

likelihood of exposure of the pigs in the first holding, especially when there is no initial separation of 

the imported pigs at the farm level. 

11. ToR1 - the significance for the health of pigs of the occurrence of influenza A (H3N2v) 

virus in a naive population 

Three different scenarios of H3N2 naivety and/or immune status that represent most current situations 

in the European pig population and the significance for the health of pigs upon entry of 

A(H3N2)/H3N3pM virus are considered in Section 8.4. 

The scientific background to evaluate the significance of an infection with this strain for the health of 

naïve pigs can be found in Section 3.1 (infection with H3N2pM in pigs), Chapter 4 (pathogenesis of 

influenza H3N2v in pigs), Chapter 6 (epidemiology of H3N2 influenza viruses in pigs in EU including 

detection of reassortants) and Chapter 8 (cross-immunity to North American H3N2 swine influenza 

viruses in Europe).  

11.1. Conclusions 

 The clinical significance of infection with H3N2pM virus is comparable to that of infection 

with other SIVs, as seen in the past in Europe in a naive pig population.  

 Pathogenicity studies in pigs experimentally inoculated with H3N2v show that the infection is 

of purely respiratory nature and shows a variable but relatively mild course with fever, 

coughing and inappetence similar to that of the endemic SIVs currently circulating in swine 

populations worldwide.  

 In field infections with H3N2pM in pigs in the USA (agricultural fairs), a subclinical course 

was very common, and when clinical signs were observed (coughing, fever), they were 

generally mild, with low morbidity and no mortality. These signs can be exacerbated by other 

factors such as secondary bacterial infections so the clinical spectrum may be variable. 

 Infection with a European H3N2 SIV will not induce cross-reactive serum antibodies against 

H3N2v; however, a certain level of cross protection may be achieved via cell mediated 

immunity and mucosal immunity 

 Due to low-level circulation or absence of H3N2 in some areas in recent years, the European 

pig population has variable immune status to European H3N2 viruses. Such areas might have 

holdings that are more susceptible to H3N2pM than holdings in regions where H3N2 is 

prevalent.  

 It is expected that previous infection with either of the European SIV virus subtypes (H1N1, 

H3N2, H1N2) would reduce the negative impact on the health of pigs following an infection 

with H3N2pM.  

12. ToR2 - the current situation in the EU as regards the risk of a possible introduction of 

influenza A (H3N2v/H3n2pM) virus in particular to EU pig herds and the diagnostic 

capabilities to early detect an incursion 

The risk question included in the first part of the ToR, ―the current situation in the EU as regards the 

risk of a possible introduction of influenza A (H3N2v/H3N2pM) virus in particular to EU pig 

holdings‖, was split into two parts: 

 Part 1: What is the likelihood of viable H3N2v (humans) or H3N2pM (pigs) virus entering 

the EU, followed by exposure and infection of the first pig holding? 
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 Part 2: What is the likelihood of H3N2pM (pigs) virus spreading through the movement of 

infected pigs from the first infected holding followed by exposure and infection of the second 

holding? 

Two risk pathways were developed, one for each of these two parts. Two possible scenarios were 

developed for Part 1, considering different biosecurity and/or management measures that the farmer 

takes during the 30 days that pigs imported into the EU must remain on the holding of destination 

(Section 10.2). Assumptions made are described in Section 10.1.1, the model parameters in Section 

10.1.2 and the combination of risk estimates in Section 10.1.3.  

The second part of the ToR, asks for a ―current situation in the EU as regards…the diagnostic 

capabilities to early detect an incursion‖. The reply to the second part of this ToR is supported by the 

scientific background presented in Section 7.1.1 (diagnostic capabilities). 

12.1. Conclusions on the risk of introduction of H3N2v/H3N2pM into EU pig holdings 

 Taking into account the possible contact with infectious pigs in the USA, the duration of the 

journey to travel to the EU and the length of the infectious period, the likelihood of pigs in the 

EU being exposed to H3N2v by persons working in the pig sector or visiting pig fairs 

regularly was considered to be low. 

 Taking into account the possible contact with infectious pigs in the USA, the assumed 

duration of the journey to travel to the EU and the length of the infectious period, the 

likelihood of pigs in the EU being exposed to H3N2v by persons not working in the pig sector 

or visiting pig fairs regularly was considered to be negligible. 

 Considering the low likelihood of H3N2pM being present in pigs to be exported from the 

USA, the fact that H3N2pM infection does not necessarily induce clinical signs in pigs and the 

high likelihood that infectious breeding pigs pass through the visual inspections both at the 

exporting holding and at the importing border inspection post, the overall risk of importing 

infectious pigs in the EU was considered to be low. 

 When breeding pigs imported from any third country, including the USA, are kept in effective 

separation for 30 days, upon decision of the farmer of the first pig holding in the EU, the 

likelihood that the breeding pigs in separation would remain infectious at the end of that time 

would be negligible and the likelihood that the pigs in the importing holding would be 

exposed to H3N2pM would be negligible. 

 When the imported pigs are not kept separate for 30 days, the likelihood that the pigs in the 

importing holding in the EU would be exposed to H3N2pM would be low. 

 Effective separation at farm level of pigs imported from affected countries for a period of 30 

days reduces the probability of EU pigs being exposed to this new influenza strain through 

imported infected pigs. 

 Given that a first holding is infected, the likelihood of spread of H3N2pM by pigs to second 

holdings in the same Member State was expected to be high, assuming frequent movement of 

pigs between holdings and a high likelihood for pigs in a second holding to be susceptible.  

12.2. Conclusions on diagnostic capabilities to detect at an early stage an incursion of H3N2v 

in the EU 

 Early detection of H3N2pM/H3N2v in the EU is not likely owing to the currently limited 

surveillance efforts in combination with routine diagnostic methods which are not able to 

specifically identify this new strain. 
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 Currently applied real time RT-PCRs based on the matrix (M) or the nucleoprotein (NP) gene 

are capable of detecting all of the influenza A viruses known to be endemic in European pigs 

plus emergent strains such as rH3N2p from North America. However, neither these tests nor 

real time RT-PCRs based on H3 or N2 genes are able to specifically identify the H3N2pM as 

being different from European strains. 

 The panel of serological reagents for conventional typing will reliably type all H3N2 strains. 

The H3N2pM will raise a different reactivity profile in such assays, owing to its antigenic 

differences when compared with European H3N2 SIVs.  

 Only by combining currently applied diagnostic approaches with gene sequencing will it be 

possible to identify H3N2pM should it occur in Europe either in pigs or in humans. All of 

these diagnostic approaches are relevant to the timely identification of variant viruses or new 

strains that may appear in European pigs. This combination is not done on a routine basis and 

there is no official surveillance for SIV as this is not a listed disease. 

 A series of EU-funded networks through the ESNIP programme has greatly strengthened and 

enabled harmonisation of approaches for diagnosis of and surveillance for swine influenza 

within many EU laboratories. 

12.3. Recommendations on diagnostic capabilities to early detect an incursion of H3N2v in 

the EU 

 Further increase the capability of the national reference laboratories to detect variant viruses. 

 Expand the use of standardized methods and reagents including controls for the diagnosis of 

influenza to all EU/EEA Member States.  

 Establish proficiency trials for swine influenza testing in all EU/EEA Member States‘ 

reference laboratories. 

 Considering the role that pigs play as mixing vessels for influenza viruses, and hence their 

importance in terms of public health, reinforce monitoring of SIVs on pig farms and link this 

to surveillance of influenza viruses in humans.  

 Consider both passive surveillance and monitoring. Passive surveillance is important for early 

detection of new emerging viruses, focusing on holdings with clinical signs of respiratory 

diseases and conducting full characterisation of isolated SIVs. In addition, a broader picture of 

the circulating influenza virus strains in pig holdings in EU should be obtained from well-

designed monitoring, including healthy pigs. 

13. ToR3 - the implications and consequences of the possible evolution of the influenza A 

(H3N2v) virus on pig health such as clinical manifestation, transmission between pigs and 

specially the risk that animals from a herd which was infected with influenza A (H3N2v) 

virus spreads the virus after the last clinical signs of disease have been observed 

This ToR is considered in two parts (A and B):  

A) Implications and consequences of the possible evolution of the influenza A (H3N2v) virus on 

pig health such as clinical manifestation and transmission between pigs  

Different scenarios can be foreseen in terms of immune status after previous infection with the 

contemporary European SIVs H1N1, H1N2 H3N2, as well as the A(H1N1)pdm09 virus, and/or 

possible vaccination with European swine influenza vaccines described in ToR1, with different 

clinical implications in case H3N2pM/H3N2v would enter the European swine population. 
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The possible evolution of the infection in the pig population (transmission, pig health) is described and 

the possible impact on the pig population considering the current population immunity of the EU is 

assessed (see Chapter 8). Some information can also be found in Chapters 4 (pathogenesis of influenza 

H3N2v in pigs) and 6 (epidemiology of H3N2 influenza viruses in pigs in EU including detection of 

reassortants).  

The assessment of possible spread of H3N2pM is described in Chapter 10. 

B) Risk that animals from a holding which was infected with influenza A (H3N2v) virus spread 

the virus after the last clinical signs of disease have been observed 

The scientific background to evaluate this risk can be found in Chapter 4 (pathogenesis of influenza 

H3N2v infection in pigs), and in the Chapter 8 (cross-immunity to H3N2v in Europe).  

13.1. Conclusions on the implications and consequences of the possible evolution of the 

H3N2v virus on pig  

 Because of the antigenic differences between H3N2pM and the H3N2 viruses that have been 

circulating in European pigs since the mid-1980s it is considered likely that, should H3N2pM 

enter the European pig population, it would have the potential to cause disease, to spread and 

to become endemic. It can then be expected that, as seen with other SIVs, host selection 

pressures will drive this strain to evolve whereby changes in the gene segments, especially 

those encoding the external glycoproteins (HA and NA), will appear. 

 Based on previous experiences with influenza viruses that emerged in the past and adapted to 

swine, the risk that a H3N2v/H3N2pM virus becomes endemic in some areas after entering 

the European swine population is high (see ToR2). 

 Cross-infection studies with the well-known endemic European H3N2 SIVs indicate that prior 

infection with these viruses may confer some degree of cross-protection against infection with 

the H3N2pM/H3N2v viruses.  

 According to the risk assessment developed in Chapter 10, given that a first holding is 

infected, the likelihood of spread of H3N2pM by pigs to second holdings is expected to be 

high in the context of unrestricted movement of pigs from the first holding and a high 

likelihood that pigs in a second holding are susceptible.  

13.2. Conclusions on the virus spread after the last clinical signs have disappeared 

 Clinical signs after SIV infection, H3N2V/H3N2pM infection included, are often absent or 

mild and their duration is variable (i.e. until 3 dpi in mild cases, until 5–6 dpi in severe cases). 

By analogy with other SIVs and based on the limited pathogenesis studies with H3N2v in 

pigs, it can be inferred that the virus excretion in individual pigs can last up to 7 dpi. Clinical 

signs are generally associated with viral shedding; however, virus excretion does not entirely 

coincide with presence of clinical signs (may start earlier or last longer than clinical signs). 

Consequently, an absence of clinical signs cannot be used as evidence that pigs are not 

infectious.  

 At farm level SIV infections can be maintained with a continuous introduction of susceptible 

pigs. Therefore, the risk of spread from holdings can remain high for an extended period of 

time even after cessation of clinical signs. This takes place particularly when susceptible pigs 

continuously enter the fattening unit. 
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13.3. Recommendations on the virus spread after last clinical signs have disappeared 

 Since the absence of clinical signs is not a reliable basis on which to decide that H3N2pM 

virus is no longer circulating in an infected holding where no new pigs have entered, it is 

recommended that, when the health status with regard to excretion of such viruses from a farm 

needs to be known, nasal/oropharyngeal swabs focussing on pigs of 8–12 weeks of age should 

be tested by RT-PCR to confirm the absence of H3N2pM virus. 

14. ToR4 - the possibility, efficacy and efficiency of vaccination in pigs, using the existing 

vaccines or newly developed vaccines against influenza A (H3N2v) virus, also in relation 

with the possible evolution of variants of influenza viruses posing a risk to public and 

animal health  

In this ToR, the term ―efficiency‖ is interpreted as effectiveness. Below is a brief assessment of each 

of the specific questions mentioned in ToR4. The background information used to answer these 

questions can be found under Chapters 4 and 8 of this document. For clarity, vaccination in pigs using 

existing vaccines or newly developed vaccines against influenza A (H3N2v) is treated separately. The 

terms ―possibility‖, ―efficacy‖ and ―effectiveness‖ are defined as follows: 

 The ―possibility‖ of vaccination means availability of the vaccine. 

 The ―efficacy‖ of vaccination means, according to the European Pharmacopoeia, the ability of 

the vaccine to offer significant virological protection in an experimental setting, i.e. after a 

double vaccination of influenza-naive pigs and challenge with H3N2v virus three weeks after 

the second vaccination. Virological protection is defined as a significant reduction in virus 

titres in the lungs of vaccinated pigs compared with unvaccinated challenge control pigs. 

 The ―effectiveness‖ of vaccination means the ability of the vaccine to reduce virus circulation 

under field conditions.  

14.1. Existing vaccines 

 Possibility of vaccination: Inactivated vaccines based on the endemic SIVs are commercially 

available in many, but not all, European countries. Most vaccines are bivalent and contain 

H1N1 and H3N2 virus strains; one vaccine is trivalent and also includes the recently emerged 

H1N2 strain. However, the H3N2 virus strains present in European vaccines show substantial 

genetic and antigenic differences compared with the H3N2 virus that forms part of the SIV 

vaccines in the USA. There has been no need to update H3N2 vaccine strains in European SIV 

vaccines since strain evolution and variation has been minor and the original vaccine strains 

have, until now, induced sufficient efficacy. 

 Efficacy of vaccination: No challenge studies have been done to examine to what extent SIV 

vaccines in Europe protect against H3N2pM. Serological investigations of pigs vaccinated 

with various existing European SIV vaccines allow the expectation that these vaccines will 

induce no or few cross-reactive HI antibodies against H3N2pM and thus may not reduce 

H3N2v virus replication in the lungs to a significant degree. This assumption is based on the 

fact that influenza virus replication in the lungs of vaccinated pigs correlates negatively with 

post-vaccination HI antibody titres against the challenge virus.  

The European situation is not at all comparable with that in the USA, where H3N2 strains 

included in the licensed US vaccines show a much closer antigenic match with the H3N2pM 

virus and these vaccines have been demonstrated to offer significant cross-protection against 

rH3N2p viruses.  

 Effectiveness of vaccination: Data about the effectiveness of vaccination against the H3N2pM 

virus are lacking. As European vaccines, in general, are not expected to be efficacious against 
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H3N2pM, effectiveness of vaccination will likely be very low. Furthermore, it must be 

remembered that vaccination is voluntary, that vaccination rates vary in different countries 

and that H3N2 virus seroprevalence in swine populations in different European countries, 

which may influence effectiveness , is highly variable (see Table 1, Chapter 6, ESNIP 3). 

Voluntary vaccination of swine with the existing SIV vaccines has not succeeded in halting 

the circulation of SIV in the swine population, neither in Europe nor in the USA. It is 

unknown if, and to what degree, obligatory SIV vaccination could reduce the virus circulation. 

14.2. New vaccines 

 Possibility of vaccination: A monovalent inactivated vaccine specifically based on H3N2pM 

virus for use in pigs is not licensed neither in the USA nor in Europe. It would, however, be 

possible to develop such a vaccine in a rather short time interval based on the experience of 

development and production of other SIV vaccines. 

 Efficacy of vaccination: If such vaccine were to be available, it would be expected to induce 

immunity and cross-protection similar to that induced by existing European SIV vaccines 

against the endemic European SIVs. 

 Effectiveness of vaccination: There are no data about the effectiveness of widespread 

vaccination with H3N2v vaccines in pigs in the field. Based on the experience with existing 

SIV vaccines and endemic SIVs, voluntary vaccination is unlikely to halt the circulation of 

H3N2v virus in the swine population. It is unknown if, and to what degree, obligatory 

vaccination could reduce virus circulation. 

14.3. Potential evolution of variants of influenza viruses posing a serious risk to public and 

animal health 

 Evolution of variants of H3N2pM virus posing a serious risk to animal health: As mentioned 

above, vaccination is unlikely to prevent the spread of H3N2pM virus in European pig 

populations in the event that this virus enters and become endemic in Europe. The emergence 

of novel reassortants of influenza viruses is unpredictable, but it will probably increase if 

H3N2pM enters the European pig population, and such events are unlikely to be prevented by 

vaccination. In addition, it cannot be excluded that vaccination increases the risk of antigenic 

drift by selection of neutralisation-resistant escape mutants by vaccine-induced antibodies. 

The latter phenomenon, however, has not yet been observed with the existing vaccines and 

endemic SIVs. 

 Evolution of variants of H3N2pM virus posing a serious risk to human health: For the same 

reasons mentioned above, vaccination of swine, even if able to reduce virus replication in the 

respiratory tract, is unlikely to prevent the emergence of variants of H3N2pM virus with 

increased transmissibility to humans. However, based on previous experience, a divergent 

evolution of H3N2pM in pigs compared with that in humans is likely, thus making it unlikely 

that virus with increased transmissibility to humans would evolve.  

14.4. Conclusions 

 Immunity resulting from vaccination with commercially available European SIV vaccines is 

expected to provide no or only a low level of cross-protection against infection with the 

H3N2pM influenza viruses, whereas vaccines based on North American swine H3N2 viruses 

would offer superior protection. Such vaccines may significantly reduce H3N2pM replication 

in the lungs in vaccinated animals. Voluntary vaccination of pigs with existing vaccines has 

not succeeded in halting the circulation of SIV in the swine population and this limitation is 

also considered valid for H3N2pM. 
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 According to the available data, H3N2pM is not present in the European swine population and 

no measures are needed with regard to vaccination. If such a virus were to enter into Europe 

and spread in the swine population, then the use of vaccines based on the closely related TR 

H3N2 strains could be useful.  

 Vaccination might increase antigenic drift of circulating influenza strains, and newly 

appearing variants might not be neutralised by vaccine-induced antibodies. However, based on 

current knowledge there is no indication that this has happened with the use of the available 

inactivated SIV vaccines in the European pig population.  

14.5. Recommendations 

 The possibility of using more specific vaccines, based on the closely related US swine TR 

H3N2 virus strains, should be assessed, as a possible emergency procedure, in the event of a 

change in the epidemiological situation, i.e. if the H3N2pM/H3N2v virus were to enter the 

European pig population. 

14.6. Recommendations for future research 

 Experimental cross-protection studies with H3N2pM challenge in pigs previously infected 

with the major European SIV subtypes should be carried out.  

 Experimental vaccination-challenge studies with the existing European and American SIV 

vaccines and H3N2pM challenge should be carried out. The extent of protection conferred by 

different vaccines should be compared. 

15. ToR5 - the most important factors to be monitored that would suggest a risk for the 

emergence of a new pandemic influenza strain from the influenza A (H3N2v) virus 

The background information used to answer this question can be found under Chapters 7 (influenza 

surveillance in Europe including diagnostic capabilities), 8 (Section 8.4, cross-immunity in humans) 

and 9 (emergence of a new pandemic strain from H3N2v). 

15.1. Conclusions 

 New influenza strains emerge through natural reassortment and/or mutations.  

 Past experience has shown that reassortment events involving inter-species transmission are 

necessary steps in the evolution of new pandemic strains. However, it is not always clear in 

which species these events occur. Monitoring for reassortant viruses should therefore include 

as important target species both pigs and poultry. 

 Several molecular markers in influenza virus genes have been reported as being associated 

with certain biological properties, such as receptor binding, host and tissue tropism, virulence, 

and modulation of host immune response, as well as efficiency of replication and 

transmission. These associations have been inconsistent between strains. 

 Studies in animal models have reaffirmed and highlighted the importance of individual virus 

proteins, such as the HA, NA, polymerase and non-structural proteins, and even point 

mutations within these molecules, for cross-species transmission. They have also emphasised 

that the correlation between the molecular markers and biological properties is not absolute. 

Virulence and pathogenesis are not the properties of a single gene or protein. They are 

polygenic and the specific gene constellation is also important.  

 Currently, the number and type of mutations, as well as the genetic constellation needed for 

efficient human-to-human transmission of H3N2v, is unknown.  
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 Based on current knowledge, it is not possible to predict which changes (mutations or 

reassortments) within H3N2v could enable it become a new pandemic influenza virus. Hence, 

it does not seem possible, at present, to set up a system to monitor ―the most important factors 

that would suggest a risk of emergence of a new pandemic strain from the influenza A 

(H3N2v) virus. 

15.2. Recommendations  

 Ensure appropriate monitoring in pigs to permit early identification of newly appearing strains 

(e.g. novel reassortants) which might cross the animal–human interface. 

 Develop a European strategy for appropriate surveillance of humans in close contact with 

swine.  
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APPENDIX A: COMMERCIALLY AVAILABLE VACCINES IN THE USA 

Table 16:  Overview of the major licensed SIV vaccines in the USA in 2011 

Manufacturer Product name Influenza virus 

strains
(c) 

Adjuvant
(d)

 

Novartis PneumoStar
(a)

 

SIV 

α-cluster H1N1 

cluster I H3N2 
Immunstar  

Intervet/Schering-

Plough Animal 

Health 

MaxiVac Excell
(b)

 

3.0 

α-cluster H1N1 

β-cluster rH1N1 

cluster I H3N2 

Emunade  

Intervet/Schering-

Plough Animal 

Health 

MaxiVac Excell 5.0 β-cluster H1N1 

γ-cluster H1N1 

δ-cluster H1N1 

cluster I H3N2 

cluster IV H3N2 

Emunade  

Zoetis FluSure Legacy α-cluster H1N1 

cluster I H3N2 
Amphigen  

Zoetis FluSure XP γ-cluster H1N1 

δ-cluster H1N1 

cluster IV H3N2 

Amphigen  

Zoetis FluSure Pandemic A(H1N1)pdm09 Amphigen  

Zoetis FluSure XP γ-cluster H1N1 

δ2-cluster H1N1 

cluster IV H3N2 

δ1-cluster H1N2 

Amphigen  

(a): Pneumostar is the only single-dose SIV vaccine. 

(b): MaxiVac Excell is a registered trademark of Intervet/Schering-Plough Animal Health. 

(c): Exact strain names and antigen dose are proprietary for most vaccines. 

(d): All adjuvants are oil-in-water emulsions, except for Immunstar , which is water-in-oil-in-water. 
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APPENDIX B: ESTIMATES OF LIKELIHOODS OF EVENTS 

Table 17:  Estimates of likelihoods of events based on expert opinion, factors to be considered, and their rationale 

Question 

no 

Risk/events What is the likelihood that…? Facts to be considered Assessment  Reason  Uncertainty Reference in opinion 

Presence of H3N2v in a human travelling from the USA to the EU 

Presence of H3N2v in a ―non-professional‖ in the pig sector who travels from the USA to the EU 

1a Contact with 

infectious pigs 

… out of all ―non-professional‖ persons, 

one will come in contact with an 

infectious pig in US? 

Prevalence in pigs, contact 

frequency 

L Contact is expected to be 

occasional, for instance visiting a 

fair once and by chance 

M Section 5.2. Transmission 

from pigs to humans 

1b Gets infected ... this person will get infected? Immunity of person, contact type 

and intensity, infectious doses 

L Immunity is considered the same 

for human populations. Low 
intensity of contact 

M Section 5.2. Transmission 

from pigs to humans 

1c Travels and 

remains 
infectious 

... this person will travel from the USA 

to the EU and remains infectious until a 
possible visit to a farm? 

Infectious period, duration of 

journey 

N There are many people travelling 

but there is a short infectious period 
and it is very unlikely that this 

person will travel tot he  EU within 

a few days 

L Section 3.2. Clinical signs 

in humans 

Presence of H3N2v in a ―professional‖ in the pig production sector who travels from the USA to the EU (including people usually attending pig fairs and family members of pig producers, if they come in contact with 
pigs) 

1d Contact with 

infectious pigs 

.. a ―professional‖ will come in contact 

with an infectious pig in the USA? 

Prevalence in pigs, contact 

frequency 

M It is very likely that there is a direct 

intense contact; however, the 
prevalence is unknown and may 

change 

H Section 5.2. Transmission 

from pigs to humans 

1e Gets infectious ...this person will get infected? Immunity of person, contact type 
and intensity, infectious doses 

M Immunity is considered the same 
for human populations. Medium 

intensity of contact 

M Section 5.2. Transmission 
from pigs to humans 

1f Travels while 

infectious 

... this person will travel from the USA 

to the EU and remains infectious until a 
possible visit to a farm? 

Infectious period, duration of 

journey 

L May be more likely than 1c as EU 

―professionals‖ who visit the USA 
may return to the EU a short time 

after being in contact with the 

infectious pigs 

M Section 3.2. Clinical signs 

in humans 

Presence of H3N2pM in 1 breeding pig to be exported 

2   ... a breeding pig infected with H3N2pM 
is exported from the USA to the EU? 

Prevalence in breeding pigs to be 
exported, type of surveillance 

(active/passive), prevention and 

control (vaccination) 

L According to the data provided 
from US surveillance there is a low 

percentage  of positive H3N2pM 

samples  

H Section 3.1.3. Surveillance 
in swine in the USA 

Detection of H3N2pM pig at farm level (US) and response  

3a Clinical signs … the breeding pig for export, infected 
with H3N2pM, has clinical signs?  

Age, infectious dose, viral load, 
immune status, infection pressure, 

etc. 

L It is known that the majority of the 
cases are asymptomatic  

L Section 4.1. Pathogenesis 
of swine influenza in 

general 
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Question 

no 

Risk/events What is the likelihood that…? Facts to be considered Assessment  Reason  Uncertainty Reference in opinion 

3b Identification of 
animal by vet 

… the infected breeding pig with clinical 
signs is identified at the farm level of the 

exporting country? 

Awareness of farmer and 
veterinarian at the farm level 

H   L No references 

3c Effective 

measures 

… the identified infected breeding pig 

will not be allowed to be exported?  

Biosecurity measures in place, 

contingency plan 

H   L No references 

Detection and response at BIP (Boarder Inspection Post) at the Importing country 

4a Clinical signs … an imported breeding pig, infected 

with H3N2pM, has clinical signs? 

Age, infectious doses, viral load, 

immune status, infection pressure, 

etc. 

L The majority of the cases are 

asymptomatic  

L 4.1. Pathogenesis of swine 

influenza in general 

4b Identification of 

animal by vet 

… the infected breeding pig with clinical 

signs, it is identified at the BIP of the 

Importing country? 

Awareness of Inspector at the BIP H   L No references 

4c Sample sent to 

lab (H3N2pM) 

… from that pig with clinical signs, a 

sample is properly taken and sent to a 
lab? 

Sampling protocols, laboratory 

capacity  

L BIPs that are approved for 

ungulates should have facilities to 
house a consignment in case it 

needs to be detained and have 

possibilities for further examination 
and testing. However, currently, no 

sampling is done for H3N2pM 

L No references 

4d Positive result … a positive result is obtained from a 
sample taken from that identified 

infected breeding pig? 

Test characteristics  L BIPs that are approved for 
ungulates should have facilities to 

house a consignment in case it 

needs to be detained and have 
possibilities for further examination 

and testing. However, currently, no 

sampling is done for H3N2pM 

L No references 

4e Effective 

measures 

… the identified infected breeding pig 

will not be allowed to move to farm?  

Legislation on imports L BIPs that are approved for 

ungulates should have facilities to 

house a consignment in case it 
needs to be detained and have 

possibilities for further examination 

and testing. However, currently, no 
sampling is done for H3N2pM 

L No references 

Imported pigs with a separation period at the first holding of 30 days before joining the other animals of the first holding—scenario 1 

5 Pig remains 

infectious after 

separation 
period  

… the influenza strain from the infected 

imported pigs is not cleared when the 

imported animals are initially separated 
before joining the holding at the first 

holding (duration of separation is 30 

days)? 

Biosecurity measures in place for 

pig diseases 

N Farmer decides to separate imported 

pigs by applying high biosecurity 

measures, ensuring that the 
imported pigs are always 

maintained in separation without 

direct or indirect contact with other 
animals, preventing the 

transmission of diseases. The 

infection will be cleared from the 

H No references 
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Question 

no 

Risk/events What is the likelihood that…? Facts to be considered Assessment  Reason  Uncertainty Reference in opinion 

imported breeding pigs hat were set 
apart 

First pig holding exposed to H3N2v by humans  

6a Non-
professionals in 

contact with 

pigs 

… a non-professional travelling from the 
USA immediately comes in contact with 

the pigs in the first farm? 

Biosecurity measures in place, 
contact pattern 

L As per 1c H No references 

6b Professionals in 

contact with 

pigs 

… a human travelling from US gets 

immediately in contact with the pigs in 

the 1st farm? 

Biosecurity measures in place, 

contact pattern 

L Awareness in biosecurity and good 

farm practice 

H No references 

Effective immune response to infection 

7 Effective 

immune 
response to 

infection 

… that non-infected pigs that are 

exposed to H3N2pM have enough 
immunity to avoid the infection? 

Known preimmune status of the EU 

pig population, herd immunity, 
cross-immunity with other SIV 

virus including H3N2 or vaccine 

virus, 

L There is a big variation in the 

prevalence of EU H3N2 SIV (can 
vary from none to low). In some 

MS it is not circulating. Vaccination 

status is also very variable. Previous 
contact with H3N2 combined with 

vaccination gives the best possible 

protection. 
The naivety and immunity situation 

may vary among European 

countries 

M Chapter 6, Table 1: 

Overview of swine 
influenza viruses subtyped 

in 13 European countries 

from November 2010 to 
October 2012  

Detection of first infected holding and response during (residency period at the holding of destination—pigs must be conveyed without delay to the holding of destination where they shall remain for a minimum period 
of 30 days before further movement outside the holding) 

8a Clinical signs … that one breeding pig infected with 

H3N2pM has clinical signs in the 1st 
farm? 

Virulence of H3N2pM L The majority of the cases are 

asymptomatic  

L  4.1. Pathogenesis of swine 

influenza in general 

8b Identification of 

animal by vet 

... that the infected breeding pig with 

clinical signs, it is identified in the 1st 
farm? 

Awareness of vet at the farm and 

farmer ,  

H Farmer is aware of clinical signs 

and may call the vet 

M No references  

8c Sample sent to 

lab (H3N2pM) 

… that from that pig with clinical signs, 

a sample is properly taken and sent to a 

lab? 

Sampling protocols, laboratory 

capacity,  

M Vet takes samples M No references  

8d Positive result …that a H3N2pM-positive result is 

obtained from a sample taken from that 
identified infected breeding pig? 

Test characteristics  L Influenza A is screened initially, no 

further typification 

M No references  

8e Effective 
measures 

…that the identified infected breeding 
pig will not be allowed to further spread 

the strain?  

Biosecurity measures in place, 
contingency plan 

L Animals may spread the virus to 
other farm 

M No references  

Infected pigs move to 2nd holding  
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Question 

no 

Risk/events What is the likelihood that…? Facts to be considered Assessment  Reason  Uncertainty Reference in opinion 

9  Infected pigs 

move to  second 

holding  

 

... that a second farm is exposed to a pig 
that has been infected in the first farm? 

Biosecurity measures in place, 
movement pattern, residency period 

in place in the first farm 

H  
 

The second farm may have any 
level of biosecurity implemented  

A lot of animal movement is 

assumed 

L No references  

Effective immune response to infection 

10  Effective 
immune 

response to 

infection 

… that non-infected pigs of the second 
farm, that are exposed to H3N2pM, have 

enough immunity to avoid the infection? 

Known pre-immune status of the 
EU pig population, herd immunity, 

cross-immunity with other SIVs 

including H3N2 or vaccine virus  

L There is a big variation in the 
prevalence of EU H3N2 SIV (can 

vary from none to low). In some 

MS it is not circulating. Vaccination 
status is also very variable. Previous 

contact with H3N2 combined with 

vaccination gives the best possible 
protection. 

L Chapter 6, Table 1: 
Overview of swine 

influenza viruses subtyped 

in 13 European countries 
from November 2010 to 

October 2012  
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GLOSSARY AND ABBREVIATIONS 

BAL Bronchoalveolar lavage fluid 

Genetic 

constellation 

Set/combination/constitution of genes and/or mutations and the interaction between 

these components  

H3N2pM Represents the US swine TR H3N2 virus which has reassorted with the pandemic 

A(H1N1)pdm09 virus from which only the M gene has been acquired. It represents 

one of the rH3N2p genotypes isolated from swine. The H3N2pM isolates carry seven 

genes from TR H3N2 and only the M gene from A(H1N1)pdm09 

H3N2v Represents this porcine H3N2pM virus strain once it has been transmitted from pigs to 

humans and has been isolated from infected humans. The gene constellation of A 

H3N2v is thus considered as being the same as H3N2pM 

HA Influenza A RNA segment that encodes haemagglutinin 

M  Influenza A RNA segment that encodes two matrix proteins (M1 and M2) 

NA Influenza A RNA segment that encodes neuraminidase 

NP Influenza A RNA segment that encodes nucleoprotein 

NS Influenza A RNA segment that encodes two distinct structural proteins (NS1 and NEP) 

PA Influenza A RNA segment that encodes an RNA polymerase acidic 

PB1 Influenza A RNA segment that encodes an RNA polymerase basic 1 and PB1-F2 

protein  

PB2 Influenza A RNA segment that encodes an RNA polymerase basic 2  

rH3N2p Represents all strains isolated from swine and characterized by a genetic constellation 

derived from the enzootic US swine TR H3N2 genetic reassortment events with A 

(H1N1)pdm09 (the number of A(H1N1)pdm09 genes contained in these isolates varies 

according to the genotype). This group includes H3N2pM isolates 

SIV Swine influenza virus 

TRIG Triple reassortant internal gene (cassette). This acronym stands for the internal set of 

genes (PA, PB1, PB2, NP, NS and M) derived from the original TR H3N2 viruses. 

This genetic constellation is found combined with various HAs and NAs, forming TR 

H1N1, H1N2 and H3N2 lineages currently circulating in the pig population in the 

USA  

Triple 

reassortant 

(TR) H3N2  

Swine influenza viruses originated around 1998 in the USA as a result of reassortment 

between avian, human and swine influenza viruses. These strains carry the following 

gene combination: human HA, NA and PB1; swine NS, NP, and M; and avian PB2 

and PA 
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