Complex-valued interferometric inverse synthetic aperture radar image compression
base on compressed sensing
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Abstract: Complex-valued interferometric inverse synthetic aperture radar (InISAR) image compression is discussed in this study. The target
scene has its continuity and is compressible. However, because of the random phase of each resolution cell, the frequency spectrum of an ISAR
image is wide and the complex-valued image is hard to compress. A complex-valued ISAR image compression approach is proposed. Using
two or more antennas and interferometry processing, the random phase of image pixel can be cancelled and the frequency spectrum becomes
sparse. Therefore the theory of compressed sensing can be introduced to the process of the complex-valued image compression. Hence, the
complex-valued InISAR image compression and reconstruction can be completed. Results on real data are presented to validate the method. In
comparison with results of the conventional compression techniques, the proposed method shows the better ability to preserve both the

imaging magnitude and interferometric phase.

1 Introduction

Inverse synthetic aperture radar (ISAR) imaging is an important
tool in many military and civilian applications. However, while
the volume of data collected is increasing rapidly, the ability to
transmit it, or to store it, is not increasing as fast. An ISAR
system faces the challenge of storage and transmission of mass
data. An ISAR system may collect data at a high rate that easily
exceeds the capacity of the downlink channel or the volume of
the mass storage medium. Moreover, the volume of data doubles
or more in the ISAR interferometry case. The situation has
become even more severe in the past few years with the increased
requirements of modern ISAR systems, including high resolution,
multi-polarisation, three-dimensional (3D) imaging, multi-
frequency and multi-operation mode. As a result, effective data
compression becomes necessary [1, 2].

There are mainly two approaches to compress ISAR data:
compression of ISAR raw data and compression of the ISAR
image acquired in real time. For ISAR raw data compression, algo-
rithms developed can generally be divided into three categories:
scalar compression algorithms, vector compression algorithms
and transform domain compression algorithms [3—5]. For image
compression, it is much more difficult in the ISAR case because
an ISAR image differs from an optical image in several ways.
The spectrum of an ISAR image tends to have less spectral
rolloff than an optical image. The dynamic range of an ISAR
image is typically much higher than an optical image. The ISAR
image has much high-frequency energy. These make an ISAR
image hard to compress. The existing methods [6—8] may compress
and restore a single ISAR image well, but are hard to apply on ISAR
interferometry for its high phase loss.

To make the frequency spectrum of an ISAR image narrow,
interferometry technique is used. The random phases of each reso-
lution cell are considered as the same if the two antennas are close
enough. Therefore the random phase of each resolution cell can be
cancelled and the spectrum of an ISAR image becomes narrow and
sparse. This property suggests the using of compressed sensing
(CS) [9, 10] methods for image compression and restoration. CS,
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as a favourable sparse reconstruction technique, is a new and attract-
ive method for image compression and restoration. It aims at mini-
mising the number of measurements to be taken from signals while
still retaining the information necessary to approximate them well.
Compared with conventional compression techniques, CS exploits
the sparsity of the signal.

The main contribution of this paper is a presentation of a new
complex-valued ISAR image compression method based on CS
with ISAR interferometry techniques. We proposed the idea that
using the information of two antennas to shrink the range of the
image frequency spectrum by introducing the interferometry techni-
ques to cancel the random phase of each resolution cell. To com-
press more and restore with lower loss, we apply CS to
compression processing by constructing a specially designed dic-
tionary. Both the amplitude and phase of complex-valued ISAR
images are reconstructed with overwhelming probability.
Therefore, the proposed method can preserve the image phase
while obtaining the magnitude at the same time. By compressing
the data volume, the proposed method can release the pressure on
record devices and shorten the data transmission time.

The structure of this paper is organised as follows. The next
section discusses about the characters of complex-valued ISAR
images and interferometry. Section 3 gives a brief introduction of
CS theory. Section 4 presents the implementation the ISAR com-
pression and restoration based on CS. In Section 5, real data experi-
ments are made to verify the feasibility of the proposed method.
Theoretical analysis and experiment results are given to assess the
performance between the CS-based method and conventional low
pass filter (LPF) method. Finally, the conclusions of this paper
and discussion of the proposed method are provided in Section 6.

2 ISAR image characters

ISAR images can provide information on the surface properties of
the detected targets which are always continuous in the target scene.
However, the magnitude of the radar image resolution is much
larger than that of wavelength, resulting in the random phase of

J Eng, 2014, Vol. 2014, Iss. 7, pp. 352-357
doi: 10.1049/joe.2014.0033


mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

Image Pixel/
Resolution Element

Angular
separation

R, R,

Image Pixel/
Resolution Element

Radar Sensors

Ay A

Fig. 1 Random phase mechanism

pixels which makes the scene discontinuous and spectrum wide.
Fig. 1 shows the mechanism of the random phase.

As Fig. 1 depicts, pixels in radar image are a complex phasor rep-
resentation of the coherent backscatter from the resolution element
on the target and the propagation phase delay [11]. The propagation
phase delay is determined by R; (i = 1, 2) which denotes the distance
between radar sensors and targets. Backscatter phase delay is coher-
ent sum of contributions from all elemental scatterers in the reso-
Iution element with backscatter and their differential path delays
R,;, that is

@ = arg{ZAsiei%'e—j(4ﬂ/)\)Rm} 1)

where A is the wavelength. The total phase delay can be written as
2
p=2"TR+¢, @

The distance R; is continuous in most cases and varies slowly, so it
contributes to the low-frequency energy. Backscatter phase delay ¢y,
is random for a single ISAR image and contributes to the high-
frequency energy, which makes the spectrum wide and compres-
sion hard to implement.

When the system has two antennas as is shown in Fig. 1, two
images will be attained. The phase delay of each antenna can be
written as

2T
¢ = 27R1 + @y
3)
2
P = ZTRz + Py

If the view angle is much less than 1°, the coherent sum is nearly
unchanged. We can suppose the random phases of two images
are the same, that is, ¢,; = @,. Pixels in two radar images observed
from nearby vantage points have nearly the same complex phasor
representation of the coherent backscatter from a resolution
element on the target, but a different propagation phase delay.
Although the backscatter phase delay is random for a single
image, it can be cancelled using conjugate multiplication. After
co-registration of two images, construct a new image similar to
obtaining an interferogram as

s :Azej% eTion :Aze—j(“‘ﬂ/)\)AR )

where AR = R — R,. The new image removes the random phase and
keeps the differential phase which can be further used. The phase
delay is proportional to the range difference which is mostly
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continuous in the target scene. Hence, the spectrum of the complex-
valued image becomes sparse and CS theory can be introduced.

3 CS basis

CS is a new theory that focuses on sparse signal compression and
reconstruction. For the sparse signal, CS measures M
(K < M <« N) projections of x and reconstructs the sparse signal
from this small set of non-adaptive linear measurements. Each
measurement can be viewed as an inner product with the signal x
and some vector y;. If we collect M measurements in this way,
we may then consider the M x N measurement matrix whose row
are the vectors t//l-T. The sparse recovery problem can be considered
as the recovery of the K-sparse signal x from its measurement vector
y=W¥x. A direct formulation of this problem is to solve the
¢ o-minimisation problem

min || x|y, s.t.y=Px 5)
xERY

However, ¢,-minimisation is computationally difficult to solve, as
it involves NP-hard enumerative search. Fortunately, recent work
in CS has shown that the convex relaxation approach relies on
the fact that, besides the £, norm, the #; norm also promotes spars-
ity in a solution. The relaxed version of the problem can be written
as

min x|, st y= Wx (6)
xERV

The ¢,-minimisation approach provides uniform guarantees and
stability and relies on methods in linear programming. Equation
(6) requires a condition on the measurement matrix ¥ stronger
than the simple injectivity on sparse vectors, but many kinds of
matrices have been shown to satisfy this condition number of mea-
surements M > K log N. Candés and Tao showed that under a slight-
ly stronger condition, which is known as restricted isometry
property (RIP), basis pursuit (BP) can recover every K-sparse
signal by solving (6) [12]. The RIP requires

(I =9)llxll, = [1'¥xll = (1 + O)llxll, (N

Complex-valued ISAR
image 1 and 2

Coregistration and construct
the new image
s = Arexp{-j4mAR/\}

Pivoting median filter

Compress image y = ¥'s

Data transmission link

Image spectrum
reconstruction based on ;-
minimisation and get image

Fig. 2 Flowchart of the proposed method
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Fig. 3 Original image and frequency spectrum
a The original ISAR image
b The original ISAR frequency spectrum

The RIP is closely related to an incoherency property. It has been
shown that with exponentially high probability, random Gaussian,
Bernoulli and partial Fourier matrices satisfy the RIP with
number of measurements nearly linear in the sparsity level.

When the signal y is noisy, the signal representation problem
becomes a signal approximation problem. The modified convex
problem can be described as

xnellignxnl, st |y — ¥x|,<e 8)

where € bounds the amount of noise in measured data. Many ap-
proximate algorithms for the CS reconstruction given by (5) have
also been developed, such as BP and the family of matching
pursuit algorithms [13]. Note that it is known that Fourier measure-
ments represent good projections for CS of sparse point like signals
when representing random undersampling of the spatial frequency
data. This suggests a natural application to the image compression
problem.

4 Interferometric ISAR image compression

According to the CS theory, if the image is sparse in frequency
domain, sampling in time domain does not need to satisfy the
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Fig. 4 Image without random phase and frequency spectrum
a The ISAR image without random phase
b The frequency spectrum of the InISAR image
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Nyquist sampling theorem. Only a few measurements are needed
to reconstruct the image. As the new complex-valued ISAR
image in (4) is sparse in frequency domain, it can be compressed
by using the CS-based method.

The process of the complex-valued image compression can be
expressed as

y=®s+n=PFo+n="o+n )

where y is the compressed image, s is the new image to compress
which takes the form as (4), o is the image frequency spectrum
to be reconstructed and n denotes the noise. To decrease the
effect of speckle noise, pivoting median filter [14] is used on the
phase of image before the compression. It is worth noting that
since CS theory deals with 1D problem, 2D variables s and y
must reshape into vector form.

In (9), ® is the projection matrix and F is a transform matrix. ® is
designed incoherent to F and determined by the sampling sequence.
For example, if the sampling sequence is [100101], where 1 stands
for samplings and 0 stands for discarded samplings, ® can be
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Table 1 Reconstruction comparison

MSE1 MSE2 MPE, °
CS image 1 0.0633 0.0218 35.0035
LPF image 0.0496 0.0628 25.0685
CS image 2 0.0076 0.0197 13.6379
expressed as
1 00 00O
=10 0 0 1 0 O (10)
000 001

With the projection matrix @, an N x 1 reshaped image s is pro-
jected on R™ space, where M < N, so the compression is achieved.
With F, the image can be sparse represented. To reconstruct the
signal with high probability, the matrix product ¥=®F has to
satisfy RIP in (7). Here Fourier transform is chosen to represent
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Fig. 5 Reconstruction of the original image by CS

a The reconstructed ISAR image
b The reconstructed frequency spectrum
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Fig. 6 Reconstruction of the original image by LPF
a The reconstructed ISAR image
b The frequency spectrum after LPF

J Eng, 2014, Vol. 2014, Iss. 7, pp. 352-357
doi: 10.1049/j0e.2014.0033

the image. Fourier basis is a simple and popular dictionary. As
aforementioned, the new image s can be sparsely represented
under Fourier basis. Fourier basis is also highly incoherent with
the matrix @, which provides a good condition for correct
reconstruction.

To restore the image, the CS-based method does not reconstruct
the image directly, but reconstruct the frequency spectrum of the
image first and then the image [15]. The spectrum can be recon-
structed by solving the optimisation problem as follows

min flofly, st |y — wo|,<e (11)

where € denotes the noise level in measured data and is determined
by the noise energy. After frequency spectrum of the image is
reconstructed, the image can be restored simply by 2D inverse
Fourier transform. After restoring the image, multiply with the
phase of image 1 if needed. The main procedures are shown in
Fig. 2.
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Fig. 7 Reconstruction of the image without the random phase by CS
a The reconstructed InISAR image
b The reconstructed InISAR image frequency spectrum
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Fig. 8 Original interferometric phase and reconstructed interferometric phase by CS

a The original interferometric phase
b The reconstructed interferometric phase

5 Real data experiments

To illustrate the feasibility of the method introduced in this paper,
this section presents some results based on data obtained by a milli-
metre wave prototype ISAR with three antennas which is developed
and operated by Institute of Electronics, Chinese Academy of
Sciences. The radar works on Ka-band and the baseline between
two antennas which we use is 0.4 m.

The aeroplane ISAR image shown in Fig. 3 is used as refer-
ence to compare the imaged quality of reconstructed image,
where (a) is the ISAR image magnitude and (b) is the frequency
spectrum of the image. The image is formed using wK algorithm
after parameter estimation. The image constructed as (4) without
random phases is shown in Fig. 4 whose frequency spectrum
becomes sparse. A 5% 3 window is used in pivoting median
filter. About 50% of the image is sampled to reconstruct the
full frequency spectrum of the image. Gaussian random sam-
pling and LPF are used to compress the image. To reconstruct
the spectrum, BP, one of the most commonly studied ;.
-minimisation approach, is used. Mean square error (MSE) and
mean phase error (MPE) shown in (12) and (13) are used to
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judge the reconstruction quality

| e o 2

MSE= [y N2 (4, - 45) (12)
| Y N ,

MPE = o 2 ; P, —P; (13)

where A4 stands for the amplitude of the image or spectrum and P
denotes the phase of image. The subscripts i and j denote the ith
pixel in cross-range direction and the jth pixel in range direction
and the superscripts denote the reconstructed image or spectrum.
Results of comparison between image to compress and recon-
structed image have been listed in Table 1. MSE1 stands for
the MSE of frequency spectrum and MSE2 stands for the MSE
of image. CS images 1 and 2 stand for reconstruction of the ori-
ginal complex-valued image by CS and reconstruction of the
image without the random phase by CS, respectively.
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Fig. 5 shows the reconstruction of an original ISAR image by CS.
Fig. 6 shows the reconstruction of the image by LPF. Both results
perform poorly because of the random phases. The frequency spec-
trum shown in Fig. 7 is sparse which satisfies the limitation of CS.
The reconstruction image quality of Fig. 7 is better than those of
Figs. 5 and 6. The MSE of reconstructed image is much less than
those of the other two. Image without random phases can be com-
pressed and reconstructed with lower loss. Fig. 8a shows the origin-
al interferometric phase and Fig. 8 shows the reconstructed
interferometric phase. The compression phase loss is about 10°
and can be further used in ISAR interferometry field such as
moving targets angle measurement and positioning.

6 Conclusions

In this paper, a CS-based approach is presented for complex-valued
ISAR image compression and restoration. First the spectrum of the
complex-valued ISAR image is made sparse by using the interfero-
metric techniques. Then CS method can be introduced into com-
pression. When the compressed image needs to be restored, it
solves an optimisation problem to reconstruct the spectrum and
then transform to image instead of reconstructing the image direct-
ly. Real data are used to verify the feasibility of the method pro-
posed in this paper. The results demonstrate that the presented
CS-based method can achieve better restored image quality than
conventional LPF method and sparseless ISAR original images.
The proposed method keeps both the amplitude and phase in the
compression process. The reconstructed image can be further
used in interferometry. The reconstructed complex-valued image
can be further used in ISAR interferometry field. Although only
the complex-valued ISAR image is investigated in this paper, the
proposed concept can be also used in SAR image compression.
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