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Abstract
To explore the importance of the Eurasian steppe region (EASR) in global carbon cy-
cling, we analyzed the spatiotemporal dynamics of the aboveground net primary pro-
ductivity (ANPP) of the entire EASR from 1982 to 2013. The ANPP in the EASR was 
estimated from the Integrated ANPPNDVI model, which is an empirical model devel-
oped based on field-observed ANPP and long-term normalized difference vegetation 
index (NDVI) data. The optimal composite period of NDVI data was identified by con-
sidering spatial heterogeneities across the study area in the Integrated ANPPNDVI 
model. EASR’s ANPP had apparent zonal patterns along hydrothermal gradients, and 
the mean annual value was 43.78 g C m−2 yr−1, which was lower than the global grass-
lands average. Compared to other important natural grasslands, EASR’s ANPP was 
lower than the North American, South American, and African grasslands. The total 
aboveground net primary productivity (TANPP) was found to be 378.97 Tg C yr−1, 
which accounted for 8.18%–36.03% of the TANPP for all grasslands. In addition, 
EASR’s TANPP was higher than that of the grasslands in North America, South 
America, and Africa. The EASR’s TANPP increased in a fluctuating manner throughout 
the entire period of 1982–2013. The increasing trend was greater than that for North 
American and South American and was lower than that for African grasslands over the 
same period. The years 1995 and 2007 were two turning points at which trends in 
EASR’s TANPP significantly changed. Our analysis demonstrated that the EASR has 
been playing a substantial and progressively more important role in global carbon se-
questration. In addition, in the development of empirical NDVI-based ANPP models, 
the early–middle growing season averaged NDVI, the middle–late growing season av-
eraged NDVI and the annual maximum NDVI are recommended for use for semi-
humid regions, semi-arid regions, and desert vegetation in semi-arid regions, 
respectively.
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1  | INTRODUCTION

Aboveground net primary productivity (ANPP) represents the major 
input of nutrition and energy into ecosystems, and it is an integral 
indicator of ecosystem functions (McNaughton, Oesterheld, Frank, 
& Williams, 1989). ANPP is one of the main components of the car-
bon cycle and one of the most important and fundamental fluxes that 
reflect carbon sinks/sources of ecosystems (Scurlock, Cramer, Olson, 
Parton, & Prince, 1999). ANPP can indicate the growth status of veg-
etation, for which variations over time reflect the response of ecosys-
tems to climate change (Roy, Mooney, & Saugier, 2001). In addition, 
ANPP is a good index of potential economic production (food, fuel, 
fiber) (Scurlock et al., 1999). The spatiotemporal dynamics of ANPP 
have been a key research topic of Global Change and Terrestrial 
Ecosystems (GCTE) (Fang et al., 2003; Steffen et al., 1998).

Globally, grasslands are one of the most widespread biomes, and 
they are known as the prairie in North America, the pampas in South 
America, the veld in South Africa, the steppe in Eurasia, and the sa-
vanna in Africa and Australia (Woodward, 2008). These grasslands 
account for approximately 20% of the world’s land surface (Lieth, 
1978). From a perspective of carbon cycles of ecosystems, grasslands 
likely contribute an annual carbon sink of up to ~0.5 Pg C (Scurlock 
& Hall, 1998), and these systems amount to approximately 18% of 
the total current global terrestrial carbon sink (Canadell et al., 2007), 
playing a key role in balancing the concentration of global atmospheric 
greenhouses gases through carbon sequestration (Lauenroth, 1979; 
O’Mara, 2012). From an applied perspective, grasslands significantly 
contribute to resources needed for human activities by providing 

food for herbivores (O’Mara, 2012; Scurlock et al., 1999). Therefore, 
examining spatiotemporal ANPP patterns in grasslands is critical to 
understanding terrestrial carbon sequestration and fundamental for 
determining the sustainable use of grassland resources (O’Mara, 2012; 
White, Murray, & Rohweder, 2000).

Evaluations of ANPP in grasslands at a regional or global scale 
have suggested that the ANPP of grasslands exhibits obvious spatial 
variations (Bao et al., 2016; Eisfelder, Klein, Niklaus, & Kuenzer, 2014; 
Irisarri, Oesterheld, Paruelo, & Texeira, 2012; Sala, Parton, Joyce, & 
Lauenroth, 1988; Xia et al., 2014; Zhang et al., 2014). Estimates of 
total aboveground net primary productivity (TANPP) in global grass-
lands vary from 1423 Tg C yr−1 to 4635 Tg C yr−1 (Bazilevich, Rodin, 
& Rozov, 1971; Parton et al., 1995; Whittaker & Likens, 1975; Xia 
et al., 2014). In addition, the TANPP of global grasslands displays a 
significant increasing trend for the past three decades (Xia et al., 
2014). North American grasslands (Goward & Dye, 1987; Lauenroth, 
1979; Xia et al., 2014), South American grasslands (Xia et al., 2014), 
and African grasslands (Xia et al., 2014), respectively, account for 9%–
16%, 3%–14% and 4% -13% of the TANPP for global grasslands. In 
the past three decades, TANPP showed an obvious increasing trend in 
North American and African grasslands as well as a slight downward 
trend in South American grasslands (Xia et al., 2014).

The Eurasian steppe region (EASR), which is the largest continuous 
grassland biome worldwide, plays an important role in global grass-
lands, as do North American, South American, and African grasslands 
(Woodward, 2008). The EASR, which is located in northern mid-
latitudes, is influenced by monsoon, continental, and Mediterranean 
climates, and it is sensitive to global environmental change (Figure 1). 

F IGURE  1 The geographic extent of the Eurasian steppe region and the spatial distribution of ANPP field sites. ANPP denotes the 
aboveground net primary productivity per year and per square meter. EASR denotes the Eurasian steppe region, BKSSR denotes the Black Sea–
Kazakhstan steppe subregion, MPSSR denotes the Mongolian Plateau steppe subregion, and TPSSR denotes the Tibetan Plateau alpine steppe 
subregion
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Studies on the spatiotemporal dynamics of the ANPP of the EASR 
mainly focus on typical geographical units within it, such as on the 
Inner Mongolian temperate grasslands (Ma, Fang, Yang, & Mohammat, 
2010; Ma, Liu et al., 2010; Ma, Yang, He, Hui, & Fang, 2008) and the 
Tibetan Plateau alpine grasslands (Zhang et al., 2014). In recent years, 
some studies have also analyzed the spatiotemporal dynamics of the 
ANPP in the grassland areas of Mongolia and Kazakhstan at a national 
scale (Bao et al., 2016; Eisfelder et al., 2014). However, studies on the 
spatiotemporal dynamics of ANPP have not yet been specifically re-
ported for the entire EASR. There is thus a knowledge gap regarding 
the spatiotemporal dynamics of the ANPP for the entire EASR and 
the roles that the EASR plays in the global carbon budget. Therefore, 
studying the spatiotemporal patterns of the EASR’s ANPP will further 
our understanding of carbon cycling mechanisms in grassland eco-
systems and will prove central to the assessment of global carbon 
budgets.

The Normalized Difference Vegetation Index (NDVI) is the normal-
ized reflectance difference between the satellite near-infrared band 
and the visible red band (Rouse, Haas, Schell, & Deering, 1974; Tucker, 
1979). The NDVI represents the photosynthetic potential of the veg-
etation canopy and is extensively used in ecosystem monitoring (An, 
Price, & Blair, 2013; Box, Holben, & Kalb, 1989; Gu, Wylie, & Bliss, 
2013; Gu, Wylie, & Howard, 2015; Hobbs, 1995; Paruelo, Epstein, 
Lauenroth, & Burke, 1997; Rouse et al., 1974; Tucker, 1979). Previous 
studies have shown strongly positive relationships between the NDVI 
and ANPP in grasslands. Developing an NDVI-based empirical remote 
sensing inversion model for ANPP estimation involves obtaining NDVI 
values over a specified time period (composite periods of NDVI data) 
(Reed et al., 1996). Composite periods of NDVI data may affect the 
accuracy of empirical NDVI-based annual ANPP estimation models. 
The optimal period of the NDVI composite varies according to regional 
climatic conditions (An et al., 2013; Mkhabela, Bullock, Raj, Wang, & 
Yang, 2011) and vegetation type (Jin et al., 2014; Mao, Wang, Li, & 
Ma, 2014).

Therefore, in this study, we attempted to achieve the following 
objectives based on field-observed ANPP and long-term NDVI time-
series data: (1) to identify the best composite period of NDVI data for 
developing a robust annual ANPP estimation model designed for the 
entire EASR, (2) to evaluate the ANPP of the entire EASR, and (3) to 
explore the temporal dynamics of the EASR’s TANPP and further dis-
cuss the role of the EASR in the global carbon budget.

2  | MATERIALS AND METHODS

2.1 | Study region

The Eurasian steppe region (EASR) (Figure 1) in the northern mid-
latitudes extends over approximately 110 longitudinal units from the 
grassy plains at the mouth of the Danube River in the west; across 
Russia, Kazakhstan, and Mongolia to the Songliao Plain in China to 
the east; and to the Himalayas in China to the southwest (Woodward, 
2008). The EASR is the largest continuous grassland biome in the 
world, covering an area of 8.65 million km2, and the region is preserved 

relatively well (Woodward, 2008). The EASR is influenced by the 
Mediterranean climate, by the southwest monsoon of the Indian 
Ocean, by the East Asian monsoon and by the westerlies. Multiyear 
mean annual precipitation levels in the region vary from 60 mm to 
1,100 mm (Appendix S1), and the mean annual temperatures (MATs) 
range from −9 to 20°C (Appendix S1) across the entire EASR, with 
rainy and hot conditions characterizing this period (Appendix S2).

Throughout the EASR, natural vegetation mainly includes mead-
ows, meadow steppes, typical steppes, desert steppes, alpine steppes, 
and alpine meadows (Appendix S3, Olson et al., 2001; Editorial 
Committee of Vegetation Map of China Chinese Academy of Sciences, 
2007; Woodward, 2008; Bao et al., 2016). The dominant grasses in-
clude perennial bunchgrasses, and constructive species belong to the 
Stipa genus, which refers to species controlling the structure and func-
tion of the ecosystem while their amount being not always maximum 
in the ecosystem (Woodward, 2008; Zhou, 1980). Chestnut soil is the 
main soil type (Woodward, 2008). Phytogeographically, the EASR can 
be divided into three subregions (Figure 1): the Black Sea–Kazakhstan 
steppe subregion (BKSSR), the Mongolian Plateau steppe subregion 
(MPSSR), and the Tibetan Plateau alpine steppe subregion (TPSSR) (Li, 
1979; Wu, 1979; Лaвpeнкo, 1959).

It is important to note that the geographical extent of the EASR 
has not yet been clearly defined, so we identify the regional extents of 
the EASR and of its three subregions based on Moderate Resolution 
Imaging Spectroradiometer (MODIS) Land cover data according to de-
scriptions of the EASR provided in Лaвpeнкo (1959), Wu (1979), Li 
(1979) and Woodward (2008).

2.2 | Data collection

2.2.1 | Field-observed ANPP data

In this study, field-observed ANPP (ANPPobs) was estimated as the 
peak aboveground biomass for harvesting during the growing sea-
son (from April to October of the year). These data were primarily 
obtained from three sources: (1) 1015 ANPP field observations from 
206 publications (a list of the data sources can be found in Appendix 
S11) cited in the Web of Science (www.Webofknowledge.com) and 
China National Knowledge Infrastructure (http://epub.cnki.net), (2) 
7 ANPP field observations from the Class A dataset of the global 
ANPP database of the Oak Ridge National Laboratory Distributed 
Active Archive Center (https://daac.ornl.gov/cgi-bin/dataset_lister.
pl?p=13#grassland_anchor) and (3) 809 ANPP field observations pro-
vided by the researchers of this study. In total, 1990 site-year ANPP 
observations from 1831 field sites were initially collected for the en-
tire EASR over the past three decades (1982–2013).

Before carrying out our analysis, we completed four tasks to elim-
inate unsuitable field-observed ANPP data: (1) we excluded observa-
tions missing site-description metadata (e.g., latitude or longitude), 
(2) we excluded observations without specific sampling times, (3) we 
excluded observations in ecotones of grasslands and other systems 
according to the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Land cover product (MCD12C1) (https://lpdaac.usgs.gov/

http://www.Webofknowledge.com
http://epub.cnki.net
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=13%23grassland_anchor
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=13%23grassland_anchor
https://lpdaac.usgs.gov/dataset_discovery/modis/Modisproducts_table/mcd12c1
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dataset_discovery/modis/Modisproducts_table/mcd12c1), and (4) we 
excluded observations with ANPP outliers (falling outside a range of 
mean ± 3 standard deviations).

Thus, field ANPP observations of 1717 site years from 1539 field 
sites were examined in this study. These ANPP field sites spanned 
28°N to 53°N in latitude, 36°E to 125°E in longitude, and 20 m to 
5600 m in elevation (Figure 1). In addition, the sampling time span 
ranged from 1982 to 2013 (Appendix S4).

It is worth noting that ANPP (g C m−2 yr−1) in this study denotes 
the aboveground net primary productivity per year and per square 
meter, and TANPP (Tg C yr−1) denotes the regional total aboveground 
net primary productivity level per year. Field data reported in dry mat-
ter form (g m−2 yr−1) from previous studies were converted into units 
of C using a conversion factor of 0.45 (Lieth & Whittaker, 1975).

2.2.2 | Remote sensing data

Long-term NDVI time-series data
The biweekly NDVI data for 1982 to 2013 used in this study were 
obtained from third-generation NDVI (NDVI3 g) datasets pro-
duced through the Global Inventory Modeling and Mapping Studies 
(GIMMS). GIMMS NDVI3 g data (http://ecocast.arc.nasa.gov/data/
pub/gimms/3 g.v0/) were obtained at a spatial resolution of .083° 
by applying the 15-day maximum-value composition (MVC) tech-
nique (Holben, 1986) to observations generated by Advanced Very 
High Resolution Radiometers (AVHRRs) aboard National Oceanic and 
Atmospheric Administration (NOAA) satellites (Tucker et al., 2005; Zhu 
et al., 2013). GIMMS NDVI3 g data were corrected for sensor degrada-
tion, intersensor differences, cloud cover, solar zenith angle, and view-
ing angle effects resulting from satellite drift as well as the presence of 
volcanic aerosols. These data were widely used to monitor long-term 
vegetation activation trends (Piao et al., 2005; Wu & Liu, 2013).

Land cover data
The land cover data used in this study were collected from the Land 
Cover Type Climate Modelling Grid (CMG) product (MCD12C1) in 
2012. The MCD12C1 (LP DAAC; https://lpdaac.usgs.gov) at a spatial 
resolution of .05° was derived from observations covering one year 
of Terra and Aqua MODIS data collected from Earth Observation 
Systems (EOS) satellites. The MCD12C1 included three classification 
schemes: the International Geosphere Biosphere Programme (IGBP) 
global vegetation classification scheme, the University of Maryland 
(UMD) scheme, and the MODIS-derived LAI/FPAR scheme (Friedl 
et al., 2010). The land cover data used in this study were based on the 
IGBP global vegetation classification scheme.

2.2.3 | Climatic data

Monthly climatic data (including air temperature and precipitation 
data) were derived from meteorological data with a spatial resolution 
of 0.5° stored at the University of East Anglia’s Climate Research Unit 
(CRU TS 3.23) (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/). 
CRU TS 3.23 climate data were obtained through an interpolation of 

average monthly climate data from weather stations (Harris, Jones, 
Osborn, & Lister, 2014; Mitchell & Jones, 2005; New, Hulme, & Jones, 
1999, 2000; New, Lister, Hulme, & Makin, 2002).

2.3 | Data analysis

2.3.1 | ANPP estimation model development

The best ANPP estimation model for the entire EASR was accom-
plished through following three steps:

Data preprocessing
Before developing the ANPP estimation model, we completed the fol-
lowing three data preprocessing tasks.

1.	 First, monthly NDVI series data were generated by applying 
MVC (Equation  (1), Holben, 1986) to biweekly NDVI series data.

where i is the month from month 1 to month 12, MNDVIi is the 
maximum of two NDVI images available for month i, and NDVIia and 
NDVIib are NDVI images of the first and second halves of month i, 
respectively.

2.	 The optimal composite period of monthly NDVI data for gen-
erating annual NDVI values for ANPP estimation varies with 
the climate and vegetation conditions in the study area (An 
et  al., 2013; Mkhabela et  al., 2011). Therefore, 13 different 
annual NDVI values were obtained by calculating the annual 
maximum NDVI and 12 different averaged NDVI values of 
various composite periods for April to October. Theses 12 dif-
ferent periods were identified by changing the start and end 
date of the monthly NDVI composite periods (Appendices S5 
and S6).

3.	 According to the geographical locations and the corresponding 
sampling year of field-observed ANPP, we extracted 13 annual 
NDVI values for each ANPP field site. In turn, we generated 
a dataset in which every record included field-observed data 
and 13 corresponding annual NDVI values. Approximately 75% 
of the field-observed ANPP data were randomly selected to 
develop the ANPP estimation model, and the remaining 25% 
were used to validate the model. Given that NDVI images of 
sparsely vegetated areas can be affected by the spectral char-
acteristics of soils, we only analyzed grasslands with an annual 
maximum NDVI value of > 0.1 in this study.

Model development
Based on the preprocessed data listed above, we developed ANPP es-
timation models for the entire EASR through two different schemes: 
the Entirety Overall Scheme and the Subregions Integrated Scheme. 
Then, the best ANPP estimation model specific to the entire EASR 
was obtained by selecting the model with higher validation accu-
racy. In the Entirety Overall Scheme, spatial heterogeneities across 
the EASR were not considered in the development of the ANPP 

(1)MNDVIi=Max(NDVIia,NDVIib),

https://lpdaac.usgs.gov/dataset_discovery/modis/Modisproducts_table/mcd12c1
http://ecocast.arc.nasa.gov/data/pub/gimms/3 g.v0/
http://ecocast.arc.nasa.gov/data/pub/gimms/3 g.v0/
https://lpdaac.usgs.gov
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/
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estimation model. Thus, NDVI-based variables for ANPP estimation 
were considered universal for the entire EASR in this scheme. By 
contrast, the ANPP estimation model developed in the Subregions 
Integrated Scheme considered spatial heterogeneities between three 
subregions of the EASR.

Model validation and optimization
The best ANPP estimation model (the Overall ANPPNDVI model) for 
the entire EASR was identified through two phases in the Entirety 
Overall Scheme: (1) 52 regression models, including linear, exponen-
tial, power, and logarithmic models, were developed for field-observed 
ANPP data and 13 annual NDVI values for the entire EASR, and (2) the 
performance of these models was assessed using the coefficient of 
determination (R2, Equation 2) and the root mean square error (RMSE, 
Equation 3). The model that met the maximum R2 and minimum RMSE 
criteria of the 52 regression models was regarded as the optimal ANPP 
estimation model for the entire EASR. Finally, the corresponding pe-
riod was considered the optimal composite period of the NDVI for 
ANPP estimation in the EASR.

where R2 is the coefficient of determination between field-observed 
ANPP data (ANPPobs) and modeled ANPP data (ANPPmod), which de-
notes a similar pattern between ANPPobs and ANPPmod and the frac-
tion of ANPPobs variation that can be explained by the model. RMSE 
is the root-mean-square error between ANPPobs and ANPPmod, which 
represents biases that cause modeled ANPP data to differ from field-
observed ANPP data. n is the number of field ANPP observations in-
cluded in the dataset for model validation.

As stated above, the model with the highest R2 and lowest RMSE of 
the 52 regression models developed was identified as the best model 
for estimating the ANPP of the entire EASR (Taylor, 2001). When no 
model satisfies both maximum R2 and minimum RMSE, the existing 52 
models need to be optimized (Taylor, 2001). In this study, the optimal 
model was obtained by generating the averaged result of ANPP esti-
mations using the model with the highest R2 and the model with the 
lowest RMSE at the pixel scale.

The optimal ANPP estimation model (the Integrated ANPPNDVI 
model) specific to the entire EASR in the Subregions Integrated 
Scheme was also determined through two steps: (1) optimal ANPP 
estimation models for three subregions in the EASR were obtained 
by developing model approaches that reflect the Entirety Overall 
Scheme, and (2) the best ANPP estimation models of the three sub-
regions were integrated to generate the optimal model for the entire 
EASR. Finally, after comparing the Overall ANPPNDVI model with the 

Integrated ANPPNDVI model, the one presenting greater validation ac-
curacy was used to estimate the ANPP of the entire EASR.

2.3.2 | Analysis of temporal dynamics of TANPP

TANPP time series trends for 1982–2013 were analyzed using a 
simple regression model. The turning points (TPs) at which trends in 
the TANPP time series significantly changed were identified using a 
piecewise linear regression (PLR) model (Toms & Lesperance, 2003) 
(Equation (4)).

where t is the year from 1982 to 2013 and TANPP is the regional total 
aboveground net primary productivity per year. α is the estimated TP 
of the time series, which denotes the timing of a trend change. β0, β1, 
and β2 are regression coefficients, and ξ is the residual of the fit. β1 
and β1+ β2 denote linear TANPP trends before and after the turning 
point, respectively. The three regression coefficients were determined 
through least-square linear regression. In addition, a t-test was con-
ducted to evaluate the necessity of introducing a TP based on the 
following null hypothesis: “β2 is not significantly different from zero.” 
A p value of <.05 was considered significant. The TANPP trends for 
each subperiod defined by the TP were also analyzed.

3  | RESULTS

3.1 | Development and validation of the ANPP 
estimation model

Model accuracy levels directly affect the reliability of research con-
clusions. Accuracy assessments based on the remaining 25% of field-
observed ANPP data (Appendices S5 and S6) indicated that models 
with both maximum R2 and minimum RMSE were absent from the 
52 regression models fitted in the Entirety Overall Scheme or in the 
Subregions Integrated Scheme. According to the approaches for de-
veloping an ANPP estimation model, the Overall ANPPNDVI model and 
the Integrated ANPPNDVI model were composed of the fitted regres-
sions meeting the maximum R2 criteria and satisfying the minimum 
RMSE criteria among the 52 regression models in both the Entirety 
Overall Scheme and the Subregions Integrated Scheme, respectively.

In the Entirety Overall Scheme, the regression relationship be-
tween field-observed ANPP and the annual maximum NDVI met the 
maximum R2 criteria (Figure 2a). In addition, the regression correla-
tion of field-observed ANPP with the average NDVI of the period 
running from July to September satisfied the minimum RMSE criteria 
(Figure 2b). Fitted regressions with the maximum R2 criteria (Figure 2a) 
and the minimum RMSE criteria (Figure 2b) between field-observed 
ANPP and NDVI values together formed the Overall ANPPNDVI model 
(Equation (5)). The validation of the Overall ANPPNDVI model (Figure 
4a) shows that the R2and RMSE between the estimated ANPP and 
field-observed ANPP were 0.58 and 17.24 g C m−2 yr−1, respectively, 
for the entire EASR (Figure 4a).
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where t is the year from 1982 to 2013 and x denotes the geographical 
position. ANPP(x,t) denotes the aboveground net primary productivity 
at position x in year t. NDVImax(t) denotes the annual maximum NDVI 
of year t, and NDVIGS0709(t) denotes the averaged NDVI of the period 
running from July to September in year t.

In the Subregions Integrated Scheme, the fitted relationship between 
field-observed ANPP and the annual maximum NDVI met the maximum 
R2 criteria (Figure 3a) and that between field-observed ANPP and the 
averaged NDVI of the period running from July to October satisfied the 
minimum RMSE criteria (Figure 3b) for the BKSSR. In addition, regres-
sion correlations of the field-observed ANPP with the averaged NDVI 
of the period from July to October (Figure 3d) and the averaged NDVI 
of the period running from June to September (Figure 3e) satisfied the 
maximum R2 and minimum RMSE criteria for the MPSSR. Regressions 
between field-observed ANPP and the averaged NDVI for the period 
from April to August (Figure 3g) and between field-observed ANPP and 
the averaged NDVI for the period from May to August (Figure 3h) sepa-
rately met the maximum R2 and minimum RMSE criteria for the TPSSR.

In each subregion, the fitted regressions meeting the maximum R2 
and minimum RMSE criteria formed the best ANPP estimation model 
for the subregion. The best ANPP estimation models for the three sub-
regions integrated together formed the Integrated ANPPNDVI model 
(Equation (6)), which was optimal for ANPP estimations of the entire 
EASR. The validation of the Integrated ANPPNDVI model showed that 
the R2 and RMSE between the estimated ANPP and field-observed 
ANPP were 0.65 and 11.20 g C m−2 yr−1 for the BKSSR (Figure 3c), 
0.68 and 19.09 g C m−2 yr−1 for the MPSSR (Figure 3f), 0.66 and 
20.94 g C m−2 yr−1 for the TPSSR (Figure 3i), and 0.68 and 14.76 g C 
m−2 yr−1 for the entire EASR (Figure 4b), respectively.

where t is the year from 1982 to 2013 and x denotes the geographic 
position. ANPP (x,t) denotes the aboveground net primary productivity 

at position x in year t. NDVImax (t) denotes the annual maximum NDVI 
for year t. NDVIGS0710 (t), NDVIGS0609 (t), NDVIGS0408 (t), and NDVIGS0508 
(t) denote, respectively, the averaged NDVI values for July to October, 
June to September, April to August, and May to August for year t.

Comparisons between accuracy assessments of the Overall 
ANPPNDVI model and the Integrated ANPPNDVI model (Figure 4) showed 
that the NDVI-based ANPP estimation models from both the Entirety 
Overall Scheme and the Subregions Integrated Scheme effectively sim-
ulated ANPP variations for the entire EASR. However, the Integrated 
ANPPNDVI model performed better than the Overall ANPPNDVI model. 
For the entire EASR, the R2 between modeled ANPP and field-observed 
ANPP increased from 0.58 in the Overall ANPPNDVI model to 0.68 in the 
Integrated ANPPNDVI model, and the RMSE decreased from 17.24 g C 
m−2 yr−1 to 14.76 g C m−2 yr−1. Therefore, the Integrated ANPPNDVI model 
was used to simulate ANPP variations for the entire EASR in this study.

3.2 | Geographic ANPP patterns

The Integrated ANPPNDVI model developed via the Subregions 
Integrated Scheme (Equation 6) was applied to estimate the ANPP 
value for 1982–2013 for the entire EASR. The mean values of an-
nual ANPP for the entire EASR and its three subregions were eval-
uated using zonal statistics (Table 1). The mean annual ANPP of the 
entire EASR was recorded as 43.78 ± 22.77 g C m−2 yr−1. For the 
three subregions, the BKSSR had the lowest mean annual ANPP 
with a value of 37.70 ± 16.60 g C m−2 yr−1. In addition, the MPSSR 
had the highest mean annual ANPP with a value of 52.86 ± 24.78 g 
C m−2 yr−1. The mean annual ANPP of the TPSSR fell between 
those of the BKSSR and MPSSR at a value of 46.98 ± 28.94 g C 
m−2 yr−1.

Total annual ANPP (TANPP) values for the entire EASR and its three 
subregions were generated by combining the mean ANPP with the re-
gion area (Table 1). For 1982 to 2013, the multiyear average TANPP 
was recorded as 378.97 Tg C yr−1 for the entire EASR. TANPP values 
were the highest in the BKSSR at 173.08Tg C yr−1 and the lowest in 
the TPSSR at 72.58 Tg C yr−1. Moreover, the TANPP of the MPSSR was 
recorded as 133.31 Tg C yr−1.

(5)ANPP(x,t) =
1

2
(10.90e2.61NDVImax +11.38e2.76NDVIGS0709 ),

(6)

ANPP(x,t)=

⎧

⎪

⎨

⎪

⎩

1

2
(95.09NDVImax(t)

1.26
+116.88NDVIGS0710(t)

1.08), BKSSR

1

2
(149.97NDVIGS0710(t)

1.37
+142.61NDVIGS0609(t)−14.46), MPSSR

1

2
(12.21e3.48NDVIGS0408(t)+12.17e3.01NDVIGS0508(t), TPSSR

F IGURE  2 The relationship meeting the maximum R2 criteria (a) and minimum RMSE (b) criteria between field-observed ANPP data and the 
NDVI values of the corresponding composite period in the Entirety Overall Scheme. R2 and RMSE denote the coefficient of determination and 
the root mean error, respectively. ANPP denotes the aboveground net primary productivity per year and per square meter. ANPPobs denotes 
field-observed ANPP data. NDVImax denotes the annual maximum NDVI. NDVIGS0709 denotes the averaged NDVI of the period running from July 
to September. *** indicates that a regression equation was significant at the .001 level
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The multiyear average ANPP exhibited pronounced spatial 
variations in the EASR (Figure 5) which corresponded to different 
grassland types reflecting variations in hydrothermal conditions 
(Appendices S3 and S7). Regarding climatic conditions, the BKSSR 

and the MPSSR are located in temperate semi-arid regions in which 
water levels typically limit vegetation growth (Appendices S1 and S2). 
In the BKSSR and MPSSR, desert steppes, typical steppes, meadow 
steppes, and meadows were found along an increasing precipitation 

F IGURE  3 Fitted regressions that meet the maximum R2 criteria and minimum RMSE criteria between field-observed ANPP data and NDVI 
values of the corresponding composite period for the BKSSR (a, b), MPSSR (d, e), and TPSSR(g, h) in the Subregions Integrated Scheme, and the 
validation of the Integrated ANPPNDVI model in the BKSSR (c), MPSSR (f), and TPSSR (i). R

2 and RMSE denote the coefficient of determination 
and the root mean error, respectively. ANPP denotes the aboveground net primary productivity per year and per square meter. ANPPobs denotes 
field-observed ANPP data. ANPPmod denotes the modeled ANPP of the Integrated ANPPNDVI model. NDVImax denotes the annual maximum 
NDVI. NDVIGS0710, NDVIGS0609, NDVIGS0408, and NDVIGS0508 denote the averaged NDVI values for July to October, June to September, April to 
August, and May to August, respectively. *** indicates that a regression equation was significant at the .001 level

F IGURE  4 Validation of the Overall ANPPNDVI model (a) and Integrated ANPPNDVI model (b) for the entire Eurasian steppe region. ANPP 
denotes the aboveground net primary productivity per year and per square meter. ANPPobs denotes field-observed ANPP data. ANPPmod 
denotes modeled ANPP data. *** indicates that a regression equation was significant at the .001 level
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gradient from the center to the boundaries (Appendices S1 and S3), 
and the increasing ANPP values reached 27.69 g C m−2 yr−1, 47.61 g 
C m−2 yr−1, 56.30 g C m−2 yr−1, and 75.74 g C m−2 yr−1 (Appendix 
S7). In addition, the TPSSR was subjected to a unique cold alpine 
climate. From the northwest to the southeast of the TPSSR with in-
creasing precipitation and temperatures, representative vegetation 
types included alpine steppes and alpine meadows (Appendices S1 
and S3) where ANPP values reached 51.11 g C m−2 yr−1 and 33.93 g 
C m−2 yr−1, respectively (Appendix S7).

3.3 | Temporal TANPP dynamics

Interannual variations in TANPP for 1982–2013 were analyzed using 
a simple regression model (Figure 6). For the entire EASR, TANPP 

values significantly increased from 1982 to 2013 at an annual rate of 
0.84 Tg C yr−1 or 0.49% (Figure 6a). TANPP changes in the BKSSR and 
the MPSSR were similar to those for the entire EASR and exhibited an 
obvious increase (Figure 6b, c). However, the TANPP of the TPSSR 
showed no significant changes (Figure 6d).

EASR’s TANPP variations were not continuous over the 32-year 
period. The piecewise linear regression between EASR’s TANPP and 
time (year) indicated that 1995 and 2007 were two turning points at 
which the EASR’s TANPP time series significantly changed (Figure 6a). 
The EASR’s TANPP experienced a significant increase from 1982 to 
1995, followed by a marked decrease that occurred from 1996 to 
2007. After 2008, the EASR’s TANPP increased slightly (p = 0.10).

Changes in the EASR’s TANPP over the three subperiods consti-
tuted a superposition of variation trends in TANPP within the three 
subregions (Figure 6b, c, d). From 1982 to 1995, TANPP values in 
the BKSSR, MPSSR, and TPSSR increased markedly. From 1996 to 
2007, TANPP values in the MPSSR and TPSSR significantly decreased, 
while TANPP in the BKSSR showed no significant change. From 2008 
to 2013, TANPP in the MPSSR significantly increased, while that in 
BKSSR and TPSSR did not significantly change.

4  | DISCUSSION

4.1 | ANPP estimation model development theories

The NDVI could be used to model the spatiotemporal dynamics of 
ANPP for the entire EASR. Additionally, the best composite period of 
monthly NDVI data for estimating annual ANPP varied according to 
regional climatic conditions and vegetation types. The optimal com-
posite period of monthly NDVI data for annual ANPP estimations in-
cluded the middle to late growing season (June to September or July 

TABLE  1 Mean (ANPP) and total values (TANPP) of annual ANPP 
in the Eurasian steppe region and three subregions. ANPP denotes 
the aboveground net primary productivity per year and per square 
meter. TANPP denotes the regional total aboveground net primary 
productivity per year. EASR denotes the Eurasian steppe region, 
BKSSR denotes the Black Sea–Kazakhstan steppe subregion, MPSSR 
denotes the Mongolian Plateau steppe subregion, and TPSSR 
denotes the Tibetan Plateau alpine steppe subregion. Mean denotes 
the mean value of annual ANPP for a region. SD denotes the 
standard deviation of mean annual ANPP

Area 
(104 × km2)

ANPP (Mean ± SD,  
g C m−2 yr−1) 

TANPP  
(Tg C yr−1)

BKSSR 458.85 37.70 ± 16.60 173.08

MPSSR 252.18 52.86 ± 24.78 133.31

TPSSR 154.48 46.98 ± 28.94 72.58

EASR 865.51 43.78 ± 22.77 378.97

F IGURE  5 The spatial pattern of the multiyear (1982–2013) averaged ANPP for the Eurasian steppe region. ANPP denotes the aboveground 
net primary productivity per year and per square meter. BKSSR denotes the Black Sea–Kazakhstan steppe subregion, MPSSR denotes the 
Mongolian Plateau steppe subregion, and TPSSR denotes the Tibetan Plateau alpine steppe subregion
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to October) in the MPSSR, the annual maximum NDVI (NDVImax) and 
the middle–late growing season (July to October) in the BKSSR, and 
the early–middle growing season (April to August or May to August) 
in the TPSSR.

For the MPSSR, climatic patterns are semi-arid (Table 2), accord-
ing to the categories of climatic conditions presented in Quan, Han, 
Utescher, Zhang, and Liu (2013) based on the climate index (CIKöppen) 
proposed by Köppen (1923) (Appendix S8). Therefore, water is a major 

factor limiting vegetation growth in this subregion. Therefore, the 
phenological period is affected not only by temperature but also by 
precipitation in this subregion. In addition, biomass normally peaks 
later in the growing season (Barnes, Tieszen, & Ode, 1983; Reed et al., 
1994). Therefore, the averaged NDVI from the middle–late growing 
season can be used to effectively assess annual ANPP variations in 
the MPSSR.

For the BKSSR, the climate, similar to that of the MPSSR, is semi-
arid (Table 2). Therefore, the averaged NDVI of the middle–late grow-
ing season is a key variable for assessing annual ANPP variations. 
However, according to the climate index (CIKöppen), vegetation in the 
BKSSR is subjected to more severe drought stress compared to the 
MPSSR. More specifically, desert steppes account for over 50% of 
the BKSSR area (Appendix S3). Desert steppes follow less predictable 
phenological patterns (Barnes et al., 1983; Reed et al., 1994) because 
they depend on less reliable precipitation events (Rauzi & Dobrenz, 
1970). For desert steppes, the annual maximum NDVI can effectively 
reflect annual productivity levels. Therefore, ANPP variations of the 
entire BKSSR should be assessed by combing the annual maximum 
NDVI with the averaged NDVI for the middle–late growing season.

For the TPSSR, climatic patterns in the TPSSR are semi-humid as a 
whole (Table 2). Therefore, the phenological period in the TPSSR is rel-
atively stable owing to weak precipitation limitations affecting vegeta-
tion growth. Moreover, biomass typically reaches its maximum value 
at the beginning or middle of the summer season (Barnes et al., 1983; 
Reed et al., 1994). As a result, the averaged NDVI of the early–middle 
growing season reflects annual ANPP variations in the TPSSR.

In this study, the NDVI was a good indicator of ANPP for the EASR, 
which further confirmed conclusions from previous studies (An et al., 
2013; Goward & Dye, 1987; Irisarri et al., 2012; Paruelo et al., 1997; 
Tucker, 1979; Tucker, Vanpraet, Sharman, & Van Ittersum, 1985). 
However, in the ANPP estimation models, most previous studies used 
NDVI values from a predefined time period based on the “normal,” or 
mean, growing season or a subjective time period such as calendar 
months (i.e., from April to October, from May to September, etc.) (Gu 
et al., 2013; Guo et al., 2012; Paruelo et al., 1997). This method may 
have affected the robustness of models (Reed et al., 1996). Only a few 
studies conducted in the arid rangelands located in Senegal (Fuller, 1998) 
and central Australia (Hobbs, 1995) explored the important composite 
periods of the NDVI in ANPP estimation models for the specific regions.

This study suggested that the averaged NDVI of the middle–late 
growing season or maximum NDVI was strongly related to ANPP in 
the MPSSR and the BKSSR, in which the climate was semi-arid. This 
result agreed with conclusions obtained from research conducted in 
arid regions located in Africa (Fuller, 1998; Rasmussen, 1992) and arid 
rangeland located in central Australia (Hobbs, 1995). However, stud-
ies of composite periods of the NDVI in ANPP estimation models of 
alpine ecosystems, such as the Tibetan Plateau alpine steppes, have 
not yet been reported. This study enriched knowledge of relationships 
between the NDVI and ANPP in alpine ecosystems.

In conclusion, composite periods of NDVI data should be selected 
according to the climatic conditions and vegetation types found in a 
given study area when NDVI data are applied in empirical annual ANPP 

F IGURE  6  Interannual variations in the TANPP time series for 
the Eurasian steppe region from 1982 to 2013. Three subperiods 
with significantly different TANPP trends were identified through 
piecewise linear regression. TANPP denotes the regional total 
aboveground net primary productivity level per year. EASR (a) 
denotes the Eurasian steppe region, BKSSR (b) denotes the Black 
Sea–Kazakhstan steppe subregion, MPSSR (c) denotes the Mongolian 
Plateau steppe subregion, and TPSSR (d) denotes the Tibetan Plateau 
alpine steppe subregion
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estimation models. Our analysis results show that the early–middle 
growing season averaged NDVI, the middle–late growing season av-
eraged NDVI, and the annual maximum NDVI should, respectively, be 
applied for semi-humid regions, semi-arid regions, and desert vegeta-
tion in semi-arid regions.

4.2 | Accuracy of the ANPP estimation model

The Integrated ANPPNDVI model is reliable and can be used to estimate 
annual ANPP variations for the entire EASR. To assess the robustness 
of the ANPP estimation model for the entire EASR, ANPP values esti-
mated from the Integrated ANPPNDVI model were compared to values 
reported in previous studies. Because ANPP estimations specific to 
the entire EASR have not yet been reported, we compared the esti-
mated annual ANPP values in this study with values reported in previ-
ous studies (Gao et al., 2013; Jiang et al., 2015; Ma, Liu, et al., 2008; 
Yang, Fang, Pan, & Ji, 2009) for different grassland types in Inner 
Mongolian temperate and Tibetan Plateau alpine grassland areas.

According to the simulated ANPP values obtained from the 
Integrated ANPPNDVI model (Appendix S9), the mean annual ANPP 
values of desert steppes, typical steppes, and meadow steppes all fell 
within ranges reported in previous studies (Gao et al., 2013; Guo et al., 
2012; Hu, Fan, Zhong, & Yu, 2007; Ma, Fang, Yang, & Mohammat, 
2010; Ma, Liu et al., 2010; Yang, Fang, Ma, Guo, & Mohammat, 2010). 
Moreover, the mean annual ANPP values of alpine steppes and alpine 
meadows were comparable to values reported in previous studies 
(Jiang et al., 2015; Ma, Fang, Yang, & Mohammat, 2010; Ma, Liu et al., 
2010). In addition, the spatial distributions of ANPP for the Tibetan 
Plateau alpine grasslands and the Inner Mongolia temperate grass-
lands were consistent with the conclusions of previous studies (Guo 
et al., 2012; Yang et al., 2009).

It should be noted that some uncertainties may exist in the ANPP 
estimation model. Similar to most traditional studies based on field in-
vestigation, our study design did not allow for quantitative assessment 
of the sampling quality. The field-observed ANPP data in this study 
combined multiple field surveys and datasets from previous studies (a 
list of the data sources can be found in the Appendix S11) without a 
consistent sampling design. Moreover, the previous studies dispropor-
tionally focused on the Mongolian Plateau steppe subregion and the 
Tibetan Plateau steppe subregion, while there were only a few sam-
ples from the Black Sea-Kazakhstan steppe subregion owing to either 

its remote location or political restrictions (Li et al., 2015). The bias of 
the spatial distribution of ANPP field sites might generate some uncer-
tainties in the ANPP estimation model. Unfortunately, we are unable 
to evaluate the uncertainties generated from this spatial bias.

However, in our opinion, the spatial bias of ANPP field sites would 
have little effect on the estimation of ANPP. The theoretical connection 
between ANPP and the NDVI is the Monteith’s (1981) equation (Paruelo 
et al., 1997). In addition, the NDVI is a linear indicator of absorbed pho-
tosynthetic active radiation (Sellers, 1985, 1987; Sellers, Berry, Collatz, 
Field, & Hall, 1992). Therefore, the equation was applicable for the en-
tire EASR, which expressed the relationships between ANPP and the 
NDVI based on few field-observed ANPP data of the BKSSR.

4.3 | The importance of the EASR in global 
carbon cycling

The EASR has been playing a significant role in global carbon seques-
tration. EASR’s TANPP was found to be 378.97 Tg C yr−1 (Table 1), 
which represented 8.18%–36.03% of that of all grasslands. According 
to previous studies (Bazilevich et al., 1971; Parton et al., 1995; 
Whittaker & Likens, 1975; Xia et al., 2014), the TANPP of all grass-
lands is 1423 Tg C yr−1 – 4635 Tg C yr−1 (Appendix S10). EASR’s 
TANPP was higher compared to the TANPP for grasslands in North 
America, South America, and Africa (Appendix S10). The mean value 
of annual ANPP for the entire EASR was recorded as 43.78 ± 22.77 g 
C m−2 yr−1 (Table 1), which was lower than that for the global grass-
lands average (Bazilevich et al., 1971; Parton et al., 1995; Whittaker & 
Likens, 1975; Yang et al., 2008; Xia et al., 2014) and North American 
(Bazilevich et al., 1971; Xia et al., 2014), South American (Xia et al., 
2014), and African grasslands (Xia et al., 2014) (Appendix S10).

For the three subregions studied, TANPP values were found to be 
the highest in the BKSSR because of its vast area (which accounted 
for 53.01% of the EASR’s area), despite its low mean annual ANPP 
value. While the BKSSR has not been studied at length in the past, it 
plays an indispensable role in global carbon cycling. Different charac-
teristics of ANPP among the three subregions showed that the mean 
annual ANPP of the BKSSR was lower compared to both the MPSSR 
and the TPSSR (Table 1). There were two main reasons for this differ-
ence. One was that vegetation growth in the BKSSR was under more 
severe drought stress compared to the MPSSR because the MAT in 
the BKSSR was significantly higher compared to the MPSSR despite 

CIköppen Climate regime
The optimal NDVI-
based variable

MPSSR 9.22 Semi-arid (5.70–13.60) Middle–late growing 
season averaged 
NDVI

BKSSR 7.95 Annual maximum NDVI

Desert steppes in 
the BKSSR

6.50

TPSSR 15.31 Semi-humid (13.60–15.60) Early–middle growing 
season averaged 
NDVI

TABLE  2 The optimal composite period 
of monthly NDVI data for annual ANPP 
estimations of different regions. BKSSR 
denotes the Black Sea–Kazakhstan steppe 
subregion, MPSSR denotes the Mongolian 
Plateau steppe subregion, and TPSSR 
denotes the Tibetan Plateau alpine steppe 
subregion. CIKöppen= MAP/(MAT+33), 
where MAP denotes the mean annual 
precipitation, and MAT denotes the mean 
annul temperature
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the MAP being comparable between them (Appendix S1). The other 
reason was that ANPP was affected by not only annual precipitation 
but also the precipitation seasonal distribution (Guo et al., 2012). 
Rain and heat occurred over the same period both in the MPSSR and 
in the TPSSR (Appendix S2). However, the rainy season did not coin-
cide with the hot season in the BKSSR (Appendix S2), which was not 
good for annual herbaceous growth. The mean annual ANPP of the 
TPSSR was lower that of the MPSSR owing to the limitations of low 
temperature for vegetation growth under the special cold alpine en-
vironment of the Tibetan Plateau (Fang et al., 2005; Kato et al., 2006).

4.4 | TANPP variation trends

The TANPP for the entire EASR showed an obvious increase from 
1982 to 2013. Compared to other important natural grassland re-
gions, the increasing TANPP of EASR estimated in this study (0.53 
Tg C yr−1, 1982–2006) was lower than that of the global grasslands 
average (2.43 Tg C yr−1) and African grasslands (1.21 Tg C yr−1) and 
higher than that of North (0.33 Tg C yr−1) and South (-0.44 Tg C yr−1) 
American grasslands (Xia et al., 2014). Despite a statistically significant 
uptrend in EASR’s TANPP for the past three decades (1982–2013), 
change trends were not temporally homogeneous over the whole pe-
riod (Figure 6). The EASR’s TANPP significantly increased from 1982 
to 1995, followed by a marked decrease from 1996 to 2007 and a 
weakening uptrend from 2008 to 2013.

Vegetation growth was influenced by precipitation in the BKSSR and 
the MPSSR (Bao et al., 2014, 2015; Jiao et al., 2017), and by tempera-
ture in the TPSSR (Zhang et al., 2014). During 1982–1995, the TANPP 
of EASR increased significantly because TANPP increases in the three 
subregions occurred owing to increasing precipitation in the BKSSR 
and MPSSR (Bao et al., 2015) and warming in the TPSSR (Piao et al., 
2011; Zhou et al., 2001). In the period of 1996–2007, EASR’s TANPP 
decreased apparently because of a decrease in TANPP in the MPSSR 
and TPSSR, which was caused by decreasing precipitation, especially 
summer precipitation in the MPSSR (Bao et al., 2014, 2015; Piao et al., 
2011) and by decreasing temperature in the TPSSR (Piao et al., 2011). 
During 2008–2013, EASR’s TANPP increased weakly owing to increas-
ing summer precipitation in the MPSSR (Bao et al., 2015).

The fact that the TANPP trend in EASR reversed from posi-
tive during 1982–1995 to negative during 1996–2007 was similar 
to TANPP variations in other grasslands (e.g., North America, South 
America and Africa). Xia et al. (2014) showed that the increase in the 
TANPP of other grasslands globally during the period of 1982–2006 
reversed around 1994. In addition, a similar prominent reversal oc-
curred in vegetation NDVI trends by the mid or late-1990s for the 
temperate ecosystems of Eurasia, with a pronounced increase oc-
curring before the mid or late 1990s and a decline (or a weakened 
increase) occurring afterward (Mohammat et al., 2013; Piao et al., 
2011). This conclusion was further confirmed by our analysis results. 
In addition, our results based on an extended period (1980s to the 
early 2010s) from previous studies (1980s to mid-2000s) also showed 
that 2007 constituted another turning point at which variations in the 
EASR’s TANPP clearly changed. The EASR’s TANPP showed a marked 

decrease before 2007 and increased slightly after 2007. This result 
furthered our understanding of changes in vegetation growth in the 
temperate ecosystems of Eurasia.

It is important to note that the interpretations of the causes of 
variation trends in EASR’s TANPP mentioned above were generated 
by reviewing current studies conducted in the MPSSR, TPSSR, and 
Kazakhstan. The scientific validity of these interpretations needs to 
be further confirmed in the future. The mechanisms of the temporal 
dynamics of TANPP are complex in the EASR because of its vast area, 
complex topography, and diverse climate regimes, which will be dis-
cussed in greater detail and depth in our future studies.

5  | CONCLUSIONS

To the best of our knowledge, this study was the first to assess 
the role of the entire EASR in the global carbon cycle. According 
to our analysis, although EASR’s ANPP is lower than that of North 
American, South American, and African grasslands, EASR’s TANPP 
is higher than that of grasslands in North America, South America, 
and Africa, accounting for 8.18%–36.03% of that of all grasslands. 
The EASR’s TANPP displayed an obvious uptrend over the past three 
decades, for which the increasing rate was higher than that in North 
and South American grasslands over the same period. This result in-
dicates the indispensable and ever-increasing role of the EASR in 
global carbon sequestration. Moreover, there were several impor-
tant turning points of the EASR’s TANPP trend in the past 30 years.

In addition, our analysis also demonstrates that the best composite 
period of NDVI data for annual ANPP estimation varies with climate 
and vegetation in the study region. More specifically, the early–middle 
growing season averaged NDVI, the middle–late growing season av-
eraged NDVI, and the annual maximum NDVI should be, respectively, 
applied to semi-humid regions, semi-arid regions, and desert vegeta-
tion in semi-arid regions.
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