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Abstract: To support semantic inter-operability between the biomedical information systems, it is necessary to
determine the correspondences between the heterogeneous biomedical concepts, which is commonly known as
biomedical ontology matching. Biomedical concepts are usually complex and ambiguous, which makes matching
biomedical ontologies a challenge. Since none of the similarity measures can distinguish the heterogeneous
biomedical concepts in any context independently, usually several similarity measures are applied together to
determine the biomedical concepts mappings. However, the ignorance of the effects brought about by different
biomedical concept mapping’s preference on the similarity measures significantly reduces the alignment’s quality. In
this study, a non-dominated sorting genetic algorithm (NSGA)-III-based biomedical ontology matching technique is
proposed to effectively match the biomedical ontologies, which first utilises an ontology partitioning technique
to transform the large-scale biomedical ontology matching problem into several ontology segment-matching
problems, and then uses NSGA-III to determine the optimal alignment without tuning the aggregating weights. The
experiment is conducted on the anatomy track and large biomedic ontologies track which are provided by the
Ontology Alignment Evaluation Initiative (OAEI), and the comparisons with OAEI’s participants show the effectiveness
of the authors’ approach.
1 Introduction

Over the recent years, ontologies have been extensively used in
biomedical domains [1] such as annotation of medical records [2],
medical knowledge representation and sharing [3], clinical data
integration and medical decision making [4]. The vast usage of
ontologies in biomedical domain has compelled researchers to
develop more biomedical ontologies such as gene ontology (GO)
[5], National Cancer Institute (NCI) thesaurus [6], Foundation
Model of Anatomy (FMA) [7] and the Systemised Nomenclature
of Medicine (SNOMED-CT) [8]. However, because of human
subjectivity, various biomedical ontologies may use different terms
for the same meaning or may use the same term to mean different
things, yielding ontology heterogeneous problem. For example,
when describing the muscles surrounding the human heart, NCI
ontology uses the term ‘Myocardium’ but FMA utilises ‘Cardiac
Muscle Tissue’. Thus, to integrate the knowledge regarding human
heart, it is necessary for a biomedical system to determine the
correspondences between NCI and FMA. Similarly, finding
correspondence between GO and FMA can be used by molecular
biologist in understanding the outcome of proteomics and
genomics in a large-scale anatomic view [9]. Moreover, the
correspondences between ontologies have also been used for
heterogeneity resolution among various health standards [10]. The
biomedical concept mapping set between two ontologies is called
the alignment and the process of discovering it is termed as
ontology matching.

Matching biomedical ontologies is an open challenge in the
ontology matching domain because biomedical concepts are
usually complex and ambiguous. Frequently, the same entity has
several names (e.g. gluconeogenesis, glucose synthesis and
glucose biosynthesis, all refer to the same metabolic process), a
common word refers to a biomedical concept (e.g. hedgehog and
fruity are both gene names) or even the same word can be applied
to two different biomedical concepts (e.g. lingula can either be a
structure of the brain or the lung). Since none of the similarity
measures can distinguish the same biomedical concepts in any
contexts independently, the ontology matching systems actually
apply several similarity measures to determine the correspondences
between particular biomedical concepts. The most common
composition of multiple similarity measures is the parallel
composition, where the similarity measures are executed
independently from each other and the aggregated correspondence
is computed afterwards [11]. Currently, researchers mainly focus
on how to tune the aggregating weights for various similarity
measures to improve the quality of the ontology alignments [12].
However, the ignorance of the effects brought about by different
biomedical concept mapping’s preferences on some similarity
measures significantly reduce the alignment’s quality. For
example, it is better to use the linguistic-based similarity measure
instead of syntactic-based similarity measure to distinguish two
terms ‘Myocardium’ and ‘Cardiac Muscle Tissue’, and weights
tuned in this way could be problem specific, which means they
might not be reused in other matching scenarios. Moreover,
existing matching techniques can only deal with small-scale
ontologies, and their runtime and memory consumption are always
long and huge when matching biomedical ontologies which often
possess tens of thousands of concepts. To effectively match the
biomedical ontologies, in this paper, we propose a non-dominated
sorting genetic algorithm (NSGA)-III-based [13] ontology
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matching technique to optimise the biomedical ontology alignment.
In particular, the contributions made in this paper are as follows:

† A large-scale biomedical ontology matching framework is
proposed.
† Amany-objective optimal model is constructed for the biomedical
ontology matching problem.
† A problem-specific NSGA-III has presented to optimise the
biomedical ontology alignment, which can improve the convergence
as well as maintain the diversity during the matching process.

The rest of this paper is organised as follows: Section 2 describes
the related works; Section 4 shows the biomedical ontology
partitioning technique; Section 5 defines many-objective similarity
measure combining problem and presents the NSGA-III-based
ontology matching technique; Section 6 presents the experimental
studies and analysis; and finally, Section 7 draws the conclusions
and presents the future work.
2 Related work

In general, the basic similarity measures can be divided into three
broad categories, i.e. syntactic-based similarity measure,
linguistic-based similarity measure and structure-based similarity
measure. In particular, syntactic-based similarity measure
computes the edit distance between ontology entities such as
similarity measure for ontology alignment (SMOA) [14].
Linguistic-based matcher utilises synonymy, hypernymy and other
linguistic relations to calculate the similarity score between
ontology entities which require a lexicon and thesauri such as
WordNet [15]. Structure-based matcher computes a similarity
score between two ontological entities based on their ontology
taxonomy hierarchy structure, and the common intuition is that
two distinct ontology entities are similar when their adjacent
entities are similar. The most popular structure-based similarity
measures are the well known similarity flooding (SF) algorithm
[16] and the profile-based similarity measure [12]. Although both
of them utilise the ontology’s taxonomy structure to calculate the
similarity value, SF executes an iterative fix-point computing
process, while the profile-based similarity measure first constructs
for each entity a profile by collecting the data properties from its
direct descendants and itself, then, the similarity value between
two entities is measured by calculating the similarity of their
corresponding profiles.

Usually, similarity measure combination and tuning are tackled by
setting appropriate weight set through different methods. The most
outstanding approach in this area is COMA++ [17] which utilises
two kinds of similarity measures: simple similarity measure such
as the syntactic-based similarity measure and linguistic-based
similarity measure and hybrid similarity measure that combines
multiple similarity measures. COMA++’s aggregating weights are
determined by an expert. Lately, the focus is placed on the
heuristic techniques for combining different similarity measures.
The first method is called harmonic adaptive weighted sum which
is presented in the PRIOR+ [18]. The harmony value is calculated
through a similarity matrix and further assigned as the weight to
the similarity measure associated with that matrix. PRIOR+
integrates the syntactic-based similarity measure and structure-
based similarity measure. The second method is called the local
confidence weighted sum, which is the core method for combining
individual similarity measures in the AgreementMaker [19]. This
measure is defined for an entity by considering the average of
similarity values of entities that are associated (or not associated)
with that entity. Finally, the selection of the final candidates from
the set of candidates is performed by a greedy selection strategy.
In particular, AgreementMaker utilises the syntactic-based
similarity measure and linguistic-based similarity measure. For a
given matching scenario, YAM++ [20] evaluates the degree of
reliability of these similarity measures and assigns appropriate
weight values to them. More recently, Benaissa and Khiat [21]
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propose a heuristic strategy to estimate the weights for different
similarity measures, which is of a statistical nature and estimates
the weights by an estimation of the precision standard metric.
Particularly, the similarity measures they use are the linguistic-
based similarity measure and structure-based similarity measure.

Recently, evolutionary algorithms (EAs) are appearing as an
effective methodology to determine the optimal aggregating
weights for different similarity measures. Genetic algorithm based
ontology alignment (GOAL) [22] is the first matching system that
utilises EA to determine the optimal weight configuration for a
weighted average aggregation of several similarity measures by
considering a reference alignment. A similar idea of combining
multiple similarity measures is also developed by Naya et al. [23],
Alexandru Lucian and Iftene [24] and Gulić et al. [11]. To improve
efficiency, a hybrid EA is presented to tune the parameters for
aggregating various similarity measures [12, 25]. More recently,
Xue and Liu [26] present an approach based on a multi-objective
EA to determine the optimal weights being assigned to the
profile-based similarity measure, WordNet-based similarity measure
and structure-based similarity measure. All these methods dedicate
to tune the weights for aggregating different similarity measures,
which ignore the effects brought about by different entity
mappings’ preferences on different similarity measures, and
thus, decrease the quality of the alignment. In this work, a
many-objective matching technique is proposed to further improve
the alignment’s quality, which takes into consideration each
mapping’s preference on various similarity measures and determine
the optimal alignment without tuning the aggregating weights.
3 Large-scale biomedical ontology
matching framework

The proposed large-scale biomedical ontology matching framework
is shown in Fig. 1. As shown in this figure, our proposal first utilises
an ontology partitioning technique to transform the biomedical
ontology matching problem into several ontology segment-
matching problems and then uses NSGA-III to combine various
similarity measures and optimise the quality of the ontology
alignment. The former technique can transform the large-scale
biomedical ontology matching problem into several ontology
segment-matching problems, which can improve the efficiency of
the matching process hereafter. The latter can trade-off each
biomedical concept mapping’s preference on various similarity
measures, and determine the optimal alignment without tuning the
aggregating weights. Finally, the segment alignments are
aggregated into a final alignment which is further evaluated with
the reference alignment.
4 Biomedical ontology partition

Partitioning the large-scale biomedical ontology into various
segments, where the term ‘segment’ is referred to as a fragment of
an ontology, is an efficient way of reducing the algorithm’s search
space [27]. In this work, an alignment-oriented ontology partition
technique [28] is introduced to partition the ontologies into various
similar ontology segment pairs. First of all, the ontology with
better reliability is selected as the source ontology. The reliability
of an ontology is measured by the semantic accuracy, which is
computed through the average of the squared semantic distance
between each concept ci and the ontology O’s taxonomic root
node ROOT. In particular, the formula for calculating semantic
accuracy is presented as follows:

semAccuracy(O) =

∑
ci[C

semDistance(ci, ROOT)
2

|C| (1)

where semDistance(ci, ROOT) = log2 1+ (|Ances(ci)| − 1)/|Ances(ci)|
( )( )

calculates the semantic distance between the concept c ci and
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Fig. 1 Large-scale biomedical ontology matching framework
ROOT. Ances(ci) refers to the set of taxonomic ancestors of concept
ci in the ontology including itself.

The source ontology is partitioned into disjoint segments through
an ontology partition algorithm which is extended from structural
clustering algorithm for network (SCAN) [29]. Then, a concept
relevance measure-based approach is adopted to determine the
similar target ontology segments of each source ontology segment
segsrc. Particularly, for each target ontology concept ci, the
similarity value simci

between ci and segsrc is calculated by
summing up every SMOA(ci, cj) (see also Section 7.1). If simci

is
larger than the threshold, ci will be added to the candidate concept
set Ccand. If the relevance value of a concept in Ccand is bigger
than the threshold, it will be added to the final target segment.
Given a concept cm [ Ccand, the relevance value of cm to source
ontology segment can be calculated by the following formula:

relevance(cm) = simcm
×

∑
cn[Ccand

simcn
× e−(p(cm, cn))

2

(2)

where simcm
and simcn

, respectively, denote the similarity values of
cm and cn to segsrc and p(cm, cn) is the shortest length between their
corresponding vertexes in ontology taxonomy structure.

After partitioning the ontologies, the matching process only needs
to deal with the similar biomedical ontology segments’ matching
problem, and all the similarity values obtained in the process of
ontology partitioning are stored in the hash map to avoid repeating
calculations in the hereafter matching process. With respect to the
details of the alignment-oriented ontology partition algorithm,
please see also [30].
5 Many-objective similarity measure combination

5.1 Many-objective similarity measure
combining problem

Although the alignment evaluation measures recall, precision and
f-measure [31] can reflect the quality of the resulting alignment,
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the reference alignment between two ontologies is usually
unknown for real-life match problems [32]. In this work, based
on the observations that the more correspondences found and the
higher mean similarity values of the correspondences are, the
better the alignment quality is [33], we utilise the following metric
to measure the quality of an alignment:

f (A) =
2× f(A)× ∑|A|

i=1 di/|A|
( )

f(A)+ ∑|A|
i=1 di/|A|

( ) (3)

where |A| is the number of correspondences in A; f is a function of
normalisation in [0,1]; and di is the similarity value of the ith
correspondence in A.

On this basis, the many-objective optimal model of combining
various similarity measures can be defined as follows:

min F(A) = (1− f1(A), 1− f2(A), . . . , 1− fm(A))

s.t. A = (a1, a2, . . . , a|C1|)
T

ai [ {1, 2, . . . , |C2|}, i = 1, 2, . . . , |C1|

⎧⎪⎨
⎪⎩ (4)

where m is the number of similarity measures; fi(A), i =
1, 2, . . . , m, calculates the alignment A’s quality with respect to
the ith similarity measure; |C1| and |C2|, respectively, represent
the cardinalities of source concept set C1 and target concept
set C2; and ai, i = 1, 2, . . . , |C1| represents the ith pair of
correspondence.

Similarity measure takes as input two concept sets C1 and C2 and
output a |C1| × |C2| similarity matrix S, whose element sij is the
similarity score between the ith concept in |C1| and the jth concept
in |C2|. Since the number of elements in biomedical ontology is
large, we should avoid allocating an n1 × n2 similarity matrix,
where n1 and n2 are the cardinalities of two concept sets. On the
basis of the observation that a correct alignment should be
consistent with the concept hierarchies organised by ‘is-a’ [34],
if two concepts c1 and c2 have high similarity value, so-called
137n for Artificial Intelligence and
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Fig. 2 Example of the perpendicular distance
anchors in the partitioning process, the sub-concepts
(/super-concepts) of c1 and super-concepts (/sub-concepts) of c2
can be skipped or directly set as 0. Then, considering the
similarity matrix is a typical sparse matrix, the compression
techniques can be further adopted to replace it. It usually
compresses a similarity matrix into several mega bytes (MBs). In
our approach, we first replace the two-dimensional (2D) reduction
set with 1D style, then merge the continuous number of elements
as a link.

5.2 NSGA-III for optimising biomedical
ontology alignment

NSGA-III is a many-objective algorithm proposed by Deb et al. [35],
which introduces a well-distributed reference points based clustering
operator to replace the crowding distance operator in NSGA-II. In
this work, NSGA-III [13] is utilised to automatically combine
various similarity measures and determine the optimal biomedical
ontology segment alignment. Original NSGA-III emphasises that
the solutions should be Pareto non-dominated and closed to the
reference line of each reference point. However, with the growing
number of the objectives, selection pressure based on Pareto
dominance would be too small to pull the population toward
Pareto front, and in this case, NSGA-III indeed emphasises
diversity more than convergence. To this end, we present a
problem-specific NSGA-III to improve the convergence as well as
maintain the diversity when matching the biomedical ontology
segments.

Next, three key components of NSGA-III are presented in details,
i.e. encoding mechanism, uniform design-based reference points
generation and u-dominance. Finally, the outline of problem-
specific NSGA-III is given.

5.2.1 Encoding mechanism: Let |C1| and |C2| be the
cardinalities of the source concept set C1 and target concept set
C2, respectively. Each chromosome in the population would be a
1D array with |C1| elements, and the elements are denoted as:
N1N2 · · ·N|C1|, where Ni [ {0, 1, . . . , |C2|}, i [ {1, . . . , |C1|},
which means the ith concept in C1 is mapped to the Nith concept
in C2. In particular, when Ni = 0, the ith concept is not mapped to
any concept in C2.

5.2.2 Uniformly distributed reference points: In the original
NSGA-III, the Das and Dennis’s systematic approach [36] is used to
generate reference points. However, when the number of objectives
is high, the number of reference points generated by this approach
would become very large [37]. In our work, we propose to use a
uniform design [38], which aims at determining a set of points that
are uniformly distributed over the design space, to produce
uniformly distributed reference points in a unit sphere S =
{(s1, s2, . . . , sm)|

∑m
i=1 s

2
i = 1, si ≥ 0, i = 1, 2, . . . , m}. First,

we need to generate a set of Q uniformly distributed points
on C = {(c1, c2, . . . , cm)|0 ≤ c1, c2, . . . , cm ≤ 1}. Let Q be the
number of uniform distributed points in C; m be the dimension
of the problem that is equal to the number of basic similarity
measures in this work; d be the number that yields the smallest
discrepancy of generated point set (see also [39]), an integer
matrix so-called uniform array [M ij]Q×m can be calculated with
M ij = id j−1 mod Q+ 1, i = 1, 2, . . . , Q, j = 1, 2, . . . , m, where
the ith row of it can define a point Ci = (ci, 1, ci, 2, . . . , ci,m) with
cij = (2M ij − 1)/2Q, i = 1, 2, . . . , Q, j = 1, 2, . . . , m. Next, a
set of Q reference points uniformly distributed on S, denoted by
P(Q, m) = Pi = (pi, 1, pi, 2, . . . , pi,m), can be calculated as follows:

pi, j =

∏m−1
s=1 cos (0.5ci, sp) j = 1

sin (0.5ci,m−j+1p)
∏m−j

s=1 cos (0.5ci, sp) 1 , j , m

sin (0.5ci, 1p) j = m

⎧⎪⎪⎨
⎪⎪⎩ (5)

Equation (5) is a hyper-sphere formula, and in particular, it becomes
a circular formula when m = 2 and a spherical formula when m = 3.
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5.2.3 u-Dominance: Given reference points P(Q, m) which can
be denoted by {Pi, P2, . . . , PQ}, a reference line is defined by
joining a reference point with the origin. After that, each
individual is associated with a reference point by calculating the
perpendicular distance of it from each of the reference line. The
reference point whose reference line is closest to a solution is
considered to be associated with this solution. In this way, the
population can be split into Q clusters C = {C1, C2, . . . , cQ}
where the cluster Cj is represented by the reference point Pj,
j = 1, 2, . . . , Q.

Given a solution x and its objective vector f (x) which can be
denoted by [f1(x), f2(x), . . . , fm(x)], reference line Lj passing
through the origin point Z and Pi, a penalty function [40] can be
defined as Dj(x) = ‖(f (x)− Z)s‖ + ud j, perpendicular(x), j = 1, 2, . . . , Q,
where d j, perpendicular(x) calculates the perpendicular distance
between f (x) and Lj

d j, perpendicular(x) = (f (x)− Z)− ‖(f (x)− Z)TPj‖
‖Pj‖

Pj
‖Pj‖

( )∥∥∥∥∥
∥∥∥∥∥ (6)

Given m = 2, an example of the perpendicular distance is shown in
Fig. 2.

In this work, u . 0 is a predefined penalty parameter, which is set
as 2 to achieve the best mean quality of alignment on all testing
cases. It is obvious that the smaller ‖f (x)‖ and d j, perpendicular(x),
respectively, lead to better convergence and better diversity. Given
two solutions x, y [ V, x is said to u-dominate y, denoted by
x ≺u y, if x, y [ Cj and Dj(x) , Dj(y), j [ {1, 2, . . . , Q} [37].
Then, we utilise the u-dominance to implement the fast
non-dominated sorting [35] on the population to partition it into
different u-non-domination levels.

5.2.4 Flowchart of NSGA-III: The flowchart of NSGA-III is
presented in Fig. 3. First, we apply a uniform design-based
method to generate any number of reference points, and the
common one point crossover operator and the bit mutation
operator. Before calculating the perpendicular distance between a
population and each of the reference lines, NSGA-III needs to
normalise objectives’ values and supplied reference points, which
can ensure they have an identical range. In this work, since all the
objective’s values are in the same range [0, 1] and the ideal point
is the zero vector, we do not need to carry out the normalisation
in each generation. In addition, replace the Pareto dominance
in NSGA-III with u-dominance to trade-off the convergence and
diversity in many-objective optimisation, and utilise the
u-dominance based fast non-dominated sorting is employed on the
population clusters to divide them into different u-non-domination
levels. Finally, we determine the next generation’s population by
including one u-non-domination at a time, which starts from
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Fig. 3 Flowchart of NSGA-III
the first level. With respect to the solutions in the last accepted level,
we first sort them in ascending order according to their mean
f () values and then select the solutions sequentially. In this work,
in order to compare with other ontology matching systems whose
results are measured with f-measure, we pick up the solution in
the Pareto front with the highest

∑m
i=1 fi/m as the representative

solution.
Table 2 Comparison of large Biomed track in OAEI 2017

Systems R P F Runtime, s

Task 1: whole FMA and NCI ontologies
XMap* 0.85 0.88 0.87 130
AML 0.87 0.84 0.86 77
YAM-BIO 0.89 0.82 0.85 279
LogMap 0.81 0.86 0.83 92
LogMapBio 0.83 0.82 0.83 1552
LogMapLite 0.82 0.67 0.74 10
Tool1 0.74 0.69 0.71 1650
6 Experimental studies and analysis

In this work, we exploit the Anatomy [http://oaei.ontologymatching.
org/2017/anatomy/index.html.] and Large Biomed [http://www.cs.
ox.ac.uk/isg/projects/SEALS/oaei/2017/.] track to study the
effectiveness of our approach, which are provided by Ontology
Alignment Evaluation Initiative (OAEI) 2017 [http://oaei.
ontologymatching.org/2017.]. Tables 1 and 2 show the mean value
of f-measure of the alignments obtained by our approach in 30
independent runs and the results obtained by the participants of
OAEI.
Table 1 Comparison of anatomy track in OAEI 2017

Systems R P F Runtime, s

AML 0.93 0.95 0.94 47
YAM-BIO 0.92 0.94 0.93 70
POMap 0.90 0.94 0.93 808
LogMapBio 0.89 0.88 0.89 820
XMap 0.86 0.92 0.89 37
LogMap 0.84 0.91 0.88 22
KEPLER 0.74 0.95 0.83 234
LogMapLite 0.72 0.96 0.82 19
SANOM 0.77 0.89 0.82 295
Wiki2 0.73 0.88 0.80 2204
ALIN 0.33 0.99 0.50 836
our approach 0.95 0.97 0.96 42
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Three main categories of similarity measures are utilised in
this work, i.e. SMOA (a syntactic-based similarity measure),
Unified Medical Language System-based [41] similarity measure
(a linguistic-based similarity measure) and profile-based
similarity measure (a structure-based similarity measure) [12].
The parameters used by NSGA-III are as follows: numerical
accuracy = 0.01, number of reference points = 20, population
size = 25, crossover probability = 0.8, mutation probability = 0.02
our Approach 0.88 0.92 0.90 62
Task 2: whole FMA and SNOMED ontologies

XMap* 0.84 0.77 0.81 625
YAM-BIO 0.73 0.89 0.80 468
AML 0.69 0.88 0.77 177
LogMap 0.65 0.84 0.73 477
LogMapBio 0.65 0.81 0.72 2951
LogMapLite 0.21 0.85 0.34 18
Tool1 0.13 0.87 0.23 2140
our Approach 0.82 0.93 0.87 165

Task 3: whole SNOMED and NCI ontologies
AML 0.67 0.90 0.77 312
YAM-BIO 0.70 0.83 0.76 490
LogMapBio 0.64 0.84 0.73 4728
LogMap 0.60 0.87 0.71 652
LogMapLite 0.57 0.80 0.66 22
XMap* 0.55 0.82 0.66 563
Tool1 0.22 0.81 0.34 1150
our Approach 0.75 0.92 0.82 248
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and maximum number of generation = 300. These parameters
represent a trade-off setting obtained in an empirical way to
achieve the highest average alignment quality on all test cases of
the exploited dataset, which is robust against the heterogeneous
situations in our experiment.

We run the anatomy track with a CPU @ 3.46 GHz × 6 with
8 GB allocated RAM, and the large biomed track with an
Intel Core i9-8950HK CPU @ 2.90 GHz × 12 and 25 GB
allocated RAM, which is the same with the OAEI’s hardware
configurations.
6.1 Anatomy track

The anatomy track is a large ontology matching task which is about
matching the Adult Mouse Anatomy (2744 classes) and a part of the
NCI thesaurus (3304 classes) describing the human anatomy. As can
be seen from Table 1, our approach’s f-measure is the best among
all the participants in OAEI 2017, and the runtime taken by our
approach is 42 s, which is less than AgreementMakerLight
(AML), the best matcher of OAEI 2017 on Anatomy track. In this
track, our approach’s recall and precision are, in general, high,
which further indicates the effectiveness of our approach.
6.2 Large biomedic ontologies track

This track aims at finding alignments between the large and
semantically rich biomedical ontologies FMA, SNOMED-CT and
NCI, which contains 78,989, 306,591 and 66,724 classes,
respectively. The track has been split into three matching
problems: FMA–NCI, FMA–SNOMED and SNOMED–NCI, and
each matching problem in three tasks involving different fragments
of the input ontologies.

As can be seen from Table 1, in terms of f-measure and running
time, our approach’s results are the best in all three tasks. In this
track, our approach outperforms AML, which is the top ontology
matcher and developed primarily for the biomedical ontology
matching, in all three tasks in terms of f-measure, and the runtime
of our approach is also less than AML. The experimental results
further show the effectiveness of our proposal when matching
large-scale biomedical ontologies.
7 Conclusion and future work

An ontology matching framework is proposed to efficiently match
biomedical ontologies, which first uses an ontology partition
technique to reduce the matching algorithm’s search space, and
then utilises an NSGA-III-based biomedical ontology matching
technique to directly determine the optimal alignment without
tuning the aggregating weights. The experimental results show that
our proposal is able to efficiently determine the high-quality
biomedical ontology alignments. In continuation of our research,
we are interested in combining more similarity measures.
Moreover, some strategies which could remove the mappings that
lead to logical conflicts can be introduced to further improve the
alignment’s quality.

In the future, we are interested in getting the user involved in our
approach to guide the search direction, so that the alignment quality
could be further improved. Since the similarity measures would
lead to the opposing results on the same biomedical concepts,
before combining them, we need to select the effective similarity
measures based on the heterogeneous characteristics of biomedical
ontologies. How to select, combine and tune these similarity
measures to improve the alignment’s quality is a challenge
especially when the scale of similarity measures is huge.
Therefore, we are also interested in carrying out a future study on
such situation as combining more than 50 similarity measures to
improve our proposal.
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