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Abstract: The authors analysed the cross-correlation of photovoltaic (PV) output fluctuation for the actual PV output time series data in both the
Tokyo area and the whole of Japan using the principal component analysis with the random matrix theory. Based on the obtained cross-correlation
coefficients, the forecast error for PV output was estimated with/without considering the cross-correlations. Then the operation schedule of
thermal plants is calculated to integrate PV output using the proposed unit commitment model with the estimated forecast error. The system-bal-
ancing cost of PV system was also estimated with or without demand response. Finally, validity of the concept of ‘local production for local
consumption of renewable energy’ and alternative policy implications were discussed.

1 Introduction

Restructuring of the electric utility industry and large-scale grid-
integration of photovoltaic (PV) systems have been intensively dis-
cussed since the East Japan Earthquake of 2011. The former includes
separation of electrical power generation from power distribution and
transmission, and establishment of the retail power market and
revitalisation of the wholesale power markets. Although the institu-
tional design of the power markets is still an open question in
Japan, the market has to be designed so as to have optimal operation
schedule, which is obtained using a unit commitment calculation,
through competitions between generation companies.

The large-scale grid-integration of PV systems brings another
kind of problem, namely, the PV output fluctuation, into the
power system operation. The planned installation capacity of PV
systems in the whole of Japan will be 100 GW in 2030 [1] and
about one third of the capacity will be in the Tokyo area. The
major fraction of the PV system will be installed on the rooftop
of the consumer’s residential houses and office buildings, which
are widely distributed in the Tokyo area. Therefore the forecast of
PV output with high spatial resolution is an important problem to
be considered, and the cross-correlations of the PV outputs will
be key quantities to estimate the forecast error of PV output.

In relation to the above discussion, the concept of ‘local produc-
tion for local consumption of renewable energy’ has been proposed
in Japan. Since electric power is in large demand in the Tokyo area,
the area price could be high enough to be close to the feed-in tariff
price for PV power. For this reason, the concept of ‘local production
for local consumption of renewable energy’ of PV power is consid-
ered to be economically feasible [2]. This concept is also advanta-
geous because of the mitigation of transmission loss. However, it is
to be noted that this concept needs careful consideration for PV and
wind power because of the inherent nature of output fluctuation,
even though it is suitable for geothermal and biomass energies [3].

In this paper, we analysed the cross-correlation of PV output fluc-
tuation for the actual PV output time series data [4] in both Tokyo
area and the whole of Japan using the principal component analysis
with the random matrix theory. Based on the obtained cross-
correlation coefficients, the forecast error for PV output was esti-
mated for some extreme cases. Then the operation schedule of
thermal plants was calculated to integrate PV output using our
unit commitment model [5, 6] with the estimated forecast error.
The system-balancing cost of PV system was also estimated with
or without demand response. Finally, the validity of the concept
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of ‘local production for local consumption of renewable energy’
and alternative policy implications were also discussed.

2 Cross-correlation of PV output fluctuation
2.1 System-wide output fluctuation

The forecast of system-wide PV output is decomposed as

N N
v =XO =) x()=) ey D) (1)
i=1 i=1
where y;(f) = x;(¢)/c; and c; are the forecast of PV output per installed
capacity (load factor) and the installed capacity in the ith site,
respectively. Our unit commitment model [5, 6] requires the PV
output forecast time series and the forecast error to estimate the
optimal operation schedule with consideration of the PV output
fluctuation. If both accuracy and spatial resolution of the PV fore-
casting are high, the forecasted time series is similar to a moving
average of actual PV output for each PV site, and consequently
the cross-correlation of residual time series, which is equal to sub-
tracting the actual output from forecast output at each time point, is
expected to be a white noise. Thus, the forecast error of system-
wide PV output oy is
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where o; is the forecast error of PV output per installed capacity in
the ith site. On the other hand, if the spatial resolution of the forecast
is low and, for example, we have just a few forecasted sites in the
Tokyo area, the residual time series includes the cross-correlation
between the various PV sites located in different places. In this
case, we have a larger forecasting error because of the cross-
correlations. The forecast error of system-wide PV output oy is

written as

ij = Oi0jP “4)
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by including covariance among different sites o;;. Here, p;; is the
cross-correlation coefficient among different sites. Generally, it is
expected that the number of forecasted sites is smaller than that
of the installed sites N. For instance, we cannot forecast PV
output for each roof-top PV of all the residential houses and
office buildings with high accuracy in the Tokyo area because of
both technological and economical reasons. Therefore it is required
to consider the cross-correlation o; to estimate the forecast error of
system-wide PV output oy.

2.2 Random matrix theory

We analysed the de-trended PV output z(¢) obtained by filtering the
actual PV output time series per installed capacity y(¢) using the
Fourier series expansion. In general, it is expected that correlation
coefficients are associated with random noise for a fluctuating
time series such as PV output. The correlation coefficient
between points i and j is calculated by

¢, = S0 - )60 - &) s

J(@-er)(@-e)

where z;(¢) is the de-trended PV output at the site i(=1, ..., N) and
time #(=1, ..., L) and (-) indicates the time average for the time
series.

Now we consider the eigen-value problem

Cla) = A, |@) (6)

for the correlation matrix C. 1, and |&) are the eigen-value and the
corresponding eigen-vector, respectively. Here, we assume that the
eigen-values are arranged in decreasing order (¢=0, ..., N—1).
Once the eigen-values are calculated using (5) and (6), the distribu-
tion of eigen-value p(A)" is obtained.

According to the random matrix theory [7—10], distribution of the
eigen-value for the matrix ‘THH T, where all elements of the matrix
H are given as a random number N(0, ¢?), is given by
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Equation (7) is exact at the limit V, L — oo. For a randomly fluctuating
time series such as PV output, it is expected that the distribution p(1)"
obtained by data analysis agrees with the distribution p(1)
calculated using (7)+(11) for A <Ay Therefore, only a small
number of eigen-values for 4>, have the information of
genuine correlation.

To extract the genuine correlation, we rewrite the correlation
matrix C using eigen-value 1, and the corresponding eigen-vector
|e) [11]. First we define the complex conjugate vector of the eigen-
vector |a) by

(al=|a) (12)

For the real symmetric matrix, such as the correlation matrix C, all
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elements of the eigen-vector |e) are real, and thus the complex con-
jugate denotes the transpose .
Then the correlation matrix C is rewritten as

N—1
C=) \laXal (13)
a=0
by multiplying (6) with the transposed vector (| from the left-hand
side and taking summation over a. Here, the property of the projec-
tion operator |er){a|

N—-1
> laxa] =1 (14)
a=0

was used. As a result, the correlation matrix C of (13) is divided into
the following components

N, N—-1
C=C+C =) MAlaXa|+ > AJdaXe]  (15)
a=0 a=N,+1

The first term C’ corresponds to the genuine correlation component
(A > Amax)- The second term C” corresponds to the random compo-
nent (A < Apay)- The term A4|0)(0| is interpreted as the change of a
whole system, such as the weather change.

We introduce the vector |z(¢)), which consists of the time series of
PV output z;(t)(i=1, ..., N). Then the vector |z(¢)) is expanded on
the basis of the eigen-vectors |a) [11]

N-1
l20) =) a,0le (16)
a=0

The expansion coefficient a,(¢) is obtained using the orthogonality
of the eigen-vectors

aq(1) = (ez(1) (a7
The time series corresponding to the genuine correlation C' is
extracted by truncating the summation up to N, in (16)

Nl
20 =) a ()l (18)
a=0

2.3 Data analysis

The genuine components of cross-correlation of the de-trended PV
output per installed capacity were studied using the random matrix
theory. The analysed data are the output time series acquired every
1 h for each prefecture [4]. Before analysing the data, two prepro-
cessings were made. First, the data during night time was
removed. Then, the trend was removed from the time series by fil-
tering out the components with a period longer than 6 h using the
Fourier series expansion. Therefore, only the short-term fluctuation
component remained in the time series. The auto-correlation func-
tion and fluctuation distribution for Tokyo in May are shown in
Fig. 1. The memory in the auto-correlation function is lost within
a few hours. This means that the trend component is removed.
The kurtosis of the fluctuation distribution is 5.0849, which is sig-
nificantly larger than the value expected for the normal distribution,
that is, 3. This means that the actual fluctuation distribution has a
longer tail than the normal distribution. The two different types
of functional forms of fluctuation distribution are shown in
Fig. 2. If the fluctuation is distributed according to the normal dis-
tribution, the probability density function is

2
(x— ) ] (19)

1
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Fig. 1 Auto-correlation function (left) and fluctuation distribution (vight) for Tokyo in May

and the cumulative distribution function is written using the error
function erf] as

) = % <1 + erf[%]) (20)

where ¢ and o are the mean and standard deviation, respectively.
However, if the probability density function p(x) is a Laplace distri-
bution

o) =5 o0 - “ 52| ey

then the cumulative distribution function ¢(x) is

=) e

Here, a standard deviation is given by o = +/2b and sgn(x — ) =
+(x>p), —(x<w). The functional forms for these distributions are
depicted for u=0 and o=1 in Fig. 2. It is to be noted here that
the Laplace distribution shows a distribution tail longer than the
normal distribution.

Eigen-value distribution for the Tokyo area and the whole of
Japan in May is shown in Fig. 3. For the Tokyo area, we calculate

Plx) = % (l + sgn(x — ,u)(l - exp[—

0.8

Amax = 1.35 using (11) with N=9 and L =420. The upper panel of
Fig. 3 depicts that only the largest eigen-value is larger than A,,,x.
On the other hand, for the whole of Japan, we calculate Ay,.x =
1.88 with N=47 and L=420. The lower panel of Fig. 3 depicts
that the five largest eigen-values are larger than A,,.

We show the distribution of genuine correlation coefficients calcu-
lated for the de-trended PV output time series in both the Tokyo area
and the whole of Japan. The cross-correlation coefficients for the
Tokyo area are shown in Fig. 4. Panels (a) and (c) are genuine cor-
relation C' and panels (b) and (d) are the random components C".
The genuine correlation C' was calculated using only the largest
eigen-value and the corresponding eigen-vector. Fig. 4 depicts that
the genuine correlation C’ has positive correlation and, on the
other hand, the random components C” distributes around 0. The
first eigen-vector for the Tokyo area is shown in Fig. 5. The nine
components correspond to eight prefectures, and Tokyo was
included in the Tokyo area. It was noted that all vector components
had the same sign. This means that the PV output fluctuates simultan-
eously in the same direction for all prefectures in the Tokyo area.

The cross-correlation coefficients for the whole of Japan are
shown in Fig. 6. Panels (a) and (c) are genuine correlations C'
and panels (b) and (d) are the random components C". The
genuine correlation C* was calculated using only the five largest
eigen-values and corresponding eigen-vectors. Fig. 6 depicts that
the genuine correlation C’ has positive correlation and, on the
other hand, the random components C" distributes around 0. The
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Fig. 2 Functional form of fluctuation distribution
a Probability density function
b Cumulative distribution function
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cross-correlation of PV output fluctuation in the Tokyo area was
larger than the cross-correlation in the whole of Japan throughout
the year. The first to third eigen-vectors for the whole of Japan
are shown in Fig. 7. Forty seven components correspond to all pre-
fectures from Hokkaido to Okinawa in the whole of Japan. The first
eigen-vector has all components with the same sign. This means
that the PV output fluctuates simultaneously in the same direction
for all prefectures in the whole of Japan. The characteristic of the
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Fig. 4 Cross-correlation coefficients for the Tokyo area in January and July
a Genuine correlation in January

b Random component in January
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first eigen-vector in the whole of Japan is similar to the Tokyo
area. The second eigen-vector shows the weather change between
eastern and western Japan. The third eigen-vector is more compli-
cated. These characteristics of the second to fifth eigen-vectors
correspond to the smaller correlation coefficients in the whole of
Japan. However, it is noted that the coefficient of variation of
PV output does not decrease proportionally to N~'? as the
number of PV sites N increased because of the observed cross-
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Fig. 6 Cross-correlation coefficients for the whole of Japan in January and July
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correlation among the sites. Thus, the so-called smoothing effect is
expected to be smaller compared with the ideal case without
cross-correlation.

2.4 Estimation of forecast error

We estimated the lower limit of the system-wide forecast error using
the cross-correlation coefficients of the output fluctuation described
in the previous section. Recently, numerical weather forecasting has
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gained higher accuracy, because of meteorological information
acquired by weather radars and meteorological satellites and the ad-
vancement of high-performance computers. Ultimately, as the fore-
cast accuracy becomes higher, the forecast of the PV output time
series at each site converges on the moving average trend of the
site. Thus, we expect that the short-term fluctuation will be the
main component of the forecast error, because short-term fluctuation
cannot be forecasted. Therefore we assume here that the lower limit
of the forecast error is identical to the short-term fluctuation.
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Table 1 Lower limit of the system-wide forecast errors in The Tokyo area

Months Error w/o cor Var w/o cor Error w cor Var w cor
January 101.26 0.0168 181.36 0.0302
February 107.53 0.0167 206.78 0.0321
March 145.89 0.0208 296.55 0.0423
April 132.21 0.0195 246.95 0.0365
May 136.88 0.0194 262.23 0.0373
June 128.02 0.0226 221.59 0.0391
July 136.47 0.0222 256.34 0.0417
August 128.47 0.0187 236.19 0.0344
September 120.06 0.0202 239.98 0.0405
October 103.20 0.0191 183.09 0.0338
November 108.15 0.0222 236.34 0.0485
December 77.499 0.0144 154.74 0.0288

If the number of forecast sites is small, for example, just one site
in each prefecture, the system-wide forecast error involves the
cross-correlation between the sites and consequently the system-
wide error becomes large. On the other hand, if the number of fore-
cast sites is large, the system-wide forecast error does not involve
the cross-correlation between the sites and consequently the system-
wide error becomes small. If we consider that in the near future
installed PV systems are widely distributed in various places, the
actual system-wide forecast error is expected to be between the
above two extreme cases.

We estimated the lower limit of the system-wide forecast errors
and the coefficients of variation with/without considering the cross-
correlations of the PV output fluctuation, using (3) and (4) with the
genuine cross-correlation coefficient p;; shown in Figs. 4 and 6. The
installed capacity of PV systems in 2030 was estimated by dividing
the 100 GW capacity in the whole of Japan [1] proportionally to the
demand of each prefecture. The estimations of errors and variation
coefficients in the Tokyo area and the whole of Japan are shown in
Tables 1 and 2, respectively. The second to fifth columns of the
tables represent error without correlation, coefficient of variation
without correlation, error with correlation and coefficient of vari-
ation with correlation, respectively. Both the system-wide forecast
errors and the coefficients of variation are increased by considering
the cross-correlation of the fluctuation. The lower limit of the coef-
ficients of variation in the Tokyo area is larger than the lower limit
of the coefficients in the whole of Japan throughout the year.

3 Cost estimation for PV integration
3.1 Unit commitment model

The purpose of our unit commitment model [5, 6] was to plan the
operation schedule of thermal power plants so as to maximise the

Table 2 Lower limit of the system-wide forecast errors in the whole of
Japan

Months Errors w/o cor ~ Var w/o cor  Error w cor  Var w cor
January 148.36 0.0093 352.85 0.0223
February 164.13 0.0090 408.97 0.0225
March 218.45 0.0103 655.99 0.0309
April 207.07 0.0094 532.03 0.0242
May 202.87 0.0089 579.35 0.0255
June 196.43 0.0108 449.46 0.0247
July 205.63 0.0104 567.38 0.0288
August 191.47 0.0087 532.09 0.0244
September 184.43 0.0099 557.29 0.0299
October 160.52 0.0092 409.99 0.0235
November 165.50 0.0113 558.46 0.0383
December 124.18 0.0083 313.99 0.0210
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profit of an electric power utility by taking into account both the
forecast of output and its error for renewable energies and
the demand response of consumers on the change of electricity
prices. The essence of the model is described briefly as follows.

(1) Objective function: The time series of the operational state of
thermal power plant i(i=1, ..., N) is obtained by minimising the
objective function

7 N
Fl, ), 21, w) =Y Y [bpl+52] (23)

t=1 i=1

This objective function represents the operation cost of an elec-
tric power utility. Here N, 7 and L are the number of thermal
power plants, time horizon and number of price levels, respectively.
Continuous variables p; are the output power variable of thermal
power plant i and integer variables u; and zﬁ are the status produc-
tion variable of thermal power plant i (1 =committed, 0 = decom-
mitted) and start-up variable of thermal power plant i (1=start
up, 0=others), respectively. Parameters S; and b; represent the
start-up cost of thermal power plant i and the fuel cost of the
thermal power plant i, respectively.

Other parameters related to the demand response 7, # and €4 are
the average electricity price, price level and price elasticity of
demand, respectively. If the electricity price  deviates from the
average price 7, the demand d is changed from the average
demand d as follows

=" 24)

7
The dependence of demand d on price r is depicted in Fig. 8.

(2) Global constraints: The sum of the demand response variable wi
(1=selected, 0 =not selected) has to satisfy the constraint

~—

=1 25)

L
Dw
=1

to ensure that only a single price level // is selected. In addition to
this constraint, the average of the selected price ' has to be equal to
the average price 7

~|

L
! Z Z wirl <F (26)
=1

t=1
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Moreover, the total demand has to be unchanged by the demand
response

T T
2 =3 dl 27)
~ L A\«
d) =dP w (;) (28)
I=1

The forecasted demand and its error are indicated by ¢/ and oy, re-
spectively. Here, (/) stands for forecasting. Importantly, the sum of
supply has to be greater than the demand

N ~
S i+ wd) +pv +g,— b, = d) (29)

i=1

where wdﬁf), pvt , g and A, are the forecasted wind power gener-
ation, forecasted PV generation, discharged power from pumped
hydro power and charging to pumped hydro power, respectively.

If we consider the forecast error of demand oy, forecast error of
wind power o, and forecast error of PV o, the constraint in (29)
can be rewritten as

Zz 1p,+wd(f)+pv +g—h _dt
Vot o+ o

where a and ¢(-) are the probability to ensure the supply-demand
balance and the cumulative distribution function, respectively. In
this paper, we assumed that the system-wide error distribution is
the normal distribution.

Pumped hydro power has to satisfy the constraints

>¢ (@ (30

v,cmi" <g <vc™ 31)

(1= v)d™ < by < (1 =)™ (32)
X t

R™ < 3" (hyn—g)A, < R™ (33)

s=1
where v, ™I, ¢M3X RMIN pMaX pand A, are the state variable of the
pumped hydro power (1= discharge, 0=charge), minimum dis-
charge power, maximum discharge power, minimum stored
energy, maximum stored energy, efficiency and time step,
respectively.
Furthermore, the constraint for reserve capacity is

N
G+ S+ < ) 0.05U; Py +0.05¢™ (34
i=1

where gg4, 6\ and ¢, are the standard deviations of short-term fluctu-
ation for demand, wind power generation and PV power generation,
respectively. We assumed here that 5% of the maximum output pfnax
of thermal power plant i and 5% of the maximum discharge power

¢™™ are used as reserve. It is noted that the modelling is crude for
the point that thermal power plant i is able to be operated at the
maximum output 5 while 5% of the maximum output 5’ of
thermal power plant i is used as reserve.

(3) Local constraints for thermal power plants: The following con-
straints are used for each thermal power plant as typical constraints
in a unit commitment model.
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e Generation capacity: The output power P! has to be between the
maximum output power py,,, and the minimum output power p, ;.
when the operation is in steady state

Phoin Uy < Ph < Pl U 35)

e Minimum up-time constraint: Thermal power plant 7 has to be
operated longer than the minimum up-time requirement 7, once
the unit is up

W=l —ul
) (36)
sE[t—7, t—1]

e Minimum down-time constraint: Thermal power plant i has to be
stopped longer than the minimum down-time requirement 7_, once
the unit is down

< 1+ —
, (37
sEt—T_,1t—1]

e Constraint on the start-up variable: The start-up variable zﬁ has
to satisfy the following constraints by definition
z =
(38

z = Uy —uy_y(t > 2)

3.2 System-balancing cost

We estimated the effect of the forecast error and the demand re-
sponse on the system-balancing cost of PV output power for the
Tokyo area in 2030 by using the unit commitment model described
in the previous section.

In the unit commitment calculation of the power system in the
Tokyo area in 2030, we used the estimated system-wide forecast

Table 3 Parameters used in the unit commitment calculation

Symbols Parameters

N 91

T 1440 (30 days)

A, 30 min

L 20

7 16 JPY/kWh

r! 14 JPY/kWh

* 18 JPY/kWh

€ 0 (without DR), —0.3 (with DR)
o 1.28 (90% CL for the normal distribution)
Oy 10% of the wind output power
o4 5% of the system load
cmin 0 MW

M 11 800 MW

R™I 0 MWh

R™® 118 000 MWh

n 0.7

op 10% of PV output power
Ow 10% of wind output power
Sp 5% of PV output power

Sw 5% of wind output power
o4 5% of system load

Gd 2.5% of system load
baseload 21 000 MW
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Fig. 9 Power from various power plants to satisfy the demand in the early
May 2030

error and the model parameters shown in Table 3. The forecast error
of PV output power o, is almost double the lower limit of the
system-wide forecast errors in the Tokyo area shown in Table 1.
The installed capacities of PV system and wind system in 2030 in
the Tokyo area are assumed to be 26 481 and 1009 MW, respective-
ly. The forecasted PV generation pvgf) and forecasted wind power
generation wdﬁf) are assumed using the actual output [6]. The fore-
casted demand dt(f ) in 2030 in the Tokyo area is assumed to be equal
to the actual demand in 2010. The baseload power is the sum of
nuclear and hydro power other than pumped hydro powers. The
pumped hydro powers are aggregated and considered as a single
electric storage in (31)—(33).

In Fig. 9, power from various power plants to satisfy the demand
in early May 2030 is shown for the Tokyo area. We had the smallest
demand and largest output from PV systems in this season.
Therefore, the condition for PV integration is the toughest through-
out the year. Fig. 9 depicts that many thermal power plants stand by
for the PV output fluctuation.

The system-balancing cost € of the PV system per unit output
energy was defined by

. _ Clo) = Clo, = 0)

7 39)

D1 PV A,
where C(o,,) and C(o, = 0) are the operation cost with forecast error
and operation cost without forecast error, respectively. PV power
pv, in the denominator of (39) is integrated for each month and is
shown in Fig. 10. Decrease in the generated electricity from the
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Fig. 11 Operation cost of thermal power plants in 2030

400
350 -

300 4 \/\/\_/f—’
250 -
200 - \ r— ’
150 \ A /
100 \ // \\ ,! \\ /

il
50 - \ /

NoDR
= = WithDR

Balancing Cost (JPY/MWh)

-50 4 v

-100 T T T T T T T T T T T
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Fig. 12 System-balancing cost to integrate PV output into the power system
in 2030

PV system is evident. Fig. 11 depicts the operation cost of the
thermal power plants in the Tokyo area estimated using the unit
commitment model with the forecast error of the PV output
power shown in Table 3. The estimated system-balancing cost
using (39) is shown in Fig. 12. The solid line and the broken line
depict the system-balancing cost without and with the demand re-
sponse, respectively. The system-balancing costs averaged over
the year are 315 and 129 JPY/MWh for the cases without and
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Fig. 10 Generated electricity in the PV system in 2030
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Forecast Error (%)

Fig. 13 Effect of the demand response and the forecast error on the system-
balancing cost of PV output power for the Tokyo area in May 2030
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with the demand response, respectively. Fig. 12 depicts that the
demand response reduced the system-balancing cost by half
throughout the year. The effect of the demand response and the
forecast error on the operation cost of PV output power for the
Tokyo area in May is shown in Fig. 13. The solid line and
the broken line depict the operation cost without and with the
demand response, respectively.

It is noted here that the system-balancing cost is a few per cent of
the average electricity price 7. The demand response effectively
reduced the system-balancing cost. It is naturally expected that
the system-balancing cost per unit output energy is the smaller
for the whole of Japan because of the smaller coefficient of
variation.

4  Discussion

The validity of the concept of ‘local production for local consump-
tion of renewable energy’ and alternative policy implications are
discussed.

When the installed capacity of the PV system is small, the ‘local
production for local consumption of renewable energy’ is econom-
ically feasible. The area price in the Tokyo area could be high
enough to be close to the feed-in tariff price for PV power and trans-
mission loss is mitigated because of limited transmission inside the
Tokyo area. According to the installation plan, the capacity of PV
system will become large, parallel with the vitalisation of the
power market. In this phase, the lack of balancing capability
becomes obvious and the system-balancing cost increases towards
the current electricity price. Consequently, the ‘local production
for local consumption of renewable energy’ concept becomes
infeasible.

In the near future, we will expand the capacity of the inter-
connections between the Hokkaido and Tohoku area, the Tohoku
and Tokyo area and the 50 Hz/60 Hz boundary in the West of the
Tokyo area. A new role is expected for the transmission systems.
That is the reduction of the coefficient of variation of the PV
output. For instance, the development of the high-voltage direct
current line in the whole of Japan [12] will reduce the requirement
for the balancing capability. A novel methodology is desired in
order to plan an optimal transmission system.

5 Conclusion

We analysed the cross-correlation of PV output fluctuation for the
actual PV output time series data in both the Tokyo area and
the whole of Japan using the principal component analysis with
the random matrix theory. Based on the obtained cross-correlation
coefficients, the lower limit of the forecast error for PV output was
estimated with/without considering the cross-correlations. Both the
system-wide forecast errors and the coefficients of variation were
increased by considering the cross-correlation of the fluctuation.
The lower limit of the coefficients of variation in the Tokyo area
was larger compared with that of the whole of Japan throughout

J Eng, 2014, Vol. 2014, Iss. 10, pp. 551-559
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the year. Then, the operation schedules of thermal plants were cal-
culated to integrate PV output using our unit commitment model
with the estimated forecast errors. The system-balancing cost of
PV system was also estimated with or without demand response.
The estimated system-balancing cost is a few per cent of the
average electricity price 7 and the demand response effectively
reduced the system-balancing cost. Finally, the validity of the
concept of ‘local production for local consumption of renewable
energy’ and alternative policy implications were discussed. It is
naturally expected that the system-balancing cost per unit output
energy is smaller for the whole of Japan because of the small coef-
ficient of variation. This means that the concept of ‘local production
for local consumption of renewable energy’ is not economically
feasible when the capacity of PV system becomes large. The devel-
opment of the transmission lines planned in the near future will
reduce the balancing capability required for PV integration.
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