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Abstract 

Background:  The extensive uses of sulfadimidine (SDMD) resulted in its presence in water bodies, and subsequent 
posed risks to eco-environment and human health. In this study, photodegradation of SDMD in water was studied 
under UV–Visible irradiation. The intermediates, degradation pathways of SDMD photodegradation and ecological risk 
of SDMD were investigated as well.

Results:  SDMD was rapidly degraded under alkaline conditions. Nitrate ion enhanced SDMD degradation under 
UV–Vis irradiation, while dissolved organic matter and Fe(III) inhibited its decay, and bicarbonate ion did not exert 
any effect. The reactive species involved in the SDMD photodegradation was singlet oxygen. Four major transforma-
tion products were identified by high-performance liquid chromatography–mass spectrometry (HPLC–MS), and the 
photolytic pathway was also proposed. Photoinduced hydrolysis, desulfonation and photooxidation were the major 
photodegradation mechanisms for SDMD. Toxicity analysis with Vibrio fischeri showed an obvious decrease in toxicity 
of the reaction solution, from the initial inhibition rate of 38.5% to 0% after 150-min irradiation.

Conclusion:  Initial pH and common water constituents influence the photo-degradation of SDMD under UV–Vis 
irradiation. Photodegradation of SDMD could reduce its ecological risk in the aqueous solution.
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Background
The ubiquitous occurrence of pharmaceuticals and per-
sonal care products (PPCPs) in the environment has now 
been recognized as a new environmental problem and 
has aroused increasing concern on their fate and risks 
[1–5]. In the aquatic ecosystem, the majority of PPCPs 
tends to absorb light due to their structural characteris-
tics containing functional groups like aromatic rings and 
heteroatoms, making them prone to undergo photolysis 
under UV–Vis irradiation [6–8]. Pharmaceuticals may be 
directly photodegraded, which are converted into excited 
states and subject to chemical transformation as a result 

of photo-absorption [9]. Indirect photolysis is also an 
important photodegradation pattern for PPCPs, which 
happens because of the energy transference or reactions 
with transient reactive species in natural water arising 
from irradiation, including reactive oxygen species (ROS, 
for instance, ·OH and 1O2) and triplet excited states of 
natural organic matter (3NOM*) [8, 9].

In the aqueous environment, the water constituents 
(such as nitrate, bicarbonate, dissolved organic matter 
(DOM) and Fe(III)) are of great importance to the pho-
tochemical behavior of pollutants [10–12]. Nitrate can 
generate ·OH under light irradiation which is photoac-
tive to the organic contaminants [10, 13–15]. Bicarbo-
nate is documented to yield CO3

−· through reacting with 
·OH, and it could also prohibit the photo-transformation 
of organic contaminants because of the ·OH scaveng-
ing [14–16]. DOM, as the major form of organic car-
bon existing in surface water, has dual effects on the 
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photodegradation of organic compounds. It can acceler-
ate the photooxidation by generating oxidants such as 
HOO/O2

−, ·OH, 1O2 and triplet excited-state DOM, and 
also can scavenge ROS or compete light absorption [11, 
17, 18]. The photodegradation of organic compounds is 
accelerated by Fe(III) complexes by internal charge trans-
fer to generate Fe(II) and hydroxyl radical, which could 
enhance the photodegradation and serve as the catalytic 
oxidant [10, 17, 19].

Sulfonamides belong to antibiotics which contain aro-
matic rings in their structure, with potential to absorb 
light and undergo photochemical degradation under 
irradiation [8, 20]. Many researchers have reported the 
photodegradation of sulfonamides, including sulfameth-
oxazole, sulfamethazine, and sulfadimethoxine in aque-
ous environment [16, 18, 21–24]. Albeit with similar 
structures, these antibiotics undertake different photo-
degradation behaviors [8, 21]. Sulfadimidine (SDMD) is 
a sulfonamide antibiotic which has long been used for 
prophylactic or therapeutic purposes in animal produc-
tion [25]. Due to its high water solubility and mobility, 
SDMD has been widely detected in various environmen-
tal matrices, with concentrations up to 323 ng/L in water 
[25–27], up to 20 mg/kg in animal manure [26, 28] and 
15 μg/kg in agriculture soils [26, 27]. The runoff concen-
tration from manured plots could reach 680  μg/L with 
1-day contact time [26, 28]. Generally, sorption and pho-
todegradation processes governed sulfamethazine fate in 
freshwater–sediment microcosms [29], and the SDMD 
photodegradation have been studied in several studies 
[7, 30–32]. However, few studies have been solely con-
ducted to investigate its photodegradation behaviors, and 
its photodegradaion products and mechanisms remained 
unclear. In this study, we investigated the photochemi-
cal degradation of SDMD in aqueous solution under 
UV–Vis irradiation. The experiments were conducted 
under different conditions including different pH values 
and different levels of water constituents. The degrada-
tion intermediates/products were identified by high-
performance liquid chromatography–mass spectrometry 
(HPLC–MS), and tentative degradation pathways were 
proposed. Bioassay with Vibrio fischeri bacteria was car-
ried out to test the acute toxicity variation of SDMD dur-
ing its photodegradation process.

Materials and methods
Chemicals and materials
Sulfadimidine (purity > 99%) and humic acid sodium salt 
(HA) were purchased from Sigma Aldrich (St. Louis, MO, 
USA). Methanol and isopropanol (HPLC grade) were 
obtained from Tedia Company, Inc. All other analytical-
grade chemicals were used without further purification.

Photodegradation experiments
A Hg lamp (300 W) and a xenon lamp (800 W, Institute 
of Electric Light Source, Beijing) placed in the cold trap 
were employed to simulate UV–Vis and sunlight irradia-
tion. The photodegradation experiment was performed 
in the photochemical reactor system (XPA-7, Nanjing 
Xujiang Machinery Factory, Nanjing, China) with the 
main apparatus containing cylindrical quartz well for the 
UV irradiation (λ > 200 nm) and Pyrex well for the sun-
light irradiation (λ > 290 nm). The light source irradiance 
spectra (Fig. 1) were measured by a fiber-optic spectrom-
eter (Ocean Optics, USB2000-FLG), and the light inten-
sities were measured with a full spectrum bright light 
power meter (CEL-NP2000, Beijing Zhongjiaojinyuan 
Technology Limited company) in the center of the solu-
tions with 3.85 mW/cm2 and 4 mW/cm2 for the mercury 
and xenon lamp, respectively. The relatively stable pho-
ton flux (< 5%) confirmed the stable irradiance during the 
photodegradation experiment [33]. The SDMD absorp-
tion spectra (Additional file 1: Figure S1) under different 
pH condition were determined by UV–Vis spectropho-
tometer (Varian Cary 100).

The pH value of the solution was adjusted with HCl or 
NaOH.

Quartz tubes (60  mL) containing 50  mL of reaction 
solution ([SDMD]0 = 10 mg/L) were placed in the pho-
tochemical reactor system and magnetically stirred. 
Two milliliters of reaction solution were sampled at 
specific time intervals. To explore the effects of pH and 
water compositions [nitrate, bicarbonate, humic acid 
(HA) and Fe(III)] on SDMD photodegradation, the rea-
gents with serial and concentration gradient at specific 
pH were added to the reaction solutions. To examine 
the reactive species involved in SDMD photodegra-
dation, scavenging experiments were performed using 
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isopropanol as the quencher of ·OH [34] and sodium 
azide (NaN3) as the quencher of 1O2 and ·OH [34, 35]. 
Dark control experiments were performed in the same 
procedures with quartz tubes wrapped with aluminum 
foils. Triplicate experiments were conducted for all 
conditions.

Products/intermediates analysis
An Agilent 1200 HPLC equipped with a diode array 
detector was employed to analyze SDMD concentrations, 
with the absorbance wavelength at 261 nm. Compounds 
were separated by an Agilent Zorbax Eclipse XDB-C18 
column (100 mm × 2.1 mm, 3.5 μm). 30% methanol and 
70% water with 0.1% formic acid were used as the mobile 
phases. The flow speed was maintained at 1.0 mL/min.

The photodegradation products were identified by LC–
MS (Quest LCQ Duo, US) equipped with an electrospray 
ionization (ESI) source and operated in the positive ion 
mode (ESI+) with the mass ranging from 50–500  m/z. 
The LC separation was performed using an eclipse XDB-
C18 column (150  mm × 2.1  mm, 5  μm) with a mobile 
phase of acetonitrile (A) and water (B) (with 0.1% for-
mic acid) at a flow of 0.3 mL/min. The column tempera-
ture was kept at 40  °C, and the gradient was as follows: 
0–5  min: 90% B; 5–7  min: 85% B; 7–11  min: 60% B; 
11–15 min: 10% B; 15–25 min: 90% B. The capillary volt-
age and cone voltage were 3.5 kV and 25 V, respectively. 
The desolvation temperature was 350 °C and source tem-
perature was 120 °C. The flow of sheath gas was 7 L/min.

Toxicity evolvement
The toxicity of SDMD solution during photodegradation 
was evaluated with the bioluminescence inhibition test 
using Vibrio fischeri. The test was conducted with Micro-
tox Toxicity Analyzer (Model 500), with the initial SDMD 
concentration at 10 mg/L. The luminescence was deter-
mined after incubation at 15 °C for 15 min. The inhibition 
of luminescence compared to a toxic-free control gives 
the percentage of inhibition, and was calculated following 
the established protocol using the Microtox calculation 
program [36, 37]. Briefly, the decrease in bacterial lumi-
nescence (Γ, %) due to the addition of toxic chemicals can 
be determined with the equation [36, 37]:

where IC0 and IT0 are the luminescence of control and 
test sample at t = 0. ICT and ITT are luminescence values 
for control and test samples measured after T minutes of 
exposure.

Γ = 100 −

(

ITT

IT0 ×

(

ICT

/

IC0

)

)

× 100,

Results and discussion
The comparative experiment showed that no observable 
loss of SDMD was found in dark control, indicating that 
the SDMD degradation other than photolysis was negli-
gible. Results also showed that under simulated sunlight 
irradiation (λ > 290  nm), SDMD did not photodegrade 
due to the weak absorption of light at λ > 290 nm (Fig. 1), 
which was consistent with previous observation [38]. In 
contrast, SDMD could be quickly photodegraded under 
UV–Vis (λ > 200  nm) irradiation. In this study, 300-W 
high-pressure mercury lamp was used to explore the 
SDMD photodegradation in aqueous solution.

SDMD photodegradation at varying pH
Figure  2 illustrated the photodegradation of SDMD in 
solution at different pH values. It showed that within 
150-min UV–Vis irradiation, SDMD was almost com-
pletely eliminated under alkaline conditions. Linear 
regression between ln(Ct/C0) and time (t) indicated 
that photochemical reaction followed the pseudo-first-
order kinetics (R2 > 0.98). The degradation rate constant 
k, half-live (t1/2) and R2 are summarized in Additional 
file 1: Table S1. Results indicated that SDMD in the alka-
line solution was photolyzed more quickly than in acidic 
environment. The highest k value was 0.0363 min−1 at pH 
9, which was much greater than the maximum degrada-
tion rate of 0.0179 min−1 in acidic solution at pH 2. This 
is likely due to the speciation of SDMD under different 
pH values influencing the absorption of light wavelength 
(Additional file 1: Figure S1). The pKa1 and pKa2 values of 
SDMD were 1.95 and 7.45, respectively [39]; thus, sub-
strate anions with high electron density surrounding the 
ring structure under alkaline condition were much more 
reactive for photochemical reaction than their neutral or 
protonated species [40, 41].
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Influence of different constituents
Nitrate ion
The effect of NO3

− on the SDMD photodegradation is 
illustrated in Fig. 3a. In natural water bodies, the level 
of nitrate ion generally ranges from 10−5 to 10−3 mol/L 
[12]. In this study, the addition of NO3

− slightly accel-
erated the SDMD removal rate. The first-order rate 
constant k increased from 0.032 min−1 (without NO3

−) 
to 0.037 min−1 (10 mmol/L NO3

−). It has been reported 
that the ubiquitous nitrate ion in natural water is the 
main source for ·OH under irradiation, which will 
further induce the photodegradation of organic com-
pounds [13, 42]. The results suggested that ·OH could 
result in SDMD photodegradation. Since SDMD was 
mainly degraded through direct photolysis, indirect 
photolysis induced by ·OH only played a minor role in 
SDMD removal. In view of the nonselectivity of ·OH 
to react with organic pollutants and high reactivity to 
sulfonamides [43], ·OH formed in natural sunlit waters 
might play important roles in the photodegradation of 
SDMD and other sulfonamides.

Bicarbonate ion
The effect of bicarbonate on SDMD photodegradation 
is shown in Fig.  3b, which suggested that the addition 
of bicarbonate did not exert any effect. Bicarbonate is 
also a ubiquitous ion in natural water, and its presence 
is of great importance to the photochemical reaction of 
organic compounds. Bicarbonate can cause approxi-
mately 10% of ·OH quenching as a radical scavenger 
[13], and it could also lead to the generation of carbonate 
radical (·CO3

−). Compared with ·OH, ·CO3
− is less reac-

tive, and is conducive to the removal of easily oxidized 
substances in nature water [44, 45]. Due to the lower 
reactivity, ·CO3

− in natural water was more steady than 
·OH [14], and its effect on SDMD photodegradation was 
negligible.

Dissolved organic matter (DOM)
Figure 3c showed that SDMD photodegradation followed 
the pseudo-first-order kinetics in the presence of humic 
acid (HA), and HA had an inhibition impact on SDMD 
photolysis. As shown in Additional file 1: Figure S2, HA 

Fig. 3  Effect of nitrate (a), bicarbonate (b), HA (c) and Fe(III) (d) on the photolysis of SDMD in aqueous solution. [SDMD]0 = 10 mg/L, pH = 8
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has a wide light absorption range of 200–700  nm. HA 
could compete with SDMD to absorb short-wavelength 
UV light in the solution, resulting in the inhibition of 
SDMD photodegradation. Its scavenging ability toward 
·OH might be another reason for the inhibition effect. As 
a photosensitizer, HA may be conducive to photodegra-
dation [46–48], while this result showed the minor role 
of photosensitization played in SDMD photodegradation.

Iron (III)
Iron is the abundant element in natural water environ-
ment [19]. In this study, three concentrations of FeCl3 
(10  μmol/L, 20  μmol/L and 40  μmol/L) representing 
environmental levels were added into the reaction solu-
tion to evaluate its effect on SDMD photodegradation. As 
shown in Fig. 3d, the degradation of SDMD under UV–
Vis irradiation was obviously decreased in the presence 
of Fe(III).

As reported that Fe(III) could enhance the sulfadimeth-
oxine photodegradation [18], in this experiment a 
reversed trend was observed for SDMD. This was mainly 
related to the iron speciation. Under acidic condition, 
Fe3+, FeOH2+, and FeSO4

+ were the main dissolved 
forms of Fe(III), which were photoactive for the removal 
of organic chemicals by the photo-generated ·OH [49]. 
Under neutral or alkaline conditions, dimeric and oligo-
meric Fe(III) compounds and Fe(III) colloids were the 
dominant forms. Fe(III) colloids like ferric oxyhydroxides 
tend to prevail over other iron species at pH 8 [49], which 
would absorb or scatter light, and finally lead to less light 
received by SDMD in aqueous solution.

Mechanisms of SDMD photodegradation
To determine which reactive oxygen species was involved 
in the SDMD photolysis, NaN3, isopropanol and N2 were 
individually added and introduced into the reaction sys-
tem. It has been reported that NaN3 quenches 1O2 and 
isopropanol quenches ·OH or O2·−, while purging N2 into 
the system can eliminate dissolved oxygen (DO) which is 
documented to quench the molecules from excited triplet 
state to unexcited state [50]. Results in Fig. 4 showed that 
the addition of NaN3 inhibited SDMD degradation, sug-
gesting that 1O2 formed during photoreaction played an 
important role in SDMD photodegradation. Other ROS 
such as ·OH or O2·− may be not the key radicals involved 
in the photolysis process.

Due to the high sensitivity, selectivity and efficiency, 
LC–MS has been widely used as a powerful tool in 
identifying and charactering drug metabolites [51]. 
Herein, the intermediates/products of SDMD photo-
degradation were identified with the retention time and 
LC/MS–ESI+ spectra. A total of eleven intermediates/
products were identified, with detailed information in 

Additional file 1: Figures S3 and S4. To avoid unreliable 
analysis, these intermediates were compared to previ-
ous studies [8, 51]. Usually, the direct photodegradation 
products of sulfonamides arise from similar cleavage as 
shown in Additional file  1: Scheme S1, and cleavage at 
these positions are mainly involved in photohydrolysis 
and desulfonation processes [11, 20, 51–53]. As shown in 
Additional file 1: Figures S3 and S4, the direct photolysis 
of SDMD generated several photoproducts which were 
also observed by others [18, 51–53]. The direct cleavage 
processes generated products I, II, III, V and VIII, which 
have been reported in literatures [8, 51]. Desulfonylation 
is the other important direct pathway induced by excita-
tion of SDMD to its triplet state to produce SO2 extru-
sion product IV, which has been identified by previous 
studies [20, 21]. In addition, photooxidation was involved 
in SDMD photodegradation. Oxidation products where 
the m/z increased by 16 were identified to N-oxides (VI 
and X), and by 32 were identified to product VI. O-addi-
tion to the phenyl ring or addition to both rings, or the 
hydroxyl addition through reaction with HO· may result 
in the oxidation products [18]. The photoproducts may 
further undergo the desulfonylation process to produce 
SO2 extrusion products VII and X. The SDMD photolysis 
pathways are proposed in Fig. 5.

Toxicity variation
As V. fischeri luminescent bacteria can demonstrate a 
great potential in ecotoxicological evaluation in com-
parison to other bioassays, it has been widely used for 
assessing the toxic effect in aquatic ecosystem [36, 37]. 
Figure 6 illustrated the toxicity evolvement of the photo-
degradation reaction solution under UV–Vis irradiation. 
Results showed that the initial inhibition percentage of 
SDMD (0 h of irradiation) to V. fischeri was 38.5%. With 
the reaction continued, the degradation intermediates 
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showed decreased toxicity to V. fischeri. The inhibi-
tion disappeared after 90-min experiment. It should be 
noted that the inhibition percentage firstly decreased to 
22.2% (10 min), then increased to 29.5% (40%) and finally 

decreased to 21.5% (60 min) and 0 (≥ 90 min). This trend 
indicated the complex photodegradation pathways of 
SDMD, with some toxic intermediates produced and fur-
ther transformed to more toxic compounds. Overall, the 
whole toxicity was eliminated after long-time photodeg-
radation, and the risk of SDMD in natural environments 
was reduced when exposed to light irradiation. When 
utilizing UV light to remove SDMD and other antibiot-
ics, the toxicity variation should be monitored, so that 
the optimum treatment time with low toxicological risk 
to ecology and human health could be determined.

Conclusions
The present work explored the photo-degradation of 
SDMD in aqueous solution. The SDMD photo-degrada-
tion under UV–Vis irradiation was pH dependent, with 
higher removal efficiencies under alkaline condition than 
acidic and neutral conditions. The common water con-
stituents exerted different influence on the SDMD pho-
tolysis, depending on different reactive oxygen species 
involved. Results showed that 1O2 was an important radi-
cal generated during the photolysis process. A total of 

Fig. 5  Proposed photodegradation pathway of SDMD under UV–Vis irradiation. [SDMD]0 = 10 mg/L, pH = 8

-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

5

10

15

20

25

30

35

40

45

pe
rc

en
t o

f i
nh

ib
iti

on
(%

)

t (min)

SDMD

Fig. 6  Inhibition (%) of the luminescence of photobacteria V. fischeri 
as a function of the irradiation time for SDMD. [SDMD]0 = 10 mg/L, 
pH = 8



Page 7 of 8Hao et al. Environ Sci Eur           (2019) 31:40 

eleven reaction intermediates/products were identified, 
which were less toxic toward V. fischeri, indicating that 
photodegradation played a positive role in diminishing 
the ecotoxicological risk of SDMD in natural water.

Additional file

Additional file 1: Figure S1. The absorption spectra of SDMD at different 
pH. Figure S2. UV–Vis spectrum of the HA. Figure S3. The total ion chro-
matogram for UV–Vis photodegradation of SDMD. Figure S4. MS spectra 
of the intermediates detected in the SDMD photodegradation solutions 
under the simulated light irradiation. Scheme S1. Potential direct pho-
tolysis cleavage sites [1]. Table S1. Rate constants (k), half-lives (t1/2) and 
correlation coefficients (r2) for the photodegradation of the SDMD under 
irradiation of UV–Vis at different pH.
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