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Abstract: Providing additional damping for system electromechanical oscillations through doubly fed induction generator
(DFIG)-based wind turbines is investigated in this study. In this regard, first an objective function is developed to tune the DFIG
control gains, aim to maximise the wind farm (WF) contribution to system oscillation damping, but it is shown that it causes a
decrease in the damping of DFIG stator mode. In other words, with the current DFIG control design, it is not possible to improve
both the small signal stability of the power system and the dynamic stability of WF together. Afterwards, two high-pass filters are
suggested to be employed in the control design of DFIG. It is shown that with the modified control design, it is possible to
improve the system oscillation without spoiling the dynamic stability of the WF itself. Eigenvalue analysis is performed to
validate the effectiveness of the modified control design.

1 Introduction
Small signal stability is the ability of a power system to maintain
synchronism when subjected to small disturbances. In today's
power systems, the small signal stability problem is usually the
lack of sufficient damping torque for system electromechanical
oscillations [1]. Traditionally, the small signal stability of power
systems is determined by the interactions of system synchronous
generators (SGs) [2], but with the integration of large amounts of
new wind generation, they can contribute to oscillation damping
and affect the small signal stability of system [3].

Variable speed wind turbines utilising doubly fed induction
generator (DFIG) are currently the most popular scheme in wind
conversion systems [4]. Several research efforts have been devoted
to studying the impact of DFIG-based wind farms (WFs) on the
small signal stability of power systems. In [5], it is shown that
DFIGs have detrimental interaction with some of the system
oscillations and they may cause instability in some scenarios.

Considering the probable detrimental interactions, several
research efforts have focused on the idea of providing additional
damping for system oscillations through DFIG-based wind
turbines. To do that, in most of these studies a supplementary
control loop, referred to as wind power system stabiliser (WPSS),
have been proposed in the control structure of wind turbine. The
WPSS typically consists of a washout filter, a proportional
controller, and a lead/lag block, as depicted in Fig. 1 [6]. 

The output signal of WPSS is added to the wind turbine pitch
control, active power control, or reactive power/voltage control
loops [6].

In [5], the grid frequency is selected as the input to WPSS and
the WPSS output is added to the active power control loop. In [7,
8], the relative rotor angle difference of two system SGs is selected
as the input and the output is added to the active power and
reactive power control loops, respectively. In [9], a combination of
remote and locally available signals is used as the WPSS input. In
[3], locally available signals are selected for the input and the
output is added to the active power control loop.

To use remote signals as the WPSS input, the power system
should have equipped with measurement systems (such as phasor
measurement units). In this paper, it is shown that without WPSS
or any new control loops, and with only some modifications in the
control design of DFIGs, it is possible to provide additional
damping for system oscillations, while holding the dynamic
performance of WF unchanged.

2 Modelling the DFIG-based WFs
For power system studies, where we are interested in the probable
impact of WF dynamics on transmission network, it is common to
group the wind turbines and lump the whole farm into a single
aggregated model [10, 11]. A DFIG-based wind turbine consists of
the turbine, generator, drive train, and converter. The models used
to describe the dynamics of the turbine, drive train, and generator
are expressed in detail in [12]. The wind turbine converter is
composed of three parts: grid-side converter; DC link, and rotor-
side converter. If switching frequency is high enough and the
switching loss is ignored, for power system stability studies it is
possible to neglect the dynamics related to the grid-side converter
and DC link [7].

To model the rotor-side converter, a decoupling control strategy,
which enables decoupled control of DFIG's active and reactive
powers, is used. This control strategy was developed in [13] and
since then it has been frequently used in power system study
researches [14–16]. It can be shown that the q-axis and d-axis rotor
currents (iqr and idr) can independently control the DFIG active and
reactive powers, respectively [7]. The rotor currents themselves
can be regulated by the injected q-axis and d-axis rotor voltages
(uqr and udr), respectively. This control strategy is presented in
Fig. 2. Fig. 2 also depicts the suggested high-pass filters (shown
with dashed lines), which are not involved originally in the control
design of DFIGs, but (as will be discussed in Section 5) they can
provide additional damping for system oscillation. 

3 Impact of WF dynamics on network oscillation
damping
To evaluate the impact of WF dynamics on network oscillation
damping, a test system was developed in which a 1000 mega volt
ampere (MVA) SG transmits 650 MW to a strong system
(represented as an infinite bus) and also supplies a 150 MW local
load (represented as constant impedance). Also, a 300 MW DFIG-Fig. 1  Typical WPSS
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based WF is connected near the SG on the high-voltage system via
a step-up transformer. Fig. 3 depicts the one-line diagram of the
test system. In this figure, impedances are presented in per unit on
the MVA base of the SG. 

Recently in [12], a new approach has been developed to
investigate the impact of WF dynamics on system oscillation
damping. In this approach, the test system is divided into two
separate subsystems: Subsystem 1 which contains the system SGs
and Subsystem 2 which contains the WF and transmission network.

When there is no WF in the system, Subsystem 2 can be
described using the transmission network Jacobian matrix as

[Δp2Δq2]T = J[Δθ2Δu2]T (1)

where Δp2 and Δq2 are the incremental changes in the active and
reactive powers injected into bus 2, respectively, Δθ2 and Δu2 are
the incremental changes in the bus 2 voltage phase and magnitude,
respectively, and J is the transmission network Jacobian matrix that
can be expressed as

J =
Jpθ Jpu

Jqθ Jqu
(2)

where Jpθ, Jpu, Jqθ, and Jquare its elements (the details can be found
in [12]).

When the WF is integrated into the system, the dynamics of
Subsystem 2 can be described in the form of the transfer function
as

[Δp2Δq2]T = G[Δθ2Δu2]T

G =
Gpθ Gpu

Gqθ Gqu

(3)

where G is the transfer function of Subsystem 2 and Gpθ, Gpu, Gqθ,
and Gqu are its elements (the details can be found in [12]). In [12],

it is shown that an incremental change in the phase of Gpθ
considerably increases the damping of SG electromechanical
mode, but variations in the other elements of this matrix negligibly
affect the eigenvalue of this mode. Therefore, the phase of Gpθ can
be considered as an index to evaluate the impact of WF dynamics
on network oscillation damping, so that if with the integration of
WF into the system the phase of Gpθ increases (decreases), the
damping of system oscillation improves (gets worst).

4 Optimal tuning of DFIG control gains
DFIG-based wind turbines have three different operating modes:
sub-synchronous speed, synchronous speed, and super-
synchronous speed. To have a robust control, it is necessary to
investigate the stability of WF in all these operating modes [17].
Also, as mentioned in Section 2, DFIGs have three control loops:
active power, voltage, and pitch control loops. Therefore, to have a
robust and optimal control, it is unavoidable to use optimisation
algorithms to tune the DFIG control gains. In this regard, a genetic
algorithm is used in [18] to improve the transient responses of
DFIG rotor current and DFIG terminal voltage. Differential
evolution and PSO algorithms are used in [4, 19], respectively, aim
to shift all the WF eigenvalues as far to the left-hand side of the S-
plane. In [20], bacterial foraging optimisation algorithm is used to
increase the damping ratio of WF modes. To reduce the DFIG rotor
overcurrent, the PSO algorithm is used in [21].

With the developed index, it is possible to tune the DFIG
control gains aim to maximise the system oscillation damping. In
this regard, two-objective functions are defined in this section:
objective function A in which only the small signal stability of WF
is taken into account and objective function B in which beside the
stability of WF itself, enhancement of system oscillation damping
is considered too. These objective functions are used to tune the
DFIG control gains.

4.1 Objective function A

In the literature to investigate the stability of WFs, two criteria are
taken into account: the lowest damping of WF modes and the
lowest damping ratio of WF modes. In this paper, three different
wind speeds are considered: 9, 12, and 19 m/s, which belong to
sub-synchronous speed, synchronous speed, and super-
synchronous speed operating modes, respectively. The lowest
damping of WF modes in all the three considered operating points
(O1) can be expressed as

O1 = min (σik), i = 1, 2, 3 (4)

where σikis the damping of the kth WF mode in the ith considered
the operating point. The lowest damping ratio of WF modes in all
the three considered operating points (O2) can be expressed as

O2 = min (ξik), i = 1, 2, 3 (5)

where ξikis the damping ratio of the kth WF mode in the ith
considered the operating point.

As it was discussed, to enhance the small signal stability of WF,
O1 and O2 should be maximised at the same time. The results of
modal analysis technique show that the DFIG stator mode has the
lowest damping ratio value and the mode related to the DFIG pitch
control loop has the lowest damping value in all the three
considered operating points (details are presented as follows).
Therefore, there is no trade-off between increasing the stability
margin and the damping ratio of WF modes and the weighted-sum
method [18] can be used to handle this two-objective optimisation
problem. In this regard objective function A is written as the
weighted sum of O1 and O2 as

maximum: ObjA = a1O1 + a2O2 (6)

Fig. 2  DFIG rotor-side converter control block diagram
 

Fig. 3  Test system
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where a1 and a2 are the weighting factors (selected heuristically
equal to 0.23 and 0.77, respectively). The optimum solution is not
sensitive to the selections of a1 and a2.

4.2 Objective function B

As discussed before, in order to maximise the system oscillation
damping through WF, the phase of GPθ in the frequency of system
oscillation (1.65 Hz) should be maximised. Since the frequency of
system oscillation may change with the change of system operating
conditions, we also considered two other frequencies in the vicinity
of 1.65 Hz (1.48 and 1.80 Hz). In this regard, O3 is defined as the
weighted sum of the phase of Gpθ in 1.48, 1.65, and 1.8 Hz at the
three considered WF operating points as

O3 = ∑
i = 1

3
ci ∑

m = 1

3
dm(∠Gpθ, i(j2π f m)) (7)

where ciis the weighting factor for the ith operation point; fmand dm
are the mth considered frequency and its corresponding weighting
factor, respectively, and ∠Gpθ, i(j2π f m) is the phase of Gpθ in the
mth considered frequency at the ith considered WF operating point.
To maximise the system oscillation damping through WF, O3
should be maximised.

In objective function B, the aim is to improve both the small
signal stability of WF and the system oscillation damping.
Therefore, the objectives O1, O2, and O3 should be maximised
together. It was noted that maximising O2 is in conflict with
maximising O3 (details are presented as follows) which suggests
that there is a trade-off between increasing the minimum damping
ratio of WF modes and increasing the phase of Gpθ in 1.65 Hz
(increasing the damping of system oscillation). Hence, the
weighted-sum method is not useful alone in this case.

To solve this problem, the ɛ-constraint method is used together
with the weighted-sum method. Since PSO algorithm is developed
originally for non-linear optimisation problems with continuous
variables, we used this method to optimise the proposed objective

functions and search for the optimal DFIG control gains (which are
presented in Table 1). 

Table 2 shows the WF modes which have the lowest damping
ratio in each of the considered operating points. By performing
modal analysis, it was noted that the DFIG stator fluxes (ψqs and
ψds) have the highest participation factors in these modes.
Considering the results of Table 2, it can be said that by using
objective function B, the damping ratio values of DFIG stator
mode has considerably decreased. Therefore, it can be concluded
that with the current DFIG control design, providing additional
damping for system oscillation through WF will cost considerable
reduction in the damping ratio of DFIG stator mode. 

5 Modifying the DFIG control design
Considering the results of Table 1, it can be said that the major
difference between the DFIG control gains obtained using
objective function A and objective function B is that Kp2 and Kp5
are almost zero in the latter case. It means that with the decrease in
Kp2 and Kp5, the phase of Gpθ is 1.65 Hz (and hence the system
oscillation damping) increases, but the damping of DFIG stator
mode decreases. To investigate this idea, we decreased the values
of Kp2 and Kp5 from their original values (obtained using objective
function A) to 10% of their original values (in steps of 15%). Fig. 4
shows the phase of Gpθ in these cases. As it can be seen, with the
decrease in Kp2 and Kp5, the phase of Gpθ for frequencies between
0.5 and 2.2 Hz increases at synchronous speed and super-
synchronous speed operating modes, while at sub-synchronous
speed it nearly remains still. Fig. 5 shows the trajectory of DFIG
stator mode with the decrease in Kp2 and Kp5. It can be seen that
with the decrease in Kp2 and Kp5, the damping of DFIG stator
mode remarkably decreases at all the operating modes. It was also
noted that the damping values of other DFIG modes negligibly
change with the decrease in Kp2 and Kp5 (details have not been
presented here for the sake of limited space). 

As it was shown, decreasing Kp2 and Kp5 has beneficial impact
on system oscillations and detrimental impact on DFIG stator
mode, but since the frequency of DFIG stator mode is much higher

Table 1 Optimal DFIG control gains
Controller gain With objective function A With objective function B

active power control loop Kp1 0.026 0.028
Ki1 0.071 0.075
Kp2 3.387 0.137
Ki2 34.63 11.32

reactive power control loop Kp3 0.017 0.048
Ki3 8.606 7.707
Kp4 7.358 2.320
Ki4 12.30 11.74

voltage control loop Kp5 19.42 0.231
Ki5 69.00 69.83

pitch control loop Kp6 1564 1546
Ki6 1710 1719

 

Table 2 WF modes with the lowest damping ratio values
Operating mode
(wind speed)

With objective function A With objective function B With high-pass filters
Damping Frequency,

Hz
Damping
ratio, %

Damping Frequency,
Hz

Damping
ratio, %

Damping Frequency,
Hz

Damping
ratio, %

sub-synchronous
speed

54 55.8 15.22 34 65.4 8.43 54 55.9 15.19

synchronous
speed

78 67.3 18.22 31 67.5 7.28 78 67.2 18.2

super-
synchronous
speed

66 68.4 15.23 27 68.8 6.33 66 68.3 15.26
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(about 60 Hz) than the frequency of system oscillation (about 1.65 
Hz), they can be distinguished by using two high-pass filters in
series with Kp2 and Kp5, as depicted in Fig. 2. In this figure, the
high-pass filters are shown with dashed lines. These filters
attenuate the values of Kp2 and Kp5 for low-frequency signals (such
as system oscillation) while passing high-frequency signals (such
as DFIG stator mode).

The simplest high-pass filter is the first-order high-pass filter,
known as washout filter. In this paper, we used the washout filter
and, as it will be shown, it totally satisfies our goals. Using higher-
order high-pass filters will cause higher time delays, and therefore
increases the risk of spoiling the dynamic performance of WF. The
transfer function of a washout filter can be expressed as

TFwashout = sTw
1 + sTw

(8)

where TFwashout and Tw are the transfer function and the time
constant of the washout filter and s is the Laplace parameter. After
applying the washout filters in the DFIG control design, to study
the impact of Tw on the damping provided for system oscillation
through WF, we evaluated the phase of Gpθ for four different
values of Tw (0.01, 0.07, 0.3, and 1 s). Fig. 6 shows the results. It
can be said that high values of Tw (such as 0.3 and 1 s)
insufficiently increase the phase of Gpθ at 1.65 Hz. Also, very low
values of Tw (such as 0.01 s) decrease the phase of Gpθ in 1.65 Hz

at sub-synchronous speed operating mode. With moderate values
of Tw (such as 0.07 s), the phase of Gpθ is positive for all the three
WF operating modes. To select the optimum value of Tw, we
repeated the PSO algorithm to optimise objective function B, but
this time with Tw as the optimisation parameter. The optimum
value was found to be 0.07 s. 

Tables 2 and 3 show the lowest damping ratio values and the
DFIG modes with the lowest damping values, respectively, when
the washout filters are applied. Comparing the results, it can be
said that by applying the washout filters, the WF dynamic
performance has remained the same (as what it was with objective
function A). Table 4 shows the frequency and damping of system
oscillation. It can be said that with the washout filters, the damping
values of system oscillation have improved at all the WF operating
modes (compared with the ones with objective function A).
Considering the results of Tables 2–4 together, it can be concluded
that by applying the washout filters, the damping of system
oscillation improves while the WF stability remains unchanged. 

6 Conclusions
In this paper, providing additional damping for system
electromechanical oscillations through DFIG-based WFs was
investigated. To do that, two-objective functions were developed:
one to maximise the dynamic stability of WF and the other to
maximise both the system oscillation damping and the WF
dynamic stability. These objective functions were used to tune the
DFIG control gains and PSO algorithm was used as the
optimisation algorithm. It was noted that using the latter objective
function will result in the reduction of the damping of DFIG stator
mode. In other words, with the current DFIG control design, it is
not possible to improve both the small stability of the power
system and the dynamic stability of WF itself.

It was noted that the main difference between the optimal gains
obtained using the proposed objective functions is that the
proportional gains of DFIG active power and DFIG voltage control
loops vanish in the latter case. Since the frequency of DFIG stator
mode is much higher than the frequency of system oscillation, they
can be distinguished by employing two high-pass filters in series
with these gains. These filters attenuate these gains for low-
frequency signals (such as system oscillations) while passing high-
frequency signals (such as DFIG stator mode). In this paper, the
simplest high-pass filter, known as washout filter, was used. The

Fig. 4  Phase of Gpθ at
(a) Sub-synchronous speed, (b) Synchronous speed, (c) Super-synchronous speed
operating modes (the arrows show the decrease in Kp2 and Kp5)

 

Fig. 5  Eigenvalue of DFIG stator mode (the arrows show the decrease in
Kp2 and Kp5)

 

Fig. 6  Phase of Gpθ for different values of Tw at
(a) Sub-synchronous speed, (b) Synchronous speed, (c) Super-synchronous speed
operating modes
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results of eigenvalue analysis showed that with applying the
washout filters, the damping of system oscillation improves, while
the stability of WF remains unchanged.
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Table 3 WF modes with the lowest damping values
Operating mode
(wind speed)

With objective function A With objective function B With high-pass filters
Damping Frequency,

Hz
Damping
ratio, %

Damping Frequency,
Hz

Damping
ratio, %

Damping Frequency,
Hz

Damping
ratio, %

sub-synchronous
speed

1.13 0.42 39.14 1.06 0.43 36.37 1.06 0.43 36.37

synchronous
speed

1.23 0 100 1.23 0 100 1.25 0 100

super-
synchronous
speed

1.15 0 100 1.16 0 100 1.15 0 100

 

Table 4 Frequency and damping of system oscillation
Operating mode
(wind speed)

With objective function A With objective function B With high-pass filters
Damping Frequency,

Hz
Damping
ratio, %

Damping Frequency,
Hz

Damping
ratio, %

Damping Frequency,
Hz

Damping
ratio %

sub-synchronous
speed

0.118 1.65 1.139 0.161 1.65 1.554 0.130 1.65 1.254

synchronous
speed

0.137 1.65 1.321 0.175 1.65 1.685 0.157 1.65 1.511

super-
synchronous
speed

0.161 1.65 1.557 0.178 1.68 1.688 0.201 1.65 1.977
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