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Abstract: The paper presents a square-root-extended complex Kalman filter (SRECKF) by decomposing covariance matrix with
its square-root forms to improve stability of the filter for estimating complex number. αβ transformation is used to map three-
phase instantaneous voltages in the abc phases into instantaneous voltages on the αβ axes, and a non-linear state equation
and observation equation of the three-phase voltages are built by introducing a complex vector and defining state variables.
Positive symmetrical component, negative symmetrical components, and frequency of the three-phase voltages are estimated
using traditional extended complex Kalman filter (ECKF), the estimation results show that the method proposed here are
superior to traditional extended complex Kalman filter on estimation accuracy and convergence rate.

1 Introduction
Under normal operating conditions, three-phase industrial power
system voltage and current waveforms are to a certain extent
unbalanced and contain harmonics for a number of reasons.
Unbalanced power system is usually caused by system faults and
other reasons. Information on the symmetrical components
symmetrical components are widely used in the analysis of
unsymmetrical faults in a power system, digital protection of
power system components, open-phase and inter-turn short-circuit
faults detection of electrical machines [1–8]. An accurate and fast
algorithm is needed to measure the symmetrical components
especially from a harmonic polluted unbalanced three-phase
system.

Several techniques have been proposed to estimate the
symmetrical components of a three-phase voltage and current. In
[9], methods for online calculation of the phasors of symmetrical
components from the complex space-phasor are presented. In [1],
the author presented a symmetrical components estimation through
adaptive transformation matrix of phase shifters to get
instantaneous symmetrical components independently on the
frequency variation with modest computation requirements. In [2],
the author presented a new method for decomposing a set of three-
phase signals into its constituting instantaneous positive-sequence,
negative-sequence, and zero-sequence components. In [6, 10], the
fast Fourier transform (FFT) was used to estimate symmetrical
components. In [11], state observer based method was applied to
estimation of the current and voltage symmetrical components in a
three-phase electrical network. In [12], stochastic estimation
theory-based dynamic technique was presented to estimate the
symmetrical components of three-phase voltage or current
waveforms in electrical power systems. In [13], the authors
proposed the use of a complex Kalman filter for the estimation of
positive and negative sequences from three-phase voltages. A
complex voltage is obtained by applying the αβ-transform followed
by the dq-transform using a rotational operator. In [14], the authors
introduced a new state-space model to estimate the symmetrical
components of distorted and time-changing power systems using
extended Kalman Filter.

However, in real filtering algorithms, the major source of
numerical instability comes from round-off errors of finite-
precision arithmetics implemented in modern computational
devices. One of the most serious consequences of rounding is that
it may destroy the theoretical semi-positiveness of the covariance
matrices[15]. To overcome this problem, the square-root approach,

based on finding square-root factors of the covariance matrix, has
been developed.

Here, the paper presents a new square-root extended complex
Kalman filter (SRECKF) by decomposing covariance matrix with
its square root forms to improve stability of the filter for estimating
symmetrical components in complex number domain.

2 Extended complex Kalman filter
Kalman filtering is used to estimate time varying parameters of a
system. The estimates produced are optimal in the least squares. To
apply Kalman filtering, the system model should be in a state-
variable form given by

X(k + 1) = φ X(k), k + u(k) (1)

Z(k) = h X(k), k + v(k) (2)

where, X(k) ∈ Cn × 1 and Z(k) ∈ Cm × 1 are complex state and
measurement vector，respectively. k is a discrete time index, X(k)
that is, means X(tk). φ X(k), k ∈ Cn × 1 and h X(k), k ∈ Cm × 1 are
non-linear state and measurement complex function vector,
respectively. The process noise u(k) and the measurement noise
v(k) are Gaussian white-noise processes with covariance matrices
Q ≥ 0 and R ≥0, respectively.

The well-known extended Kalman filter is a two-step
prediction-correction process, it can be summarised as follows:

(1) State Prediction: Calculate the one-step prediction of the system
state along with the associated covariance matrix of the prediction
state estimation error.

X^ (k + 1 k) = φ X^ k), k (3)

P(k + 1 k) = Φ(k + 1, k)P(k k)Φ ∗ T(k + 1, k) + Q(k) (4)

where Φ(k + 1, k) = ∂ϕ/∂X X(k) = X^(k k) is the Jacobian matrix,
P k k = E x(k k) − x^(k k − 1) x(k k) − x^(k k − 1) ∗ T  is the state
prediction error covariance matrix and can be derived using a first-
order Taylor series expansion of φ X(k), k  about x^(k k − 1).
(2) State Correction: Calculate the Kalman filter gain and update
the state estimate and the estimation error covariance matrix using
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K(k + 1) = P(k + 1 k)H ∗ T(k + 1
) H(k + 1)P(k + 1 k)H ∗ T(k + 1) + R(k) −1 (5)

X^ (k + 1 k + 1) = X^ (k + 1 k) + K(k + 1)
Z(k + 1) − h X^ (k + 1 k), k + 1 (6)

P(k + 1 k + 1) = I − K(k + 1) P(k + 1 k) (7)

where, *represents complex conjugate，T is transpose of matrix,
H(k + 1) = ∂h/∂X X̂(k + 1 k).

3 Square-root-extended complex Kalman filter
The Cholesky decomposition is applied to factorise the error
covariance matrix

P k − 1 k − 1 = S k − 1 k − 1 ST k − 1 k − 1 (8)

where S(k − 1 k − 1) stands for the lower-triangular matrix in (8).
Then, we can rewrite (6) as the following,

P k k − 1 = S
~

k k − 1 S
~ ∗ T k k − 1 (9)

where S
~

k k − 1 = Φ(k, k − 1)S k − 1 k − 1 .Then, substituting the
results obtained in (9) into (6) yields

P k k = I − K(k)H(k) P k k − 1
= P k k − 1 − K(k)H(k)P k k − 1
= P k k − 1 − P k k − 1 H ∗ T(k)

× H(k)P k k − 1 HH(k) + R(k) −1
H(k)P k k − 1

= S
~

k k − 1 S
~ ∗ T k k − 1 − S

~
k k − 1

× S
~ ∗ T k k − 1 H ∗ T(k)

× H(k)S~ k k − 1 S
~ ∗ T k k − 1 H ∗ T(k) + R(k)

−1

× H(k)S~ k k − 1 S
~ ∗ T k k − 1

(10)

so we have,

P k k = S
~

k k − 1 I − Fk Fk
∗ TFk + R(k) −1

S
~ ∗ T k k − 1

= S
~

k k − 1 I − αkFkFk
∗ T S

~ ∗ T k k − 1
(11)

where FK = S
~

k k − 1 H ∗ T(k), αk = Fk
∗ TFk + R(k) −1

.
In order to simplify (11), we suppose that,

I − αkFkFk
∗ T = I − αkγkFkFk

∗ T I − αkγkFkFk
∗ T ∗ T

= I − 2αkγkFkFk
∗ T + αk

2γk
2FkFk

∗ TΦkFk
∗ T

= I − αkFk 2γkFk
∗ T − αkγk

2Fk
∗ TFk Fk

∗ T

(12)

To satisfy the equation, comparing value of two sides of (12), we
have the following equation

2γkFk
∗ T − αkγk

2Fk
∗ TFk = 1 (13)

Solving the equation, we have,

γk = 1 ± αkR(k)
1 − αkR(k) (14)

and then,

P k k = S
~

k k S
~ ∗ T k k (15)

where S
~

k k = S
~

k k − 1 I − αkγkFkFk
∗ T .

So, SRECKF can be summarised as follows,

X k k = X(k − 1 k − 1) + K(k)
z(k) − H(k)Φ(k, k − 1)X k k − 1 (16)

K(k) = αkS
~

k k − 1 Fk (17)

Fk = S
~ ∗ T k k − 1 H ∗ T(k) (18)

αk = Fk
∗ TFk + R(k) −1 (19)

S
~

k k − 1 = Φ(k, k − 1)S~ k k − 1 (20)

S
~

k k − 1 = S
~

k k − 1 I − αkγkFkFk
∗ T (21)

γk = 1 ± αkR(k)
1 − αkR(k) (22)

4 Symmetrical components and system
modelling
Considering a set of three-phase voltage signal
u(k) = [ua(k), ub(k), uc(k)]T associated with a three-phase set of
measurements. We make no assumption on these signals as they
can be unbalanced and/or carry other kinds of distortions such as
harmonic pollution and noise. We particularly assume that u(k) has
a fundamental component

ua(k) = 2Vasin ωkT + φa

ub(k) = 2Vbsin ωkT + φb

uc(k) = 2Vcsin ωkT + φc

(23)

which comprises three symmetrical components as
u(k) = up(k) + un(k) + u0(k), in which k is sampling time, T is
sampling period, up(k), un(k), u0(k) are positive sequence, negative
sequence, and zero sequence, respectively, and in which

up(k) =

Vpsin(ωkT + ϕ+)
Vpsin(ωkT + ϕ+ − 2

3 π)

Vpsin(ωkT + ϕ+ + 2
3 π)

(24)

un(k) =

Vnsin(ωkT + ϕ−)

Vnsin(ωkT + ϕ− + 2
3 π)

Vnsin(ωkT + ϕ− − 2
3 π)

(25)

u0(k) =
V0sin(ωkT + ϕ0)
V0sin(ωkT + ϕ0)
V0sin(ωkT + ϕ0)

(26)

The αβ0 transformation is used to separate zero sequence
components from the abc-phase components. The α and β axes
make no contribution to zero sequence components [16]. Using
αβ0 transformation to transform positive sequence and negative
sequence components in the αβ frame, respectively

uPα

uPβ
= 2

3

1 1
2 − 1

2

0 3
2 − 3

2

Vpsin(ωkT + ϕ+)
Vpsin(ωkT + ϕ+ − 2

3 π)

Vpsin(ωkT + ϕ+ − 2
3 π)

(27)
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unα

unβ
= 2

3

1 1
2 − 1

2

0 3
2 − 3

2

Vnsin(ωkT + ϕ+)
Vnsin(ωkT + ϕ+ + 2

3 π)

Vnsin(ωkT + ϕ+ − 2
3 π)

(28)

where upα and upβ are positive components in the αβ reference
frame, unα and unβ are negative components in the αβ reference
frame. Instantaneous voltage vector is defined from the
instantaneous α- and β-voltage components, that is,

u1(k) = upα + jupβ = Ap e jωkT (29)

u2(k) = unα + junβ = An e− jωkT (30)

Define new vector, that is,

u = u1(k) + u2(k) = Ap e jωkT + An e− jωkT (31)

we chose x1(k) = e jωT = cos(ωT) + jsin(ωT), x2(k) = Ap e jωkT,
x3(k) = An e− jωkT as state variable of three-phase voltage system,
and the state equation of the system can be written as

x1(k + 1)
x2(k + 1)
x3(k + 1)

=

1 0 0
0 x1(k) 0

0 0 1
x1(k)

x1(k)
x2(k)
x3(k)

(32)

the measurement equation is

y == 0 1 1 0 x2(k) x3(k) T (33)

5 Symmetrical components estimation
The system model described by (32) and (33) can be expressed
with the following non-linear equation

x(k + 1) = φ(x(k))
y = h x(k), k

(34)

where

X(k) = x1(k) x2(k) x3(k) T (35)

φ(x(k)) = x1(k) x1(k)x2(k) x3(k)/x1(k) T (36)

y = x2(k) + x3(k) (37)

Equation (36) is linearised, and we have,

Φ(k + 1, k) = ∂ϕ
∂X X(k) = X^(k k) =

1 0 0
x2(k) x1(k) 0

− x3(k)
x1

2(k) 0 1
x1(k)

(38)

H(k + 1) = ∂h
∂X X^(k + 1 k) =

0
1
1

(39)

Then, the state variable x can be estimated directly using the
SRECKF expressed by (18)∼(24). In order to get the symmetrical
components, αβ inverse transformation is used. Defining upa, upb,
upc as phase a, b, and c positive sequence components, respectively,
una, unb, unc as phase a, b, and c negative sequence components,
respectively, so we have the following results

upa(k)
upb(k)
upc(k)

= 2
3

1 0
− 1

2
3

2

− 1
2 − 3

2

upα(k)
upβ(k)

= 2
3

1 0
− 1

2
3

2

− 1
2 − 3

2

Re(x2(k))
Im(x2(k))

(40)

una(k)
unb(k)
unc(k)

= 2
3

1 0
− 1

2
3

2

− 1
2 − 3

2

unα(k)
unβ(k)

= 2
3

1 0
− 1

2
3

2

− 1
2 − 3

2

Re(x3(k))
Im(x3(k))

(41)

If the frequency of the system is needed to estimate, the variable x1
is converted appropriately, and the estimated frequency can be
expressed as follows

f = sin−1 Im(x1(k))
2πT = cos−1 Re(x1(k))

2πT (42)

6 Simulation results
In order to verify the effectiveness of the method presented here,
three-phase voltages with positive sequence, negative sequence,
and zero sequence is used to describe the method presented here,
where the value of the positive sequence, negative sequence, and
zero sequence voltage are 1.0, 0.4, and 0.2, respectively, and their
phases are φ+ = π /3 φ− = π /6, φ0 = 0, respectively, the sampling
period T = 0.0001 s. The three-phase voltage can be given as
follows,

ua(k) = Vpsin(ωkT + φ+) + Vnsin(ωkT + φ−) + V0sin(ωkT + φ0)

ub(k) = Vpsin ωkT + φ+ − 2
3π + Vnsin ωkT + φ− + 2

3π

+V0sin(ωkT + φ0)

uc(k) = Vpsin ωkT + φ+ + 2
3π + Vnsin ωkT + φ− − 2

3π

+V0sin(ωkT + φ0)

where, Vp = 1, Vn = 0.4, V0 = 0.2.
The traditional extended complex Kalman filter (ECKF) and

SRECKF are used to estimate positive sequence, negative
sequence, and frequency of the three-phase voltage system. The
results of positive and negative sequence estimation of phase a
using ECKF and SRECKF are shown in Figs. 1 and 2, respectively.
The results of positive and negative sequence estimation of phase b
using ECKF and SRECKF are shown in Figs. 3 and 4, respectively.

Fig. 1  Positive symmetrical components of Phase a
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The results of positive and negative sequence estimation of phase c
using ECKF and SRECKF are shown in Figs. 5 and 6, respectively.
The results of frequency estimation using ECKF and SRECKF are
shown in Fig. 7. The results of positive and negative sequence
estimation of phase a using ECKF and SRECKF are shown in
Figs. 1 and 2, respectively. Comparing the estimation results of
phase a shown in Figs. 1–6 using ECKF and SRECKF, we can find
that there are no significant difference between the results of
positive and negative estimation of phase a using ECKF and
SEECKF and the real value. However, there are obvious difference

between the estimation results using ECKF and their real value for
phases b and c. The estimation results using SRECKF are more
close to real value. For frequency estimation results using ECKF
and SRECKF shown in Fig. 7, the frequency estimated by the
traditional ECKF is fluctuating near the truth value, but it reaches
to the real value quickly using SRECKF. 

The results of positive and negative sequence amplitude
estimation and their minimum mean square error (MMSE) for
phases a, b and c using ECKF are shown in Table 1. The results of
positive and negative sequence amplitude estimation and their
MMSE for phases a, b and c using SRECKF are shown in Table 2.
Table 3 summarises the comparisons of the frequency estimation
results and MMSE using the ECKF, SRECKF, MMSE is 0.0025
using SRECKF to estimate system frequency, and it is 0.0227
using ECKF to estimate system frequency, so the SRECKF
presented here is superior to ECKF on estimation accuracy. 

7 Conclusion
Here, we propose a square-root-extended complex Kalman filter to
estimate symmetrical components of three-phase voltage system.
In order to improving numerical stability of the traditional ECKF
due to propagation of round-off errors, the Cholesky
decomposition is applied to factorise the error covariance matrix,
and a new iterated SRECKF algorithm is proposed. In order to
separate zero sequence components from the abc-phase
components, αβ transformation is used to map three-phase
instantaneous voltages in the abc phases into instantaneous
voltages on the αβ axes, and a non-linear state equation and
observation equation of the three-phase voltages are built by
introducing a complex vector and defining state variables. Positive
symmetrical component, negative symmetrical components and
frequency of the three-phase voltages are estimated using
traditional extended complex Kalman filter and the method
proposed here, the estimation results show that the method
proposed here is superior to traditional extended complex Kalman
filter on estimation accuracy and convergence rate.

Fig. 2  Negative symmetrical component of Phase a
 

Fig. 3  Positive symmetrical components of phase b
 

Fig. 4  Negative symmetrical component of phase b
 

Fig. 5  Positive symmetrical components of phase c
 

Fig. 6  Negative symmetrical component of phase c
 

Fig. 7  Frequency estimation
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Table 1 Amplitude estimations by ECKF
Parameters Vpa Vna Vpb Vnb Vpc Vnc
true value 1.0 0.4 1.0 0.4 1.0 0.4
ECKF 1.0014 0.4146 1.1055 0.3015 0.8524 0.5145
MMSE 5.8×10−4 0.0023 0.0202 0.0194 0.0288 0.0221

 

Table 2 Amplitude estimations by SRECKF
Parameters Vpa Vna Vpb Vnb Vpc Vnc
true value 1.0 0.4 1.0 0.4 1.0 0.4
SRECKF 1.0198 0.3936 1.0295 0.3936 1.0063 0.3956
MMSE 0.0037 0.0032 0.0062 0.0027 0.0032 0.0014

 

Table 3 Frequency estimations and its performance
ECKF SRECKF

mean value, Hz 49.6925 50.1092
MMSE 0.0277 0.0025
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