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Abstract
Obtaining inferences on disease dynamics (e.g., host population size, pathogen prev‐
alence, transmission rate, host survival probability) typically requires marking and 
tracking individuals over time. While multistate mark–recapture models can produce 
high‐quality inference, these techniques are difficult to employ at large spatial and 
long temporal scales or in small remnant host populations decimated by virulent 
pathogens, where low recapture rates may preclude the use of mark–recapture tech‐
niques. Recently developed N‐mixture models offer a statistical framework for esti‐
mating wildlife disease dynamics from count data. N‐mixture models are a type of 
state‐space model in which observation error is attributed to failing to detect some 
individuals when they are present (i.e., false negatives). The analysis approach uses 
repeated surveys of sites over a period of population closure to estimate detection 
probability. We review the challenges of modeling disease dynamics and describe 
how N‐mixture models can be used to estimate common metrics, including pathogen 
prevalence, transmission, and recovery rates while accounting for imperfect host and 
pathogen detection. We also offer a perspective on future research directions at the 
intersection of quantitative and disease ecology, including the estimation of false 
positives in pathogen presence, spatially explicit disease‐structured N‐mixture mod‐
els, and the integration of other data types with count data to inform disease dynam‐
ics. Managers rely on accurate and precise estimates of disease dynamics to develop 
strategies to mitigate pathogen impacts on host populations. At a time when patho‐
gens pose one of the greatest threats to biodiversity, statistical methods that lead to 
robust inferences on host populations are critically needed for rapid, rather than in‐
cremental, assessments of the impacts of emerging infectious diseases.
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1  | INTRODUCTION

Emerging infectious diseases threaten human health, food security, 
and global biodiversity (Daszak, Cunningham, & Hyatt, 2000; Fisher 
et al., 2012; Jones et al., 2008). Disease ecologists have used the‐
oretical models (e.g., susceptible, infected, recovered [SIR] models, 
Kermack & McKendrick, 1927, Anderson & May, 1979; individual‐
based models, Briggs, Knapp, & Vredenburg, 2010) to understand 
and predict pathogen spread and disease dynamics (reviewed in 
Cooch, Conn, Ellner, Dobson, & Pollock, 2012; Joseph et al., 2013; 
Langwig et al., 2015). Despite the important theory generated by 
such models, they are often not practical for guiding disease man‐
agement because they require large amounts of data to parameterize 
(Barlow, 1995; Boersch‐Supan, Ryan, & Johnson, 2016; Lloyd‐Smith 
et al., 2005; Smith et al., 2009). To obtain parameter estimates for 
disease models, ecologists have relied on mark–recapture which 
require marking and tracking individuals over time (Table 1; Cooch 

et al., 2012). However, tracking animals can be difficult and logisti‐
cally infeasible, especially for cryptic/secretive organisms or in small 
populations (Conn & Cooch, 2009; Faustino et al., 2004; Harmsen, 
Foster, & Doncaster, 2011; Lachish, Knowles, Alves, Wood, & 
Sheldon, 2011; Pryde, O'Donnell, & Barker, 2005). Advanced sta‐
tistical methods that provide similar inferences as mark–recapture 
models for unmarked host populations (e.g., populations where in‐
dividuals are not individually tracked over time) are critically needed 
to understand disease dynamics, assess pathogen impacts on pop‐
ulations, and develop pathogen mitigation strategies.We highlight 
the utility of N‐mixture models (Dail & Madsen, 2011; Hostetler 
& Chandler, 2015; Royle, 2004; Zipkin, Sillett, et al., 2014; Zipkin, 
Thorson, et al., 2014) to study disease dynamics using count data. 
N‐mixture models use data from repeated count surveys of mul‐
tiple sites within a period of population closure to estimate de‐
tection probability of individuals and thus population abundance 
(Royle, 2004). Our guide is aimed toward disease ecologists with 

TA B L E  1  Set of individual, population, and site‐level parameters of interest to disease ecologists

Process and scale Count vs. detection/non‐detection data Number of seasons

ParameterEcological process Count Detection/non‐detection
Dynamic (≥2 
seasons) Single season

Individual‐level X X Host survival probability

X X Host life expectancy

X X Host reproduction

X X Host immigration

X X Host emigration

X X Transmission probability

X X Expected time to first 
infection

X X Duration of illness

X X Recovery probability

X X X Host–pathogen load

X X X Host infection status

Population‐level X X X Host population size

X X Host population growth rate

X X X X Pathogen prevalence

X X X Average host infection 
intensity

Site‐level X X X Site‐occupancy probability

X X Host extinction probability

X X Pathogen extinction 
probability

Sampling process X X X Host detection probability

X X X Pathogen detection 
probability

X X X Observation probability (i.e., 
seen alive; but unknown 
disease state)

Note. We summarize the minimal type of observation data needed for inference (i.e., counts/abundance or detection–non‐detection/presence–ab‐
sence). These quantities may be estimable using multistate mark–recapture, multistate dynamic site‐occupancy models, or disease‐structured N‐mix‐
ture models. Note that to estimate some parameters, multiple seasons of data are required, while others only require a single season of data.
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some modeling experience. However, the Supporting Information 
provides all the tutorials and code needed to implement the mod‐
els outlined in the main text, including additional variations. Our 
motivation for this paper is threefold. First, count data are cur‐
rently underutilized in disease modeling but offer an opportunity 
to estimate critical parameters (Table 1) from commonly collected 
data. Second, wider adoption of count data models will enhance 
field‐based testing of epidemiological theory and enable quanti‐
tative evaluation of pathogen mitigation strategies at a time when 
emerging infectious diseases pose one of the greatest threats to 
biodiversity. Lastly, recent advances in N‐mixture models provide 
new opportunities to study disease dynamics at large spatial and 
long temporal scales or in remnant host populations decimated 
by pathogens, when tracking individuals is not feasible. In cases 
where count data are unavailable, detection/non‐detection data 
can be used under a site‐occupancy framework as a cost‐effective 
alternative for assessing disease dynamics (e.g., extirpation, colo‐
nization) and spatial patterns, which can be useful for rapid patho‐
gen assessment and development of mitigation strategies. We 
focus on N‐mixture models and their variants because they pro‐
vide demographic estimates and detailed disease dynamics (Table 
1), whereas detection/non‐detection approaches only estimate 

a fraction of that information (i.e., infected vs. uninfected sites, 
colonization/extirpation probability). The Supporting Information 
is integral to the main text and provides additional details on the 
development and application of our modeling framework.

2  | CHALLENGES TO PARAMETER 
ESTIMATION IN DISEASE MODELING

Obtaining inference for disease dynamics is challenging because 
(a) demographic rates (e.g., survival, transmission; Table 1) are dif‐
ficult to quantify if either population size or recapture rates are 
low and (b) there are multiple ways in which sampling error affects 
the observed data (Figure 1). For example, sampling error relevant 
to disease studies can manifest in two forms: (a) uncertainty of 
host occurrence or abundance (i.e., imperfect host detection), 
and (b) uncertainty of pathogen occurrence or abundance (i.e., 
imperfect pathogen detection; DiRenzo, Campbell Grant, et al., 
2018; Lachish, Gopalaswamy, Knowles, & Sheldon, 2012; Miller, 
Talley, Lips, & Grant, 2012). Historically, sampling error has been 
either ignored or acknowledged but not modeled (reviewed by 
McClintock et al., 2010). Yet, failure to account for sampling error 

F I G U R E  1  Hierarchical formulation illustrating how imperfect (a) host and (b) pathogen detection manifest in wildlife disease ecology. 
In this example, we depict Borrelia burgdorferi, the causative agent of Lyme disease, infections that are transferred from ticks to birds that 
inhabit forests. The outer images represent wells of a qPCR plate, and the test tubes represent blood samples. The numbers 1 to 7 illustrate 
the nested hierarchy of the pathogen within the landscape. Orange shapes indicate infection, including (1) forest sites inhabited by infected 
birds, (2) infected birds with infected ticks, (3) ticks infected by B. burgdorferi, (4) blood samples with B. burgdorferi drawn from birds and 
ticks, and (5) qPCR wells with B. burgdorferi DNA. Black shapes indicate no infection. Multiple arrows from a single figure represent repeated 
samples. To illustrate the concept of nested probabilities, we embed probability statements into the figure. Note that at each level of the 
hierarchy measurement error may be accommodated using conditional probability statements if count data are subject to sampling bias

(a)

(b)

Level 1. Pr(Landscape 
contains infected hosts) Level 2. Pr(Selected forest quadrat contains infected 

hosts | Landscape contains infected hosts)

Level 3. Pr(Selected host is 
infected | Forest quadrat 
contains infected hosts)

Level 4a. Pr(Detecting 
pathogen in blood sample | 

Host is infected)

Level 5a. Pr(Detecting the 
pathogen by assay | Pathogen 
is present in blood sample)

Level 4b: Pr(Detecting 
an infected tick | Host is 

infected)

Level 5b. Pr(Detecting the 
pathogen in a tick sample | Tick 

is infected)

Level 6b. Pr(Detecting the 
pathogen by assay | Pathogen 

is present in a tick sample)
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can result in biased parameter estimates and thus erroneous man‐
agement decisions and potentially ineffective disease mitigation 
strategies (Grant et al., 2017; Langwig et al., 2015; Russell, Katz, 
Richgels, Walsh, & Grant, 2017).

2.1 | Estimating demographic rates

Critical life cycle processes, such as birth and death, are not read‐
ily observable, which makes estimating demographic rates difficult 
for most populations. In the context of disease ecology, transmission 
and recovery events can be cryptic and go unnoticed. For example, 
pathogen transmission is the product of two events: (a) a contact 
between an infected and uninfected host and (b) the probability 
that the infected host transfers the pathogen to the uninfected 
host. Multistate mark–recapture models have long been used in 
disease ecology to estimate disease dynamics, but such approaches 
can be time and labor intensive (Conn & Cooch, 2009; Faustino et 
al., 2004; Harmsen et al., 2011; Lachish et al., 2011; Pryde et al., 
2005; Williams, Nichols, & Conroy, 2002). Mark–recapture studies 
are therefore often limited to a small number of locations, provid‐
ing information for a single species or region (e.g., Parmenter et al., 
1998, Briggs et al., 2010). The spread and rise of emerging infec‐
tious diseases (Jones et al. 2008, Fisher et al., 2012) render mark–
recapture methods impractical for rapid pathogen assessment and 
development of broad‐scale mitigation strategies (Grant et al., 2017; 
Langwig et al., 2015).

2.2 | Host detection

Infected and uninfected hosts may have different detection rates 
based on data collection procedures, and there is no a priori predict‐
able pattern as to which may be easier to observe during sampling. 
If the detection probability of infected and uninfected hosts differs, 
then estimates of pathogen prevalence can be biased toward the 
more detectable host (e.g., Senar & Conroy, 2004; Jennelle, Cooch, 
Conroy, & Senar, 2007; Conn & Cooch, 2009; Schmidt, 2010; Poulin, 
2010). For example, house finches (Carpodacus mexicanus) infected 
by Mycoplasma gallisepticum are less detectable than uninfected 
hosts; not accounting for this bias results in the underestimation of 
infected individuals in the population (Faustino et al., 2004). In other 
cases, infected hosts are easier to detect than uninfected hosts, 
such as European serins (Serinus serinus) infected by avian pox (Senar 
& Conroy, 2004).

2.3 | Pathogen detection

Pathogen detection probability, which is the probability that a patho‐
gen is detected on a host when it is present, is a significant concern in 
both veterinary and medical fields and is likely an issue in most sampling 
and diagnostic methods (reviewed in Enoe, Georgiadis, & Johnson, 
2000; Greiner & Gardner, 2000; Mosher et al., 2018; Toft, Jørgensen, 
& Højsgaard, 2005). The probability of detecting a pathogen on (or 
within) an infected host is the product of two sequential processes: (a) 

the sampling of an individual (e.g., blood sample, swab) and (b) labora‐
tory analyses of the sample (e.g., DNA extraction method, qPCR ef‐
ficiency; Figure 1). Ignoring imperfect detection can result in disease 
state misclassification, where infected hosts are misclassified as un‐
infected (i.e., false negatives). This misclassification can lead to biases 
in estimates of state‐specific survival and transition probabilities and 
lowers the power to detect differences between survival probabilities 
of disease states. Across multiple host–pathogen systems, pathogen 
detection probability using routine laboratory assays shows positive 
correlations with host infection intensity, such as Batrachochytrium 
dendrobatidis (Bd) zoospores on amphibian skin (DiRenzo, Campbell 
Grant, et al., 2018; Miller et al., 2012); the causative agent of malaria, 
Plasmodium sp., in birds (Knowles et al., 2011; Lachish et al., 2012); 
the causative agent of tuberculosis, Mycobacterium bovis, in cattle 
(Drewe, Dean, Michel, & Pearce, 2009); and the causative agent of 
Lyme disease, the bacterium Borrelia, in Ixodes uriae ticks (Gómez‐Díaz, 
Doherty, Duneau, & McCoy, 2010). This suggests that infected indi‐
viduals with low infection intensities are likely to be misclassified as 
uninfected in many systems using a variety of methods.

3  | DISEASE‐STRUCTURED N‐MIXTURE 
MODELS

The N‐mixture model (Royle, 2004) is a type of state‐space model 
where the true state of the system (i.e., animal abundance) is as‐
sumed to be imperfectly observed during the sampling process. 
N‐mixture models attribute observation error to imperfect detec‐
tion of individuals (i.e., false negatives) which can be estimated from 
repeated surveys of a site over a period in which the population is 
closed to demographic changes. A site can be defined as a spatial 
location, an individual, or a sample; a repeated survey can be defined 
as temporal or spatial replicates, or resampling of an individual.

In this section, we introduce the disease‐structured N‐mixture 
model framework for closed (single season) and open (multisea‐
son) populations (see Supporting Information for additional details). 
Disease‐structured N‐mixture models provide a rapid, inexpensive, 
and efficient approach for estimating demographic rates, while ac‐
counting for imperfect host and/or pathogen detection (e.g., Dail 
& Madsen, 2011; Zipkin, Sillett, et al., 2014; Zipkin, Thorson, et al., 
2014; Hostetler & Chandler, 2015; Zhao, Royle, & Boomer, 2017; 
Brintz, Fuentes, & Madsen, 2018). Using data collected across time 
and space, disease‐structured N‐mixture models can estimate state‐
dependent abundance and related demographic rates (e.g., survival, 
recruitment, immigration), as well as transition probabilities between 
disease states (Table 1).

Generalized N‐mixture models have recently been applied to two 
disease‐specific case studies (Brintz et al., 2018; DiRenzo, Zipkin, et 
al., 2018). Brintz et al. (2018) estimate an increase in the number of 
chlamydia cases in Oregon over time and highlight how imperfect 
pathogen detection may be due to latency of the infection or pos‐
sibly hard‐to‐reach populations, including drug users, sex workers, 
and others having the infection. In a different model formulation, 
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DiRenzo, Zipkin, et al. (2018) evaluated support for three host–
pathogen coexistence hypotheses (i.e., source‐sink, eco‐evolu‐
tionary rescue, and spatial variation in pathogen transmission) in a 
Neotropical amphibian community decimated by Bd in 2004. They 
found that the primary driver of host–pathogen coexistence was 
eco‐evolutionary rescue, as evidenced by similar amphibian survival 
and recruitment rates between infected and uninfected hosts.

3.1 | Single‐season closed population model

We outline the general modeling framework for a closed popula‐
tion disease‐structured N‐mixture model to estimate the abundance 
of infected and uninfected hosts using one of the most frequently 
collected data types: host and pathogen counts. The goal is to es‐
timate pathogen prevalence and site‐level abundance of infected 
and uninfected hosts, while accounting for both imperfect host and 
pathogen detection. In the single‐season study design, we assume 
that individual sites (e.g., survey plots or transects) are sampled on 
multiple occasions (survey replicates) during a time frame when the 
host population is closed to changes (i.e., birth, death, immigration, 
emigration, disease transmission). The observed number of infected 
and uninfected hosts is counted at each site during each survey 
event. Each observed host is assigned a disease state (infected or 
not infected), based on diagnostic symptoms of disease or labora‐
tory analysis (e.g., swabs, blood, or tissue samples), and used to cal‐
culate the average infection intensity at site i during survey j. We 
assume that a fraction of infected hosts are misidentified as unin‐
fected because of low pathogen infection intensities (e.g., DiRenzo, 
Campbell Grant, et al., 2018; Lachish et al., 2012; Miller et al., 2012), 
but misidentification may also be unrelated to infection intensity 
and attributable to other factors (e.g., field sampling and laboratory 
diagnostic testing).

We specify the observation model to account for imperfect host 
and pathogen detection during the sampling process by assuming 
that pathogen detection is related to infection intensities (e.g.,‐
DiRenzo, Campbell Grant, et al., 2018; Lachish et al., 2012; Miller et 
al., 2012). We denote gs,i,j as the number of hosts detected in each 
disease state s (where s = 1 for uninfected and s = 2 for infected) 
at site i during survey replicate j. We assume that there are a num‐
ber of misidentified infected hosts, mi,j (i.e., the number of infected 
hosts classified as uninfected when they are actually infected). The 
corrected number of detected uninfected and infected hosts, ys,i,j, 
in disease state s at site i during survey j is part of a deterministic 
relationship between the number of observed hosts, gs,i,j, and the 
number of misspecified hosts, mi,j:

We assume that the number of misspecified individuals, mi,j, is a 
binomial random variable dependent on the average pathogen de‐
tection probability for hosts at site i during survey replicate j, θi,j:

To estimate θi,j, we model the relationship between pathogen de‐
tection probability and average site‐specific pathogen infection in‐
tensity, Zi,j: logit(θi,j) = δ0 + δ1 Zi,j, where δ0 and δ1 are the intercept 
and slope parameters on the effect (see Supporting Information for 
details). Zi,j is estimated using a lognormal distribution:

where, µi is the average infection intensity at site i and σ2 is the vari‐
ation in infection intensity among individuals at site i. The observed 
data, xi,j, is then modeled as a lognormal distribution with mean Zi,j 
and sampling error σe

2:

The parameters δ0, δ1, µi, and σ
2 are estimable by either (a) collecting 

multiple (>1) samples for diagnostic analysis from each observed host or 
(b) repeated diagnostic runs for individual samples, to explicitly model 
the relationship between pathogen infection intensity and pathogen 
detection probability. In cases where such data are unavailable, infor‐
mation obtained from outside studies can be used. The relationship 
between pathogen intensity and detection probability has been estab‐
lished for many disease systems (Drewe et al., 2009; Gómez‐Díaz et 
al., 2010; Knowles et al., 2011; Lachish et al., 2012; Miller et al., 2012, 
DiRenzo, Campbell Grant, et al., 2018), which can be readily translated 
into informative priors (e.g., DiRenzo, Zipkin, et al., 2018).

We use the corrected number of uninfected and infected hosts 
ys,i,j in our model to estimate the true number of uninfected and in‐
fected hosts at each site i, Ns,i, with the binomial distribution:

where ps,i,j is the host detection probability in disease state s at site 
i during survey j.

We model true host abundance, Ns,i, in disease class s and site i 
using a count distribution, such as the Poisson:

where λs is the expected host abundance for disease state s across 
all sites, which can also be modeled with site‐level habitat covariates 
using a log‐link function. We use the Poisson distribution but others 
such as the zero‐inflated Poisson or negative binomial, can be used 
in the case of excess zeros or when data are skewed (Kéry & Schaub, 
2012).

Total host abundance at a site i is the sum of the latent number 
of infected and uninfected hosts: Ñi=N1,i+N2,i. Site‐level pathogen 
prevalence, Pi is then calculated as:

(1)g1,i,j=y1,i,j+mi,j,

(2)g2,i,j=y2,i,j−mi,j.

(3)mi,j∼bin(y2,i,j,1−�i,j).

(4)Zi,j∼ log normal( log (�i+0.001),�2)

(5)xi,j∼ log normal( log (Zi,j+0.001),�2
e
).

(6)ys,i,j∼bin(Ns,i,ps,i,j),

(7)Ns,i∼Poisson(�s)

(8)Pi=
N2,i

Ñi
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3.2 | Multiseason open population model

In the multiseason formulation of the disease‐structured N‐mix‐
ture model, our goal is to estimate the number of individuals (e.g., 
infected, uninfected), demographic parameters (e.g., survival, re‐
cruitment rates), and disease dynamics (i.e., transmission, recovery 
probabilities; Figure 2). Using a robust multiseason study design, 
sites are repeatedly surveyed during multiple primary sampling pe‐
riods (e.g., seasons or years; Dail & Madsen, 2011; Zipkin, Sittell, et 
al., 2014; Zipkin, Thorson, et al., 2014). We assume that the popu‐
lation is open to changes in abundance via birth, survival, immi‐
gration, and changes in disease states between primary sampling 
periods. Within each primary sampling period, sites are repeatedly 
sampled during a period of population closure, and all hosts are 
counted and assigned to a disease state (i.e., infected or not in‐
fected) as described in the closed population model. The observa‐
tion model linking the observed survey data (i.e., repeated counts 
of infected and uninfected hosts at sites) for the open population 
model is the same as in the closed population model with the only 
difference being that the data and true latent abundance of hosts 
in disease state s at each site j during primary season, Ns,i,t, are all 
also indexed by season/year t.

We model abundance for each disease state s in the first year, 
Ns,i,1, of sampling using a count distribution, such as a Poisson:

where expected host abundance, λs, differs by disease state s. 
Expected abundance could also change by location if site‐level co‐
variates (indexed by i) are included. We model subsequent seasons 
(t ≥ 2) by considering the number of hosts at each site i that survive 

in disease state (S), transition between disease states (T) and are re‐
cruited via immigration and reproduction (G).

To model the number of hosts that survive from season t − 1 to t 
at site i, we define parameter ωs as the disease state‐specific appar‐
ent survival probability for an uninfected (s = 1) and infected (s = 2) 
hosts, such that:

We specify the number of hosts that transition from disease 
state s to ss at site i from season t − 1 to t (Ts(ss),i,t) based on site‐spe‐
cific transmission risk (ci,t) and recovery probability (ri,t):

With this specification, hosts must first survive with the prob‐
ability associated with their disease state ωs in season t − 1 before 
transitioning to another disease state. Finally, we model the number 
of hosts gained, Gs,i,t, to each disease state s at site i from season 
t − 1 to t:

where γs,i,t is the expected number of uninfected (s = 1) and infected 
(s = 2) hosts recruited (either by immigration or reproduction) to site 
i between seasons.

The state‐specific host abundance, Ns,i,t, for disease state s at 
site i during season t is then the sum of the number of hosts that 
are gained at a site, survive at a site, and remain there, and those 

(9)Ns,i,1∼Poisson(�s),

(10)Ss,i,t∼bin(Ns,i,t−1,�s).

(11)T1(2),i,t∼bin(S1,i,t,ci,t),

(12)T2(1),i,t∼bin(S2,i,t,ri,t).

(13)Gs,i,t∼Poisson(�s,i,t),

F I G U R E  2  Disease dynamics of a host 
population governed by (a) the uninfected 
and infected sub‐populations (N1 and 
N2, respectively) that experience state 
transitions (i.e., c = infection, r = recovery), 
recruitment (γ), and survival (ω). This 
framework has traditionally been used 
in mark–recapture models, but recent 
advancements in unmarked data models 
allow for a similar parameter estimation. 
Parameters are defined in Table 1. To 
study the link between host demographic 
rates and pathogen infection, we can 
(b) correlate the estimates of annual 
population growth rates with those of 
estimated demographic rates in both 
infected and uninfected states

Time t
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(b)

Uninfected N1

2r

1c
1 21 1

1 γ γ1 2 2

Infected N2

Disease dynamics
framework

Linking host demographic rates to pathogen infection
Su

rv
iv

al
 p

ro
b.

Time t

Uninfected
Infected

Po
p 

gr
ow

th
 ra

te
 

Survival prob.

Uninfected
Infected



     |  905DIRENZO et al.

that transition into disease state s minus those that transition out of 
disease state s:

3.3 | Assumptions and limitations

While we highlight the utility and potential for the use of N‐mixture 
model to studying disease dynamics, the benefits of cheaper sam‐
pling designs (i.e., count data compared to mark–recapture) comes 
at inferential costs, such as restrictive assumptions and less power 
(Table 2; Barker, Schofield, Link, & Sauer, 2018; Link, Schofield, 
Barker, & Sauer, 2018). Like all statistical models, N‐mixture mod‐
els are an oversimplification of the biological world, but they provide 
the opportunity to extrapolate demographic information from count 
data and account for sampling error. Kéry (2018) concluded that pa‐
rameter identifiability problems associated with N‐mixture models 
arise when the number of sites sampled is small, but that most models 
are well identifiable.Failure to meet modeling assumptions for struc‐
tured N‐mixture models (e.g., disease, age, sex, size, etc.) will likely re‐
sult in similar problems to single‐season N‐mixture models (Table 2), 
but such models have not yet been explicitly evaluated. Structured 
N‐mixture models may be more susceptible to unidentified param‐
eter biases, depending on circumstances, because of their compli‐
cated framework. Assumption violations may also have cascading 
effects. For example, if the closure assumption were violated such 
that there was high immigration of infected hosts within a primary 
sampling period, estimates of disease transmission and infected host 
survival probability could be overestimated, and recovery and unin‐
fected host survival probability could be underestimated. Likewise, 
estimates of infected and uninfected host abundance would be 

biased, overestimating numbers of infected hosts, and therefore, 
pathogen prevalence and average infection intensity. Structured N‐
mixture models are also likely to require a greater number of sites, 
more repeated surveys, and a larger number of primary seasons in 
order for parameter identifiability. Thus, a wider breadth of count 
data is required to compensate for the lack of depth of demographic 
information that is otherwise present in mark–recapture data.

4  | FUTURE DIRECTIONS

Emerging infectious diseases are challenging to forecast, which 
impedes development of optimal pathogen control strategies 
(Daszak et al., 2000; Jones et al., 2008; Fisher et al., 2012; but see 
Russell et al., 2017). One of the primary goals for management of 
emerging infectious diseases is to minimize pathogen spread and 
their impacts on host populations (Bielby, Cooper, Cunningham, 
Garner, & Purvis, 2008; Kilpatrick, Daszak, Goodman, Rogg, et al., 
2006; Kilpatrick, Daszak, Jones, Marra, & Kramer, 2006; Kilpatrick, 
Kramer, Jones, Marra, & Daszak, 2006; Langwig et al., 2015; 
Smith, Waller, Russell, Childs, & Real, 2005). Given the typically 
small population sizes of wildlife disease ecology studies, N‐mix‐
ture models can be a powerful tool to estimate disease dynam‐
ics, especially when combined with other sources of information 
(e.g., informative priors) or data (e.g., mark–recapture). Below, we 
suggest potential avenues of research to further exploit unmarked 
datasets for disease analyses.

4.1 | False positives

Ignoring false positives also results in disease state misclassification, 
where uninfected hosts are misclassified as infected (i.e., false posi‐
tive). False positives (i.e., incorrectly diagnosing uninfected hosts 

(14)Ns,i,t=Gs,i,t+Ss,i,t+Tss(s),i,t− Ts(ss),i,t

TA B L E  2  Assumption violations, problems, and solutions to N‐mixture models

Violation Why is it a problem? What can be done? Citation

Double counting When less than one animal in 
twenty is double counted, then 
the model biases estimates of 
abundance by 21%

Use N‐mixture model for relative 
abundances or allocate additional 
resources for mark–recapture data

Link et al. (2018)

Unmodeled variation in population 
size over time

Estimation of average abundance is 
biased, bias increases as the 
proportion of variation in 
population size that occurs among 
sites decreases

Use N‐mixture model for relative 
abundances or allocate additional 
resources for mark–recapture data

Link et al. (2018)

Unmodeled variation in detection 
probability over time

2% variation in detection results in 
19% to 21% additional bias in 
estimation of average abundance

Use N‐mixture model for relative 
abundances or allocate additional 
resources for mark–recapture data

Link et al. (2018)

Unmodeled variation in detection 
probability over time

Alternative models are indistin‐
guishable, and no reliable estimate 
for abundance can be obtained

Use N‐mixture model for relative 
abundances or allocate additional 
resources for mark–recapture data

Barker et al. (2018)

When detection probability and 
number of sampling occasions are 
small

An infinite estimate of abundance 
can arise

Use a sample covariance as a diagnostic 
test to identify this problem

Dennis, Morgan, and 
Ridout (2015)
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as infected) can occur during pathogen diagnostic tests because 
of cross‐contamination of samples or lack of diagnostic test speci‐
ficity. Consideration of false positives in disease ecology is scarce 
(but see Abad‐Franch, Valença‐Barbosa, Sarquis, & Lima, 2014) as 
most studies assert that either strict protocols were used to prevent 
cross‐contamination or that negative controls on PCR plates were 
used to identify cases where false positives occurred (e.g., Lachish 
et al., 2012; Miller et al., 2012; Schmidt, Kéry, Ursenbacher, Hyman, 
& Collins, 2013; Zelé et al., 2014). However, strict protocols alone 
may not be enough to eliminate false positives. For example, false 
positives can occur from carryover of amplified DNA sequences, 
reagent contamination, positive displacement by pipettes, and aero‐
sol effects (Kwok, 1990). Modeling approaches that estimate both 
false negatives and false positives could accommodate ambiguous 
state assignment by supplying prior information on the probability 
of a false positive (e.g., Miller et al., 2011). The prior information 
can take the form of an inequality constraint (e.g., false negatives 
< false positives; see Royle & Link, 2006) or a prior distribution in‐
formed by a priori knowledge, expert opinion, or data (Chambert, 
Miller, & Nichols, 2015; Miller et al., 2011). To date, there have only 
been detection/non‐detection models of false positives (Chambert 
et al., 2015; Miller et al., 2011). If N‐mixture models were combined 
with false‐positive models, then that would aid in discerning double 
counts (see Table 2 for consequences of double counts).

4.2 | Spatially explicit models

An emerging frontier for N‐mixture models is spatially explicit 
dynamic models (Zhao et al., 2017), in which emigration and im‐
migration are separated from survival and reproduction, respec‐
tively. Spatially explicit models have the advantage of providing 
biologically realistic models across heterogeneous space. Spatial 
heterogeneity can be added into models through covariates, with 
random spatial effects (e.g., Yackulic et al., 2012), or by making as‐
sumptions about the ability of individuals to move between sites 
(e.g., assuming that movement can only occur among adjacent 
habitat patches; Zhao et al., 2017). Within a disease context, spa‐
tially explicit models could be used to identify spatial metapopula‐
tions or habitats that serve as pathogen hotspots (i.e., areas where 
pathogen survival and transmission are high) or host refugia (i.e., 
areas where host survival is high and pathogen transmission is low; 
Paull et al., 2012). In this case, conservation managers can target 
disease prevention to specific metapopulations or habitat patches 
rather than an entire region.

4.3 | Integration of untapped data sources

Count data can be combined with other data types (e.g., mark–re‐
capture data, opportunistic presence‐only data) to model disease 
dynamics. Recently developed approaches, such as integrated 
population models and integrated distribution models, combine 
different types of data including count, detection–non‐detection, 
mark–recapture data, or opportunistic presence only (e.g., Koshkina 

et al., 2017; Morris, Reich, Pacifici, & Lei, 2017; Pacifici et al., 2017; 
Zipkin et al., 2017), improving parameter accuracy and precision, 
and thus inferences on population‐level processes. New modeling 
frameworks are regularly developed to take advantage of cheaply 
collected data to estimate demographic rates. For example, the dy‐
namic N‐occupancy model uses only detection–non‐detection data 
to estimate abundance, population gains (i.e., via immigration and 
reproduction), and apparent survival probabilities (Rossman et al., 
2016). Extending such models to accommodate disease structures 
might be useful in the integration of multiple data types, provided 
that certain assumptions and data requirements are met.

Applying N‐mixture models to long‐term and/or spatially ex‐
pansive datasets may allow for assessments of historic patterns of 
disease dynamics and predictive capacity to forecast impacts of 
novel pathogen invasions. Citizen science programs, such as the 
FeederWatch project (http://feederwatch.org/), Saving Salamanders 
with Citizen Science (http://www.amphibians.org/), ZomBee Watch 
(https://www.zombeewatch.org/), and Monarch Health (http://
monarchparasites.org/), have the capacity to contribute valuable 
data to such analyses. Combining citizen science data with data ob‐
tained from designed, researcher‐collected surveys is likely to yield 
more precise estimates of demographic and disease parameters than 
can be obtained solely from the individual sources (e.g., van Strien, 
Swaay, & Termaat, 2013).

5  | CONCLUSIONS

The rise of emerging infectious diseases requires rapid creation of 
disease mitigation programs (e.g., Langwig et al., 2015). Yet, to de‐
velop effective preventions and controls, wildlife managers need 
estimates of disease prevalence, pathogen infection intensity, trans‐
mission, and recovery rates—all of which may be biased by sampling 
error. The N‐mixture modeling framework that we outline here can be 
modified for specific control scenarios and can additionally accom‐
modate outside sources of data—including expert opinion, borrowed 
information from better‐studied disease systems, and laboratory or 
pilot studies (Russell et al., 2017). Model extensions can include 
more complicated disease structures such as multiple host species, 
multiple pathogen infections, age structure, stage structure, or het‐
erogeneity in rates, although inevitably more data will be needed to 
estimate additional parameters in such models. The template that 
we provide (including code within the Supporting Information) can 
be customized based on specific study objectives. Unmarked data 
offer excellent opportunities to understand complex host–pathogen 
interactions, bridging the long‐standing gap between disease ecol‐
ogy and theory‐based wildlife disease management.
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