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Abstract
In this paper, we will state and prove some weighted dynamic inequalities of
Opial-type involving integrals of powers of a function and of its derivative on time
scales which not only extend some results in the literature but also improve some of
them. The main results will be proved by using some algebraic inequalities, the
Hölder inequality and a simple consequence of Keller’s chain rule on time scales. As
special cases of the obtained dynamic inequalities, we will get some continuous and
discrete inequalities.
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1 Introduction
In 1960, the Polish Mathematician Opial [36] proved an inequality involving integrals of
functions and their derivatives;

∫ b

a

∣∣x(t)
∣∣∣∣x′(t)

∣∣dt ≤ b – a
4

∫ b

a

∣∣x′(t)
∣∣2 dt, (1.1)

where x is an absolutely differentiable continuous function on [a, b], x(a) = x(b) = 0, x(t) >
0, and the constant b–a

4 is sharp, in the sense that b–a
4 cannot be replaced by a smaller

constant.
Since the publication of the above result in 1960, numerous papers with new evidence,

different speculations, and augmentations have showed up in the literature. Inequalities
which involve integrals of functions and their derivatives are of great importance in mathe-
matics with applications in the theory of differential equations, approximations and prob-
ability [1–4, 7, 17, 18, 21, 22, 28, 29, 34].

As a generalization of (1.1), Beesack [10] proved that: If x is an absolutely continuous
function on [a, b] with x(a) = 0, then

∫ b

a

∣∣x(t)
∣∣∣∣x′(t)

∣∣dt ≤ 1
2

∫ b

a

1
r(t)

dt
∫ b

a
r(t)

∣∣x′(t)
∣∣2 dt, (1.2)

where r is a positive and continuous function with
∫ b

a
dt

r(t) < ∞.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2325-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2325-8&domain=pdf
mailto:ahmedeldeeb@azhar.edu.eg


El-Deeb et al. Advances in Difference Equations        (2019) 2019:393 Page 2 of 23

Yang [44] simplified the Beesack proof and extended the inequality (1.2) as follows: If x
is an absolutely continuous function on (a, b) with x(a) = 0, then

∫ b

a
q(t)

∣∣x(t)
∣∣∣∣x′(t)

∣∣dt ≤ 1
2

∫ b

a

1
r(t)

dt
∫ b

a
r(t)q(t)

∣∣x′(t)
∣∣2 dt, (1.3)

where r is a positive and continuous function with
∫ b

a
dt

r(t) < ∞ and q is a positive, bounded,
and nonincreasing function on [a, b].

Recently, the theory of time scales, which has been initiated by Stefen Hilger in his Ph.D.
thesis [30] in order to unify discrete and continuous analysis, has gained a lot of atten-
tion. During the previous decade, an impressive number of dynamic imbalances have been
given by numerous creators who were inspired by certain applications (see [5, 6, 9, 12, 13,
16, 19, 20, 23–27, 31, 35, 37, 39, 41]). The general thought is to demonstrate a result for
a dynamic inequality where the domain of the unknown function is a so-called time scale
T, which is an arbitrary nonempty closed subset of real numbers. The three best-known
time scales are T = R, T = Z and T = qZ = {qz : z ∈ Z} ∪ {0} where q > 1. The books [14]
and [15] organize and summarize much of time scales calculus.

In [11], Bohner and Kaymakçalan introduced a dynamic Opial inequality which ex-
tended the continuous version inequality (1.1) to a general time scale and studied if
x : [a, b] ∩T −→R is delta differentiable with x(a) = 0, then

∫ b

a

∣∣x(t) + xσ (t)
∣∣∣∣x�(t)

∣∣�t ≤ (b – a)
∫ b

a

∣∣x�(t)
∣∣2

�t. (1.4)

Dynamic Opial’s inequalities on time scales got a lot of consideration and numerous pa-
pers have been composed; see [11, 33, 38, 40, 42, 43] and the references cited therein.

Also in [11] the authors extended the inequality (1.3) of Yang and proved that: If r and
q are positive rd-continuous functions on [a, b]T,

∫ b
a

�t
r(t) < ∞, q is nonincreasing and x :

[a, b] ∩T −→R is delta differentiable with x(a) = 0, then

∫ b

a
qσ (t)

∣∣x(t) + xσ (t)
∣∣∣∣x�(t)

∣∣�t ≤
∫ b

a

�t
r(t)

∫ b

a
r(t)q(t)

∣∣x�(t)
∣∣2

�t. (1.5)

Karpuz et al. [33] established the same inequality as in (1.5) by replacing qσ with q of
the form

∫ b

a
q(t)

∣∣x(t) + xσ (t)
∣∣∣∣x�(t)

∣∣�t ≤ Kq(a, b)
∫ b

a

∣∣x�(t)
∣∣2

�t, (1.6)

where q is a positive rd-continuous function on [a, b]T, x : [a, b] ∩ T −→ R is delta differ-
entiable with x(a) = a, and

Kq(a, b) =
(

2
∫ b

a
q2(u)

(
σ (u) – a

)
�u

) 1
2

.

For p ≥ 1, Karpuz and Özkan [32] proved that: If y : [a, τ ] ∩T →R
+ is delta differentiable

with y(a) = 0 and y� does not change sign in (a, τ )T, then we have

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x ≤ K1(a, τ , p, q)

∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x, (1.7)
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where

K1(a, τ , p, q) = 22p–1
(

q
p + q

) q
p+q

[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

+ 2p–1 max
a≤x≤τ

(
μp(x)s(x)

r(x)

)
,

p, q are positive real numbers such that p ≥ 1, and r, s are nonnegative rd-continuous
functions on (a, τ )T such that

∫ τ

a r
–1

p+q–1 (t)�t < ∞.
In the same paper, the authors proved that: If y : [τ , b] ∩ T → R

+ is delta differentiable
with y(b) = 0 and y� does not change sign in (τ , b)T, then we have

∫ b

τ

s(x)
∣∣y(x) + yσ (x)

∣∣p∣∣y�(x)
∣∣q

�x ≤ K2(τ , b, p, q)
∫ b

τ

r(x)
∣∣y�(x)

∣∣p+q
�x, (1.8)

where

K2(τ , b, p, q) = 22p–1
(

q
p + q

) q
p+q

[∫ b

τ

s
p+q

p (x)
(

1
r(x)

) q
p
(∫ b

x

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

+ 2p–1 max
τ≤x≤b

(
μp(x)s(x)

r(x)

)
,

p, q are positive real numbers such that p ≥ 1, and r, s are nonnegative rd-continuous
functions on (τ , b)T such that

∫ b
τ

r
–1

p+q–1 (t)�t < ∞.
Adding (1.7) and (1.8), Karpus and Özkan proved that: If y : [a, b] ∩ T → R

+ is delta
differentiable with y(a) = y(b) = 0, then

∫ b

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x ≤ K(p, q)

∫ b

a
r(x)

∣∣y�(x)
∣∣p+q

�x, (1.9)

where

K(p, q) = K1(a, τ , p, q) = K2(τ , b, p, q).

For p ≤ 1, Karpuz and Özkan [32] proved that: If y : [a, τ ]∩T→R
+ is delta differentiable

with y(a) = 0 and y� does not change sign in (a, τ )T, then we have

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x ≤ K3(a, τ , p, q)

∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x, (1.10)

where

K3(a, τ , p, q) =
K1(a, τ , p, q)

22p–1 ,

p, q are positive real numbers such that p ≤ 1, p + q > 1 and r, s are nonnegative rd-
continuous functions on (a, τ )T such that

∫ τ

a r
–1

p+q–1 (t)�t < ∞.
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Also, in the same paper, the authors proved that: If y : [τ , b] ∩ T → R
+ is delta differen-

tiable with y(b) = 0 and y� does not change sign in (τ , b)T, then we have

∫ b

τ

s(x)
∣∣y(x) + yσ (x)

∣∣p∣∣y�(x)
∣∣q

�x ≤ K4(τ , b, p, q)
∫ b

τ

r(x)
∣∣y�(x)

∣∣p+q
�x, (1.11)

where

K4(τ , b, p, q) =
K2(τ , b, p, q)

22p–1 ,

p, q are positive real numbers such that p ≤ 1, p + q > 1 and r, s are nonnegative rd-
continuous functions on (τ , b)T such that

∫ b
τ

r
–1

p+q–1 (t)�t < ∞.
Combining (1.10) and (1.11), Karpus and Özkan proved that: If y : [a, b] ∩ T → R

+ is
delta differentiable with y(a) = y(b) = 0, then

∫ b

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x ≤ K�

1 (p, q)
∫ b

a
r(x)

∣∣y�(x)
∣∣p+q

�x, (1.12)

where

K�
1 (p, q) = K3(a, τ , p, q) = K4(τ , b, p, q).

In this article, motivated by the above inequalities, we will explore some dynamic Opial-
type inequalities on time scales, which generalize inequalities (1.7)–(1.12). After each re-
sult, we will study the special cases when T = R and T = N to obtain some continuous and
discrete results.

2 Basics of time scales
Firstly, we recall some essentials of time scales, and some universal symbols that will be
used in the present paper. From now on, R and Z are the set of real numbers and the set
of integers, respectively.

A time scale T is an arbitrary nonempty closed subset of the set of real numbers R.
Throughout the article, we assume that T has the topology that it inherits from the stan-
dard topology on R. We define the forward jump operator σ : T → T for any t ∈ T by

σ (t) := inf{s ∈ T : s > t},

and the backward jump operator ρ : T→ T for any t ∈ T by

ρ(t) := sup{s ∈ T : s < t}.

In the preceding two definitions, we set inf∅ = supT (i.e., if t is the maximum of T, then
σ (t) = t) and sup∅ = infT (i.e., if t is the minimum of T, then ρ(t) = t), where ∅ denotes
the empty set.

A point t ∈ T with infT < t < supT is said to be right-scattered if σ (t) > t, right-dense if
σ (t) = t, left-scattered if ρ(t) < t, and left-dense if ρ(t) = t. Points that are simultaneously
right-dense and left-dense are said to be dense points. Points that are simultaneously right-
scattered and left-scattered are said to be isolated points.
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The forward graininess function μ : T → [0,∞) is defined for any t ∈ T by μ(t) := σ (t)– t
and the backward graininess function ν : T → [0,∞) is defined for any t ∈ T by ν(t) :=
t – ρ(t).

If f : T→R is a function, then the function f σ : T→R is defined by f σ (t) = f (σ (t)),∀t ∈
T, that is, f σ = f ◦σ . Similarly, the function f ρ : T →R is defined by f ρ(t) = g(ρ(t)),∀t ∈ T,
that is, f ρ = f ◦ ρ .

The sets Tκ , Tκ and T
κ
κ are introduced as follows: If T has a left-scattered maximum t1,

then T
κ = T – {t1}, otherwise T

κ = T. If T has a right-scattered minimum t2, then T
κ =

T – {t2}, otherwise Tκ = T. Finally, we have T
κ
κ = T

κ ∩Tκ .
The interval [a, b] in T is defined by

[a, b]T = {t ∈ T : a ≤ t ≤ b}.

We define the open intervals and half-closed intervals similarly.
Assume f : T →R is a function and t ∈ T

κ . Then f �(t) ∈R is said to be the delta deriva-
tive of f at t if for any ε > 0 there exists a neighborhood U of t such that, for every s ∈ U ,
we have

∣∣f (σ (t)
)

– f (s)] – f �(t)
[
σ (t) – s

]∣∣ ≤ ε
∣∣σ (t) – s

∣∣.

Moreover, f is said to be delta differentiable onT
κ if it is delta differentiable at every t ∈ T

κ .
Similarly, we say that f ∇ (t) ∈R is the nabla derivative of f at t if for any ε > 0 there exists

a neighborhood V of t such that for all s ∈ V

∣∣[f
(
ρ(t)

)
– f (s)

]
– f ∇ (t)

[
ρ(t) – s

]∣∣ ≤ ε
∣∣ρ(t) – s

∣∣. (2.1)

Furthermore, f is said to be nabla differentiable on Tκ if it is nabla differentiable at each
t ∈ Tκ .

A function f : T →R is said to be right-dense continuous (rd-continuous) if f is contin-
uous at all right-dense points in T and its left-sided limits exist at all left-dense points in
T.

In a similar manner, a function f : T → R is said to be left-dense continuous (ld-
continuous) if f is continuous at all left-dense points in T and its right-sided limits exist
at all right-dense points in T.

The delta integration by parts on time scales is given by the following formula:

∫ b

a
g�(t)f (t)�t = g(b)f (b) – g(a)f (a) –

∫ b

a
gσ (t)f �(t)�t, (2.2)

whereas the nabla integration by parts on time scales is given by

∫ b

a
g∇ (t)f (t)∇t = g(b)f (b) – g(a)f (a) –

∫ b

a
gρ(t)f ∇ (t)∇t. (2.3)

We will use the following crucial relations between calculus on time scales T and either
differential calculus on R or difference calculus on Z. Note that:
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(i) If T = R, then

σ (t) = ρ(t) = t,

μ(t) = ν(t) = 0,

f �(t) = f ∇ (t) = f ′(t),
∫ b

a
f (t)�t =

∫ b

a
f (t)∇t =

∫ b

a
f (t) dt.

(2.4)

(ii) If T = Z, then

σ (t) = t + 1,

ρ(t) = t – 1,

μ(t) = ν(t) = 1,

f �(t) = �f (t),

f ∇ (t) = ∇f (t),
∫ b

a
f (t)�t =

b–1∑
t=a

f (t),

∫ b

a
f (t)∇t =

b∑
t=a+1

f (t),

(2.5)

where � and ∇ are the forward and backward difference operators, respectively.

3 Main results
In this section, we will state and prove our main results.

First, we present the basic theorems that will be needed in the proof of our main results.

Theorem 3.1 (Chain rule on time scales [14]) Assume g : R →R is continuous, g : T →R

is delta differentiable on T
κ , and f : R →R is continuously differentiable. Then there exists

c ∈ [t,σ (t)] with

(f ◦ g)�(t) = f ′(g(c)
)
g�(t). (3.1)

Theorem 3.2 (Chain rule on time scales [14]) Let f : R→R be continuously differentiable
and suppose g : T →R is delta differentiable. Then f ◦ g : T →R is delta differentiable and
the formula

(f ◦ g)�(t) =
{∫ 1

0

[
f ′(hgσ (t) + (1 – h)g(t)

)]
dh

}
g�(t), (3.2)

holds.
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Theorem 3.3 (Dynamic Hölder inequality [14]) Let a, b ∈ T and f , g ∈ Crd([a, b]T, [0,∞)).
If p, q > 1 with 1

p + 1
q = 1, then

∫ b

a
f (t)g(t)�t ≤

[∫ b

a
f p(t)�t

] 1
p
[∫ b

a
gq(t)�t

] 1
q

. (3.3)

Also, the main results here will be proved by employing the inequalities (see [8], page 51)

aλ + bλ ≤ (a + b)λ ≤ 2λ–1(aλ + bλ
)
, if a, b ≥ 0,λ ≥ 1; (3.4)

aλ + bλ ≥ (a + b)λ ≥ 2λ–1(aλ + bλ
)
, if a, b ≥ 0, 0 ≤ λ ≤ 1. (3.5)

Next, we enlist the following assumptions for the proofs of our main results:
(A1) T be a time scale with (i) a, τ ∈ T; (ii) τ , b ∈ T; (iii) a, b ∈ T.
(A2) p, q be positive real numbers such that (i) p ≥ 1; (ii) p ≤ 1; (iii) p + q > 1.
(A3) r, s be nonnegative rd-continuous functions on (i) (a, τ )T provided that∫ τ

a r
–1

p+q–1 (t)�t < ∞; (ii) (τ , b)T such that
∫ b
τ

r
–1

p+q–1 (t)�t < ∞; (iii) (a, b)T with∫ b
a r

–1
p+q–1 (t)�t < ∞.

(A4) y : [a, τ ] ∩T →R
+ is delta differentiable with y(a) �= 0 and y� does not change sign

in (a, τ )T.
(A5) y : [τ , b] ∩T→R

+ be delta differentiable such that y(b) �= 0 and y� does not
change sign in (τ , b)T.

(A6) y : [a, b] ∩T →R
+ is delta differentiable and y(a) �= 0, y(b) �= 0. Also y� does not

change sign in (a, b)T.
(A7) {ri}0≤i≤N and {si}0≤i≤N are nonnegative real sequences.
(A8) {yi}0≤i≤N is a sequence of real numbers with (i) y(a) �= 0; (ii) y(b) �= 0; (iii) y(a) �= 0

and y(b) �= 0.
Now, we are ready to state and prove the first result, which generalizes many inequalities

in the literature.

Theorem 3.4 Let (A1)(i), (A2)(i), (A3)(i) and (A4) be satisfied.
(a) Then

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K5(a, τ , p, q)
∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x + 23p–2∣∣y(a)
∣∣p

∫ τ

a
s(x)

∣∣y�(x)
∣∣q

�x, (3.6)

where

K5(a, τ , p, q)

= 23p–2
(

q
p + q

) q
p+q

[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

+ 2p–1 max
a≤x≤τ

(
μp(x)s(x)

r(x)

)
.
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(b) If r = s, then

∫ τ

a
r(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K6(a, τ , p, q)
∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x + 23p–2∣∣y(a)
∣∣p

∫ τ

a
r(x)

∣∣y�(x)
∣∣q

�x, (3.7)

where

K6(a, τ , p, q) = 23p–2
(

q
p + q

) q
p+q

[∫ τ

a
r(x)

(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

+ 2p–1 max
a≤x≤τ

(
μp(x)

)
. (3.8)

(c) Let r = 1. Then
∫ τ

a

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K7(a, τ , p, q)
∫ τ

a

∣∣y�(x)
∣∣p+q

�x + 23p–2∣∣y(a)
∣∣p

∫ τ

a

∣∣y�(x)
∣∣q

�x, (3.9)

where

K7(a, τ , p, q) =
(

23p–2 q
q

p+q

p + q
(τ – a)p + 2p–1 max

a≤x≤τ

(
μp(x)

))
.

Proof (a) Since y� does not change sign in (a, τ )T, we have

∣∣y(x)
∣∣ –

∣∣y(a)
∣∣ ≤ ∣∣y(x) – y(a)

∣∣ =
∣∣∣∣
∫ x

a
y�(t)�t

∣∣∣∣ ≤
∫ x

a

∣∣y�(t)
∣∣�t. (3.10)

From (3.10), we get

∣∣y(x)
∣∣ ≤

∫ x

a

∣∣y�(t)
∣∣�t +

∣∣y(a)
∣∣ =

∫ x

a

1

r
1

p+q (t)
r

1
p+q (t)

∣∣y�(t)
∣∣�t +

∣∣y(a)
∣∣.

Now, since r is nonnegative on (a, τ )T, it follows from the Hölder inequality (3.3) with
indices p+q

p+q–1 and p + q, and with

f (t) =
1

r
1

p+q (t)
, g(t) = r

1
p+q (t)

∣∣y�(t)
∣∣,

that

∣∣y(x)
∣∣ ≤

(∫ x

a

1

r
1

p+q–1 (t)
�t

) p+q–1
p+q

(∫ x

a
r(t)

∣∣y�(t)
∣∣p+q

�t
) 1

p+q
+

∣∣y(a)
∣∣. (3.11)

Since p ≥ 1, by taking the power p for both sides of (3.11), we have

∣∣y(x)
∣∣p ≤

[(∫ x

a

1

r
1

p+q–1 (t)
�t

) p+q–1
p+q

(∫ x

a
r(t)

∣∣y�(t)
∣∣p+q

�t
) 1

p+q
+

∣∣y(a)
∣∣
]p

. (3.12)
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Applying the inequality (3.4) on the right-hand side of (3.12), we deduce

∣∣y(x)
∣∣p ≤ 2p–1

(∫ x

a

1

r
1

p+q–1 (t)
�t

) p(p+q–1)
p+q

(∫ x

a
r(t)

∣∣y�(t)
∣∣p+q

�t
) p

p+q
+ 2p–1∣∣y(a)

∣∣p.

Since yσ = y + μy�, we have

y(x) + yσ (x) = 2y(x) + μy�(x). (3.13)

Obviously, p ≥ 1. Taking power p for both sides of (3.13) and using the inequality (3.4),
we deduce

∣∣y(x) + yσ (x)
∣∣p ≤ 2p–1(2p∣∣y(x)

∣∣p + μp(x)
∣∣y�(x)

∣∣p)

= 22p–1∣∣y(x)
∣∣p + 2p–1μp(x)

∣∣y�(x)
∣∣p. (3.14)

Setting

z(x) :=
∫ x

a
r(t)

∣∣y�(t)
∣∣p+q

�t, (3.15)

we see that z(a) = 0, and

z�(x) = r(x)
∣∣y�(x)

∣∣p+q > 0. (3.16)

From (3.16), we get

∣∣y�(x)
∣∣p+q =

z�(x)
r(x)

and
∣∣y�(x)

∣∣q =
(

z�(x)
r(x)

) q
p+q

. (3.17)

From (3.14), (3.17) and since s is nonnegative on (a, τ )T, we have

s(x)
∣∣y(x) + yσ (x)

∣∣p∣∣y�(x)
∣∣q

≤ 22p–1s(x)
∣∣y(x)

∣∣p∣∣y�(x)
∣∣q + 2p–1μp(x)s(x)

∣∣y�
∣∣p+q

≤ 23p–2s(x)
(

1
r(x)

) q
p+q

(∫ x

a

1

r
1

p+q–1 (t)
�t

) p(p+q–1)
p+q

× z
p

p+q (x)
(
z�(x)

) q
p+q + 23p–2s(x)

∣∣y(a)
∣∣p

(
z�(x)
r(x)

) q
p+q

+ 2p–1μp(x)s(x)
z�(x)
r(x)

.

Integrating the above inequality from a to τ , we get

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ 23p–2
∫ τ

a
s(x)

(
1

r(x)

) q
p+q

(∫ x

a

1

r
1

p+q–1 (t)
�t

) p(p+q–1)
p+q

z
p

p+q (x)
(
z�(x)

) q
p+q �x
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+ 23p–2∣∣y(a)
∣∣p

∫ τ

a
s(x)

(
z�(x)
r(x)

) q
p+q

�x + 2p–1
∫ τ

a

(
μp(x)s(x)

r(x)

)
z�(x)�x

≤ 23p–2
∫ τ

a
s(x)

(
1

r(x)

) q
p+q

(∫ x

a

1

r
1

p+q–1 (t)
�t

) p(p+q–1)
p+q

z
p

p+q (x)
(
z�(x)

) q
p+q �x

+ 23p–2∣∣y(a)
∣∣p

∫ τ

a
s(x)

(
z�(x)
r(x)

) q
p+q

�x + 2p–1 max
a≤x≤τ

(
μp(x)s(x)

r(x)

)∫ τ

a
z�(x)�x.

By applying Hölder inequality (3.3) with (p + q)/p and (p + q)/q on the right side of integral
of the above inequality, we have

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ 23p–2
[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

×
[∫ τ

a
z

p
q (x)z�(x)�x

] q
p+q

+ 23p–2∣∣y(a)
∣∣p

∫ τ

a
s(x)

(
z�(x)
r(x)

) q
p+q

�x

+ 2p–1 max
a≤x≤τ

(
μp(x)s(x)

r(x)

)∫ τ

a
z�(x)�x. (3.18)

From (3.1), we obtain

[
z(p+q)/q]�(x) =

p + q
q

zp/q(c)z�(x), c ∈ [
x,σ (x)

]
.

Since z�(x) ≥ 0 and x ≤ c, we get

[
z

p+q
q

]�(x) =
p + q

q
zp/q(c)z�(x) ≥ p + q

q
zp/q(x)z�(x). (3.19)

Substituting (3.19) into (3.18) and since z(a) = 0, we have

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ 23p–2
(

q
p + q

) q
p+q

[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

×
[∫ τ

a

(
z

p+q
q

)�(x)�x
] q

p+q
+ 23p–2∣∣y(a)

∣∣p
∫ τ

a
s(x)

(
z�(x)
r(x)

) q
p+q

�x

+ 2p–1 max
a≤x≤τ

(
μp(x)s(x)

r(x)

)∫ τ

a
z�(x)�x

= 23p–2
(

q
p + q

) q
p+q

[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q
z(τ )

+ 23p–2∣∣y(a)
∣∣p

∫ τ

a
s(x)

(
z�(x)
r(x)

) q
p+q

�x + 2p–1 max
a≤x≤τ

(
μp(x)s(x)

r(x)

)
z(τ ).
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The above inequality, (3.15) and (3.16) imply that

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K5(a, τ , p, q)
∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x + 23p–2∣∣y(a)
∣∣p

∫ τ

a
s(x)

∣∣y�(x)
∣∣q

�x,

which is the desired inequality (3.6).
(b) The proof follows from (a) by setting r = s.
(c) It is noted from the chain rule on time scales (3.2) that

(
(t – a)p+q)� = (p + q)

∫ 1

0

[
h
(
σ (t) – a

)
+ (1 – h)(t – a)

]p+q–1 dh

≥ (p + q)
∫ 1

0

[
h(t – a) + (1 – h)(t – a)

]p+q–1 dh

= (p + q)(t – a)p+q–1,

so that
∫ τ

a
(x – a)p+q–1�x ≤

∫ τ

a

1
(p + q)

(
(x – a)p+q)�

�x =
(τ – a)p+q

(p + q)
. (3.20)

From (3.7) and (3.8) (by taking r(t) = 1) and using (3.20), we get

∫ τ

a

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤
[

23p–2
(

q
p + q

) q
p+q

(∫ τ

a
(x – a)(p+q–1)�x

) p
p+q

+ 2p–1 max
a≤x≤τ

(
μp(x)

)]

×
∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x + 2p–1 max
a≤x≤τ

(
μp(x)

)

≤
[

23p–2
(

q
p + q

) q
p+q

(
(τ – a)p+q

(p + q)

) p
p+q

+ 2p–1 max
a≤x≤τ

(
μp(x)

)]∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x

+ 2p–1 max
a≤x≤τ

(
μp(x)

)

=
[

23p–2 q
q

p+q

p + q
(τ – a)p + 2p–1 max

a≤x≤τ

(
μp(x)

)]∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x

+ 2p–1 max
a≤x≤τ

(
μp(x)

)
,

which is the desired inequality (3.9). This completes the proof. �

Based on Theorem 3.4, we obtain the following result by replacing [a, τ ]T by [τ , b]T and
|y(x)| =

∫ b
x |y�(t)|�t + |y(b)|.

Theorem 3.5 Let (A1)(ii), (A2)(i), (A3)(ii) and (A5) hold. Then

∫ b

τ

s(x)
∣∣y(x) + yσ (x)

∣∣p∣∣y�(x)
∣∣q

�x
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≤ K8(τ , b, p, q)
∫ b

τ

r(x)
∣∣y�(x)

∣∣p+q
�x + 23p–2∣∣y(b)

∣∣p
∫ b

τ

s(x)
∣∣y�(x)

∣∣q
�x, (3.21)

where

K8(τ , b, p, q) = 23p–2
(

q
p + q

) q
p+q

[∫ b

τ

s
p+q

p (x)
(

1
r(x)

) q
p
(∫ b

x

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

+ 2p–1 max
τ≤x≤b

(
μp(x)s(x)

r(x)

)
.

Let K�
2 (p, q) = K7(a, τ , p, q) = K8(τ , b, p, q) < ∞ such that K7(a, τ , p, q) and K8(τ , b, p, q) are

given in Theorems 3.4 and 3.5 and τ is the unique solution of the equation K7(a, τ , p, q) =
K8(τ , b, p, q). Therefore,

∫ b

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

=
∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x +

∫ b

τ

s(x)
∣∣y(x) + yσ (x)

∣∣p∣∣y�(x)
∣∣q

�x.

So combining Theorems 3.4 and 3.5 gives the following result.

Theorem 3.6 Let (A1)(iii), (A2)(i), (A3)(iii) and (A6) be fulfilled.
(a) Then

∫ b

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K�
2 (p, q)

∫ b

a
r(x)

∣∣y�(x)
∣∣p+q

�x

+ 23p–2(∣∣y(a)
∣∣p +

∣∣y(b)
∣∣p)∫ b

a
s(x)

∣∣y�(x)
∣∣q

�x. (3.22)

(b) By applying (3.9) for [a, τ ] and [τ , b] and choosing τ = a+b
2 ∈ T, therefore

∫ b

a

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K9(a, b, p, q)
∫ b

a

∣∣y�(x)
∣∣p+q

�x

+ 23p–2(∣∣y(a)
∣∣p +

∣∣y(b)
∣∣p)∫ b

a

∣∣y�(x)
∣∣q

�x, (3.23)

where

K9(a, b, p, q) =
(

23p–2 q
q

p+q

p + q

(
b – a

2

)p

+ 2p–1 max
a≤x≤τ

(
μp(x)

))
.

(c) Setting p = q = 1 in (3.23), hence

∫ b

a

∣∣y(x) + yσ (x)
∣∣∣∣y�(x)

∣∣�x
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≤
(

b – a
2

+ max
a≤x≤b

μ(x)
)∫ b

a

∣∣y�(x)
∣∣2

�x

+ 2
(∣∣y(a)

∣∣ +
∣∣y(b)

∣∣) ∫ b

a

∣∣y�(x)
∣∣�x. (3.24)

Listed below are some remarks on particular cases of Theorem 3.4, Theorem 3.5 and
Theorem 3.6:

Remark 3.7 If we take y(a) = 0, the inequality (3.6) reduces to the inequality (1.7).

Remark 3.8 If we take y(a) = 0 and r = s, the inequality (3.7) reduces to the inequality [6,
(3.3.16), page 126].

Remark 3.9 The inequality (3.9) changes to the inequality [6, (3.3.19), page 126] by putting
y(a) = 0 and r = s = 1.

Remark 3.10 If we take y(b) = 0, the inequality (3.21) reduces to the inequality (1.8).

Remark 3.11 If we take y(a) = 0 and y(b) = 0, the inequality (3.22) reduces to the inequality
(1.9).

Remark 3.12 If we take y(a) = 0 and y(b) = 0, r = s = 1 and choose τ = a+b
2 ∈ T, the inequal-

ity (3.23) reduces to the inequality [6, (3.3.20), page 126].

Remark 3.13 If we take y(a) = 0 and y(b) = 0 the inequality (3.24) reduces to the inequality
[6, (3.3.21), page 127].

Now, we give some integral and discrete inequalities as special cases from Theorems
3.4, 3.5 and 3.6, respectively:

Corollary 3.14 When T = R in Theorem 3.4, and using Eqs. (2.4), the inequality (3.6)
reduces to

∫ τ

a
s(x)

∣∣y(x)
∣∣p∣∣y′(x)

∣∣q dx

≤ K10(a, τ , p, q)
∫ τ

a
r(x)

∣∣y′(x)
∣∣p+q dx + 22(p–1)∣∣y(a)

∣∣p
∫ τ

a
s(x)

∣∣y′(x)
∣∣q dx,

where

K10(a, τ , p, q)

= 22(p–1)
(

q
p + q

) q
p+q

[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
dt

)p+q–1

dx
] p

p+q
.

Corollary 3.15 When T = R, in Theorem 3.5, and using Eqs. (2.4), the inequality (3.21)
reduces to

∫ b

τ

s(x)
∣∣y(x)

∣∣p∣∣y′(x)
∣∣q dx
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≤ K11(τ , b, p, q)
∫ b

τ

r(x)
∣∣y′(x)

∣∣p+q dx + 22(p–1)∣∣y(b)
∣∣p

∫ b

τ

s(x)
∣∣y′(x)

∣∣q dx,

where

K11(τ , b, p, q)

= 22(p–1)
(

q
p + q

) q
p+q

[∫ b

τ

s
p+q

p (x)
(

1
r(x)

) q
p
(∫ b

x

1

r
1

p+q–1 (t)
dt

)p+q–1

dx
] p

p+q
.

Corollary 3.16 When T = R, in Theorem 3.6, and using Eqs. (2.4), the inequality (3.22)
reduces to

∫ b

a
s(x)

∣∣y(x)
∣∣p∣∣y′(x)

∣∣q dx

≤ K�
3 (p, q)

∫ b

a
r(x)

∣∣y′(x)
∣∣p+q dx + 22(p–1)(∣∣y(a)

∣∣ +
∣∣y(b)

∣∣)p
∫ b

a
s(x)

∣∣y′(x)
∣∣q dx,

where K�
3 (p, q) = K10(a, τ , p, q) = K11(τ , b, p, q) < ∞ such that K10(a, τ , p, q) and K11(τ , b, p, q)

are given in Corollaries 3.14 and 3.15 and τ is the unique solution of the equation
K10(a, τ , p, q) = K11(τ , b, p, q).

Corollary 3.17 If T = N in Theorem 3.4 and (A2)(i), (A7), (A8)(i) are satisfied, and using
Eqs. (2.5), then

N–1∑
n=a

s(n)
∣∣y(n) + y(n + 1)

∣∣p∣∣�y(n)
∣∣q

≤ K12(a, τ , p, q)
N–1∑
n=a

r(n)
∣∣�y(n)

∣∣p+q + 23p–2∣∣y(a)
∣∣p

N–1∑
n=a

s(n)
∣∣�y(n)

∣∣q,

where

K12(a, τ , p, q) = 23p–2
(

q
p + q

) q
p+q

[N–1∑
n=a

s
p+q

p (n)
(

1
r(n)

) q
p
(N–1∑

n=a

1

r
1

p+q–1 (n)

)p+q–1] p
p+q

+ 2p–1 max
a≤x≤τ

(
s(n)
r(n)

)
.

Corollary 3.18 If T = N in Theorem 3.5 and (A2)(i), (A7), (A8)(ii) hold, and using
Eqs. (2.5), then

b–1∑
n=N

s(n)
∣∣y(n) + y(n + 1)

∣∣p∣∣�y(n)
∣∣q

≤ K13(τ , b, p, q)
b–1∑
n=N

r(n)
∣∣�y(n)

∣∣p+q + 23p–2∣∣y(b)
∣∣p

b–1∑
n=N

s(n)
∣∣�y(n)

∣∣q,
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where

K13(τ , b, p, q) = 23p–2
(

q
p + q

) q
p+q

[ b–1∑
n=N

s
p+q

p (n)
(

1
r(n)

) q
p
( b–1∑

n=N

1

r
1

p+q–1 (n)

)p+q–1] p
p+q

+ 2p–1 max
x≤b≤τ

(
s(n)
r(n)

)
.

Corollary 3.19 If T = N in Theorem 3.6, and (A2)(i), (A7), (A8)(iii) are satisfied, and using
Eqs. (2.5), then

b–1∑
n=a

s(n)
∣∣y(n) + y(n + 1)

∣∣p∣∣�y(n)
∣∣q

≤ K�
4 (p, q)

b–1∑
n=a

r(n)
∣∣�y(n)

∣∣p+q + 23p–2(∣∣y(a)
∣∣ +

∣∣y(b)
∣∣)p

b–1∑
n=a

s(n)
∣∣�y(n)

∣∣q,

where K�
4 (p, q) = K12(a, τ , p, q) = K13(τ , b, p, q) < ∞ such that K12(a, τ , p, q) and K13(τ , b, p, q)

are given in Corollaries 3.17 and 3.18 and τ is the unique solution of the equation
K12(a, τ , p, q) = K13(τ , b, p, q).

Now we study the case of some weighted dynamic Opial inequalities on time scales of
the type

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K1(a, τ , p, q)
∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x + 23p–2∣∣y(a)
∣∣p

∫ τ

a
s(x)

∣∣y�(x)
∣∣q

�x,

where p, q be positive real numbers such that p ≤ 1, p + q > 1.
Our next results, which will be proved by using inequality (3.5), generalize the inequal-

ities (1.10), (1.11) and (1.12).

Theorem 3.20 Assume (A1)(i), (A2)((ii), (iii)), (A3)(i) and (A4) are fulfilled.
(a) Then

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K14(a, τ , p, q)
∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x + 2p∣∣y(a)
∣∣p

∫ τ

a
s(x)

∣∣y�(x)
∣∣q

�x, (3.25)

where

K14(a, τ , p, q)

= 2p
(

q
p + q

) q
p+q

[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

+ max
a≤x≤τ

(
μp(x)s(x)

r(x)

)
.
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(b) For r = s, we obtain
∫ τ

a
r(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K15(a, τ , p, q)
∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

� + 2p∣∣y(a)
∣∣p

∫ τ

a
r(x)

∣∣y�(x)
∣∣q

�x, (3.26)

where

K15(a, τ , p, q) = 2p
(

q
p + q

) q
p+q

[∫ τ

a
r(x)

(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

+ max
a≤x≤τ

(
μp(x)

)
. (3.27)

(c) Setting r = 1 in (3.26) and (3.27), then

∫ τ

a

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K16(a, τ , p, q)
∫ τ

a

∣∣y�(x)
∣∣p+q

� + 2p∣∣y(a)
∣∣p

∫ τ

a

∣∣y�(x)
∣∣q

�x, (3.28)

where

K16(a, τ , p, q) =
(

2p q
q

p+q

p + q
(τ – a)p + max

a≤x≤τ

(
μp(x)

))
.

Proof (a) Since y�(t) does not change sign in (a, τ )T, we have

∣∣y(x)
∣∣ –

∣∣y(a)
∣∣ ≤ ∣∣y(x) – y(a)

∣∣ =
∣∣∣∣
∫ x

a
y�(t)�t

∣∣∣∣ ≤
∫ x

a

∣∣y�(t)
∣∣�t. (3.29)

From (3.29), we get

∣∣y(x)
∣∣ ≤

∫ x

a

∣∣y�(t)
∣∣�t +

∣∣y(a)
∣∣ =

∫ x

a

1

r
1

p+q (t)
r

1
p+q (t)

∣∣y�(t)
∣∣�t +

∣∣y(a)
∣∣.

Now, since r is nonnegative on (a, τ )T, then it follows from the Hölder inequality (3.3) with
indices p+q

p+q–1 and p + q, and with

f (t) =
1

r
1

p+q (t)
, g(t) = r

1
p+q (t)

∣∣y�(t)
∣∣,

that

∣∣y(x)
∣∣ ≤

(∫ x

a

1

r
1

p+q–1 (t)
�t

) p+q–1
p+q

(∫ x

a
r(t)

∣∣y�(t)
∣∣p+q

�t
) 1

p+q
+

∣∣y(a)
∣∣. (3.30)

Since p ≤ 1, by taking the power p for both sides of (3.30), we have

∣∣y(x)
∣∣p ≤

((∫ x

a

1

r
1

p+q–1 (t)
�t

) p+q–1
p+q

(∫ x

a
r(t)

∣∣y�(t)
∣∣p+q

�t
) 1

p+q
+

∣∣y(a)
∣∣
)p

. (3.31)
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Applying the inequality (3.5) on the right-hand side of (3.31), we deduce

∣∣y(x)
∣∣p ≤

(∫ x

a

1

r
1

p+q–1 (t)
�t

) p(p+q–1)
p+q

(∫ x

a
r(t)

∣∣y�(t)
∣∣p+q

�t
) p

p+q
+

∣∣y(a)
∣∣p.

Since yσ = y + μy�, we have

y(x) + yσ (x) = 2y(x) + μy�(x). (3.32)

Since p ≤ 1, by taking the power p of both sides of (3.32) and applying again the inequality
(3.5), we deduce

∣∣y(x) + yσ (x)
∣∣p =

∣∣2y(x) + μy�(x)
∣∣p ≤ 2p∣∣y(x)

∣∣p + μp(x)
∣∣y�(x)

∣∣p. (3.33)

Setting

z(x) :=
∫ x

a
r(t)

∣∣y�(t)
∣∣p+q

�t, (3.34)

using the fact that z(a) = 0, and

z�(x) = r(x)
∣∣y�(x)

∣∣p+q > 0. (3.35)

This implies

∣∣y�(x)
∣∣p+q =

z�(x)
r(x)

and
∣∣y�(x)

∣∣q =
(

z�(x)
r(x)

) q
p+q

. (3.36)

From (3.33) and (3.36), since s is nonnegative on (a, τ )T, we have

s(x)
∣∣y(x) + yσ (x)

∣∣p∣∣y�(x)
∣∣q

≤ 2ps(x)
∣∣y(x)

∣∣p∣∣y�(x)
∣∣q + μp(x)s(x)

∣∣y�
∣∣p+q

≤ 2ps(x)
(

1
r(x)

) q
p+q

(∫ x

a

1

r
1

p+q–1 (t)
�t

) p(p+q–1)
p+q

× z
p

p+q (x)
(
z�(x)

) q
p+q + 2ps(x)

∣∣y(a)
∣∣p

(
z�(x)
r(x)

) q
p+q

+ μp(x)s(x)
z�(x)
r(x)

.

Integrating the above inequality from a to τ , we get

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ 2p
∫ τ

a
s(x)

(
1

r(x)

) q
p+q

(∫ x

a

1

r
1

p+q–1 (t)
�t

) p(p+q–1)
p+q

z
p

p+q (x)
(
z�(x)

) q
p+q �x
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+ 2p∣∣y(a)
∣∣p

∫ τ

a
s(x)

(
z�(x)
r(x)

) q
p+q

�x +
∫ τ

a

(
μp(x)s(x)

r(x)

)
z�(x)�x

≤ 2p
∫ τ

a
s(x)

(
1

r(x)

) q
p+q

(∫ x

a

1

r
1

p+q–1 (t)
�t

) p(p+q–1)
p+q

z
p

p+q (x)
(
z�(x)

) q
p+q �x

+ 2p∣∣y(a)
∣∣p

∫ τ

a
s(x)

(
z�(x)
r(x)

) q
p+q

�x + max
a≤x≤τ

(
μp(x)s(x)

r(x)

)∫ τ

a
z�(x)�x.

Applying the Hölder inequality (3.3), with indices (p+q)/p and (p+q)/q on the first integral
of the right-hand side of the above inequality, we have

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ 2p
[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q
[∫ τ

a
z

p
q (x)z�(x)�x

] q
p+q

+ 2p∣∣y(a)
∣∣p

∫ τ

a
s(x)

(
z�(x)
r(x)

) q
p+q

�x + max
a≤x≤τ

(
μp(x)s(x)

r(x)

)∫ τ

a
z�(x)�x. (3.37)

From the chain rule (3.1), we obtain

[
z(p+q)/q]�(x) =

p + q
q

zp/q(c)z�(x), c ∈ [
x,σ (x)

]
.

Since z�(x) ≥ 0 and x ≤ c, we get

[
z

p+q
q

]�(x) =
p + q

q
zp/q(c)z�(x) ≥ p + q

q
zp/q(x)z�(x). (3.38)

Substituting (3.38) into (3.37) and by z(a) = 0, we have

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ 2p
(

q
p + q

) q
p+q

[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

×
[∫ τ

a

(
z

p+q
q

)�(x)�x
] q

p+q
+ 2p∣∣y(a)

∣∣p
∫ τ

a
s(x)

(
z�(x)
r(x)

) q
p+q

�x

+ max
a≤x≤τ

(
μp(x)s(x)

r(x)

)∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x

= 2p
(

q
p + q

) q
p+q

[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q
z(τ )

+ 2p∣∣y(a)
∣∣p

∫ τ

a
s(x)

(
z�(x)
r(x)

) q
p+q

�x + max
a≤x≤τ

(
μp(x)s(x)

r(x)

)
z(τ ).

The last inequality, (3.34) and (3.35) imply that

∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x
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≤ K14(a, τ , p, q)
∫ τ

a
r(x)

∣∣y�(x)
∣∣p+q

�x + 2p∣∣y(a)
∣∣p

∫ τ

a
s(x)

∣∣y�(x)
∣∣q

�x,

which is the required inequality (3.25).
The proof of (b) and (c) follows by a similar argument to the proof of (a) with suitable

changes. This completes the proof. �

Based on Theorem 3.20, we obtain the following result by replacing [a, τ ]T by [τ , b]T and
|y(x)| =

∫ b
x |y�(t)|�t + |y(b)|.

Theorem 3.21 Assume (A1)(ii), (A2)((ii), (iii)), (A3)(ii), and (A5) are satisfied. Then we
have

∫ b

τ

s(x)
∣∣y(x) + yσ (x)

∣∣p∣∣y�(x)
∣∣q

�x

≤ K17(τ , b, p, q)
∫ b

τ

r(x)
∣∣y�(x)

∣∣p+q
�x + 2p∣∣y(b)

∣∣p
∫ b

τ

s(x)
∣∣y�(x)

∣∣q
�x, (3.39)

where

K17(τ , b, p, q) = 2p
(

q
p + q

) q
p+q

[∫ b

τ

s
p+q

p (x)
(

1
r(x)

) q
p
(∫ b

x

1

r
1

p+q–1 (t)
�t

)p+q–1

�x
] p

p+q

+ max
τ≤x≤b

(
μp(x)s(x)

r(x)

)
.

In the following, we assume that K�
5 (p, q) = K14(a, τ , p, q) = K17(τ , b, p, q) < ∞, where

K14(a, τ , p, q) and K17(τ , b, p, q) are defined as in Theorems 3.20 and 3.21 and τ is the
unique solution of the equation K14(a, τ , p, q) = K17(τ , b, p, q). Therefore,

∫ b

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

=
∫ τ

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x +

∫ b

τ

s(x)
∣∣y(x) + yσ (x)

∣∣p∣∣y�(x)
∣∣q

�x.

So combining Theorems 3.20 and 3.21 gives the following result.

Theorem 3.22 Assume (A1)(iii), (A2)((ii), (iii)), (A3)(iii), and (A6) are satisfied.
(a) Then

∫ b

a
s(x)

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x

≤ K�
5 (p, q)

∫ b

a
r(x)

∣∣y�(x)
∣∣p+q

�x + 2p∣∣y(a) + y(b)
∣∣p

∫ b

a
s(x)

∣∣y�(x)
∣∣q

�x. (3.40)

(b) Let τ = a+b
2 ∈ T and apply (3.28) to [a, τ ] and [τ , b]. Then

∫ b

a

∣∣y(x) + yσ (x)
∣∣p∣∣y�(x)

∣∣q
�x



El-Deeb et al. Advances in Difference Equations        (2019) 2019:393 Page 20 of 23

≤ K18(a, b, p, q)
∫ b

a

∣∣y�(x)
∣∣p+q

� + 2p(∣∣y(a)
∣∣p + |y(b)p)∫ b

a

∣∣y�(x)
∣∣q

�x, (3.41)

where

K18(a, b, p, q) =
(

q
q

p+q

p + q
(b – a)p + max

a≤x≤τ

(
μp(x)

))
.

Listed below are some remarks on particular cases of Theorem 3.20, Theorem 3.21 and
Theorem 3.22:

Remark 3.23 If we take y(a) = 0, the inequality (3.25) reduces to the inequality (1.10).

Remark 3.24 If we take y(b) = 0, the inequality (3.39) reduces to the inequality (1.11).

Remark 3.25 If we take y(a) = 0 and y(b) = 0, the inequality (3.40) reduces to the inequality
(1.12).

Remark 3.26 If we take y(a) = 0 and r = s, the inequality (3.25) reduces to the inequality
[6, (3.3.32), page 130].

Remark 3.27 If we take y(a) = 0 and r = s = 1, the inequality (3.25) reduces to the inequality
[6, (3.3.35), page 130].

Remark 3.28 If we take y(a) = 0 and y(b) = 0, r = s = 1 and choose τ = (a+b)
2 , the inequality

(3.41) reduces to the inequality [6, (3.3.36), page 131].

Now, we give some integral and discrete inequalities as special cases from Theorems
3.20, 3.21 and 3.22, respectively:

Corollary 3.29 When T = R in Theorem 3.20, and using Eqs. (2.4), the inequality (3.25)
reduces to

∫ τ

a
s(x)

∣∣y(x)
∣∣p∣∣y′(x)

∣∣q dx

≤ K19(a, τ , p, q)
∫ τ

a
r(x)

∣∣y′(x)
∣∣p+q dx +

∣∣y(a)
∣∣p

∫ τ

a
s(x)

∣∣y′(x)
∣∣q dx,

where

K19(a, τ , p, q) =
(

q
p + q

) q
p+q

[∫ τ

a
s

p+q
p (x)

(
1

r(x)

) q
p
(∫ x

a

1

r
1

p+q–1 (t)
dt

)p+q–1

dx
] p

p+q
.

Corollary 3.30 When T = R in Theorem 3.21, and using Eqs. (2.4), the inequality (3.39)
reduces to

∫ b

τ

s(x)
∣∣y(x)

∣∣p∣∣y′(x)
∣∣q dx

≤ K20(τ , b, p, q)
∫ b

τ

r(x)
∣∣y′(x)

∣∣p+q dx +
∣∣y(b)

∣∣p
∫ b

τ

s(x)
∣∣y′(x)

∣∣q dx,
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where

K20(τ , b, p, q) =
(

q
p + q

) q
p+q

[∫ b

τ

s
p+q

p (x)
(

1
r(x)

) q
p
(∫ b

x

1

r
1

p+q–1 (t)
dt

)p+q–1

dx
] p

p+q
.

Corollary 3.31 When T = R in Theorem 3.22, and using Eqs. (2.4), the inequality (3.40)
reduces to

∫ b

a
s(x)

∣∣y(x)
∣∣p∣∣y′(x)

∣∣q dx

≤ K�
6 (p, q)

∫ b

a
r(x)

∣∣y′(x)
∣∣p+q dx +

(∣∣y(a)
∣∣ +

∣∣y(b)
∣∣)p

∫ b

a
s(x)

∣∣y′(x)
∣∣q dx,

where K�
6 (p, q) = K19(a, τ , p, q) = K20(τ , b, p, q) < ∞ such that K19(a, τ , p, q) and K20(τ , b, p, q)

are given in Corollaries 3.29 and 3.30 and τ is the unique solution of the equation
K19(a, τ , p, q) = K20(τ , b, p, q).

Corollary 3.32 If T = N in Theorem 3.20, and (A2)(i), (A7), (A8)(i) are satisfied, and using
Eqs. (2.5), then

N–1∑
n=a

s(n)
∣∣y(n) + y(n + 1)

∣∣p∣∣�y(n)
∣∣q

≤ K21(a, τ , p, q)
N–1∑
n=a

r(n)
∣∣�y(n)

∣∣p+q + 2p∣∣y(a)
∣∣p

N–1∑
n=a

s(n)
∣∣�y(n)

∣∣q,

where

K21(a, τ , p, q) = 2p
(

q
p + q

) q
p+q

[N–1∑
n=a

s
p+q

p (n)
(

1
r(n)

) q
p
(N–1∑

n=a

1

r
1

p+q–1 (n)

)p+q–1] p
p+q

+ max
a≤x≤τ

(
s(n)
r(n)

)
.

Corollary 3.33 If T = N in Theorem 3.21, and (A2)(ii), (A7), (A8)(ii) are satisfied, and
using Eqs. (2.5), then

b–1∑
n=N

s(n)
∣∣y(n) + y(n + 1)

∣∣p∣∣�y(n)
∣∣q

≤ K22(τ , b, p, q)
b–1∑
n=N

r(n)
∣∣�y(n)

∣∣p+q + 2p∣∣y(b)
∣∣p

b–1∑
n=N

s(n)
∣∣�y(n)

∣∣q,

where

K22(τ , b, p, q) = 2p
(

q
p + q

) q
p+q

[ b–1∑
n=N

s
p+q

p (n)
(

1
r(n)

) q
p
( b–1∑

n=N

1

r
1

p+q–1 (n)

)p+q–1] p
p+q

+ max
τ≤x≤b

(
s(n)
r(n)

)
.
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Corollary 3.34 If T = N in Theorem 3.22 and (A2)(ii), (A7), (A8)(iii) are satisfied, and
using Eqs. (2.5), then

b–1∑
n=a

s(n)
∣∣y(n) + y(n + 1)

∣∣p∣∣�y(n)
∣∣q

≤ K�
7 (p, q)

b–1∑
n=a

r(n)
∣∣�y(n)

∣∣p+q + 2p(∣∣y(a)
∣∣ +

∣∣y(b)
∣∣)p

b–1∑
n=a

s(n)
∣∣�y(n)

∣∣q,

where K�
7 (p, q) = K21(a, τ , p, q) = K22(τ , b, p, q) < ∞ such that K21(a, τ , p, q) and K22(τ , b, p, q)

are given in Corollaries 3.32 and 3.33 and τ is the unique solution of the equation
K21(a, τ , p, q) = K22(τ , b, p, q).

4 Conclusion
In this article, we obtained some weighted dynamic inequalities of Opial-type involving
integrals of powers of a function and of its derivative on time scales which not only extend
some results in the literature but also improve some of them. Furthermore, we got some
continuous and discrete inequalities as special cases of the obtained dynamic inequalities.

Acknowledgements
The authors wish to express their sincere appreciation to the editor and the anonymous referees for their valuable
comments and suggestions.

Funding
Not applicable.

Competing interests
The authors declare that they have no financial and non-financial competing interests.

Authors’ contributions
All authors contributed equally. All the authors read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt. 2Department of Mathematics, Faculty
of Women for (Art, Science, and Education), Ain Shams University, Cairo, Egypt. 3Department of Mathematics, Princess
Noura bint Abdulrahman University, Riyadh, Saudi Arabia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 May 2019 Accepted: 4 September 2019

References
1. Abdeldaim, A., El-Deeb, A.A.: Some new retarded nonlinear integral inequalities with iterated integrals and their

applications in retarded differential equations and integral equations. J. Fract. Calc. Appl. 5, 9 (2014)
2. Abdeldaim, A., El-Deeb, A.A.: On generalized of certain retarded nonlinear integral inequalities and its applications in

retarded integro-differential equations. Appl. Math. Comput. 256, 375–380 (2015)
3. Abdeldaim, A., El-Deeb, A.A.: On some generalizations of certain retarded nonlinear integral inequalities with iterated

integrals and an application in retarded differential equation. J. Egypt. Math. Soc. 23(3), 470–475 (2015)
4. Abdeldaim, A., El-Deeb, A.A.: On some new nonlinear retarded integral inequalities with iterated integrals and their

applications in integro-differential equations. Br. J. Math. Comput. Sci. 5(4), 479–491 (2015)
5. Abdeldaim, A., El-Deeb, A.A., Agarwal, P., El-Sennary, H.A.: On some dynamic inequalities of Steffensen type on time

scales. Math. Methods Appl. Sci. 41(12), 4737–4753 (2018)
6. Agarwal, R., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, Cham (2014)
7. Agarwal, R.P., Lakshmikantham, V.: Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations. Series

in Real Analysis, vol. 6. World Scientific Publishing, Singapore (1993)
8. Agarwal, R.P., Pang, P.Y.H.: Opial Inequalities with Applications in Differential and Difference Equations, vol. 320. Kluwer

Academic Publishers, Dordrecht (1995)
9. Akin-Bohner, E., Bohner, M., Akin, F.: Pachpatte inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math. 6(1), 6

(2005)



El-Deeb et al. Advances in Difference Equations        (2019) 2019:393 Page 23 of 23

10. Beesack, P.R.: On an integral inequality of Z. Opial. Trans. Am. Math. Soc. 104, 470–475 (1962)
11. Bohner, M., Kaymakcalan, B.: Opial inequalities on time scales. Ann. Pol. Math. 77(1), 11–20 (2001)
12. Bohner, M., Matthews, T.: The Grüss inequality on time scales. Commun. Math. Anal. 3(1), 1–8 (2007)
13. Bohner, M., Matthews, T.: Ostrowski inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math. 9(1), 6 (2008)
14. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston

(2001)
15. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhauser, Boston (2003)
16. Dinu, C.: Hermite–Hadamard inequality on time scales. J. Inequal. Appl. 2008, Article ID 287947 (2008)
17. El-Deeb, A.A.: On Integral Inequalities and Their Applications Lambert. LAP Lambert Academic Publishing,

Saarbrücken (2017)
18. El-Deeb, A.A.: A variety of nonlinear retarded integral inequalities of Gronwall type and their applications. In:

Advances in Mathematical Inequalities and Applications, pp. 143–164. Springer, Berlin (2018)
19. El-Deeb, A.A.: Some Gronwall–Bellman type inequalities on time scales for Volterra–Fredholm dynamic integral

equations. J. Egypt. Math. Soc. 26(1), 1–17 (2018)
20. El-Deeb, A.A.: On some generalizations of nonlinear dynamic inequalities on time scales and their applications. (To

appear)
21. El-Deeb, A.A., Ahmed, R.G.: On some explicit bounds on certain retarded nonlinear integral inequalities with

applications. Adv. Inequal. Appl. 2016, Article ID 15 (2016)
22. El-Deeb, A.A., Ahmed, R.G.: On some generalizations of certain nonlinear retarded integral inequalities for

Volterra–Fredholm integral equations and their applications in delay differential equations. J. Egypt. Math. Soc. 25(3),
279–285 (2017)

23. El-Deeb, A.A., Cheung, W.-S.: A variety of dynamic inequalities on time scales with retardation. J. Nonlinear Sci. Appl.
11(10), 1185–1206 (2018)

24. El-Deeb, A.A., El-Sennary, H.A., Khan, Z.A.: Some Steffensen-type dynamic inequalities on time scales. Adv. Differ. Equ.
2019, 246 (2019)

25. El-Deeb, A.A., Elsennary, H.A., Cheung, W.-S.: Some reverse Hölder inequalities with Specht’s ratio on time scales.
J. Nonlinear Sci. Appl. 11(4), 444–455 (2018)

26. El-Deeb, A.A., Elsennary, H.A., Nwaeze, E.R.: Generalized weighted Ostrowski, trapezoid and Grüss type inequalities on
time scales. Fasc. Math. 60, 123–144 (2018)

27. El-Deeb, A.A., Xu, H., Abdeldaim, A., Wang, G.: Some dynamic inequalities on time scales and their applications. Adv.
Differ. Equ. 2019, 130 (2019)

28. El-Owaidy, H., Abdeldaim, A., El-Deeb, A.A.: On some new retarded nonlinear integral inequalities and their
applications. Math. Sci. Lett. 3(3), 157 (2014)

29. El-Owaidy, H.M., Ragab, A.A., Eldeeb, A.A., Abuelela, W.M.K.: On some new nonlinear integral inequalities of
Gronwall–Bellman type. Kyungpook Math. J. 54(4), 555–575 (2014)

30. Hilger, S.: Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg
(1988)

31. Hilscher, R.: A time scales version of a Wirtinger-type inequality and applications. J. Comput. Appl. Math. 141(1–2),
219–226 (2002)

32. Karpuz, B., Özkan, U.M.: Some generalizations for Opial’s inequality involving several functions and their derivatives of
arbitrary order on arbitrary time scales. Math. Inequal. Appl. 14(1), 79–92 (2011)

33. Kaymakçalan, B., Karpuz, B., Öcalan, Ö.: A generalization of Opial’s inequality and applications to second-order
dynamic equations. Differ. Equ. Dyn. Syst. 18, 11–18 (2010)

34. Li, J.D.: Opial-type integral inequalities involving several higher order derivatives. J. Math. Anal. Appl. 167(1), 98–110
(1992)

35. Li, W.N.: Some delay integral inequalities on time scales. Comput. Math. Appl. 59(6), 1929–1936 (2010)
36. Opial, Z., Sur une inégalité. Ann. Pol. Math. 12(8), 29–32 (1960)
37. Řehák, P.: Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 5,

942973 (2005)
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