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Abstract: Islanding operation will harm the safety and stability of the power system, in the occurrence of island operation which
must be in the specified time to monitor it. Here, the logical regression algorithm is introduced into the islanding operation
monitoring. First, an accurate distributed generation system model is established in Matlab environment. The model considers
various possible island operating states, minimum monitorable area, multiple distributed power supplies, various operating
conditions, and different network topologies, and then uses. The data feature quantity under various island operating conditions
is trained in the TensorFlow environment. Finally, the trained model is used to monitor the islanding status. The results show the

feasibility of the method.

1 Introduction

Distributed Generation (DG) has become an important type of
electric power. It is significant to cope with global warming and
promote sustainable development of economy. The Electric Power
System (EPS) integrates various forms of DG, Increase
transmission and distribution system transmission margin, improve
system reliability. As such integration also raises some problems,
the intermittent nature of renewable energy and its volatility pose
many difficulties in the operation, control and protection of power
grids. Island operation is one of them.

Islanding occurs when a DG with partial load is disconnected
from the main grid, and DG continues to supply power to the
isolated power system. The resulting isolated system is an isolated
island. Due to the volatility of DG output, DG alone power supply
system may endanger the safety of related equipment in the system.
As a general rule, once an islanding operation is detected, it is
required to immediately suspend power supply to the power system
by the DG. Therefore, it is required that DGs have the function of
islanding detection [1, 2].

At present islanding detection technology can be divided into
three categories, namely, passive, active, based on the
communication method [3, 4]. Communication-based methods are
not as good as the other two in terms of reliability and cost, so the
currently widely used islanding detection methods focus on passive
or active detection. This paper studies a passive islanding detection
method. Passive method is to determine whether there is an island
by detecting whether the output of the inverter is abnormal when
the distributed power supply is in an island running state. The
relevant parameters for judging include terminal voltage,
frequency, phase, and so on. In passive island detection methods,
the more widely used voltage frequency detection method and the
key rate of change of electricity detection method. Distributed
power is in island operation, and the rate of change of power
parameters such as power and frequency that are sensitive to
system changes that will increase. It can be judged whether the
system is in or out by detecting whether the amplitude or rate of
change of these parameters exceeds the limit island running status
[5]. The main problem of islanding detection and protection is that
the threshold setting of various detection methods lacks a definite
setting formula and mainly relies on the experience of experts,
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which makes the detection methods often have undetectable areas,
that is, dead zones.

In recent years, some scholars have introduced the idea of
machine-learning into the study of islanding threshold setting. The
classification algorithm in machine-learning can be used to
determine whether the system is in an isolated state and set a
reasonable detection threshold. For example, [6] applied decision
tree algorithm to islanding detection and detection threshold
setting. Literature [7] verified the validity of C4.5 algorithm in
islanding detection. By means of machine-learning, regression
detection algorithm is used to allocate the detection weight of each
detection variable value, to reduce the undetectable area that may
be generated using a single variable detection and to increase the
redundancy of the detection threshold.

Classification task is a kind of supervised learning problem, in
which the output information is discrete classification, that is,
given the input system parameters and whether the parameter is
islanding or not, classification output is one of the mutually
exclusive categories of the problem. Here, the output is islanding
and non-islanding. The purpose of a classification task is to
discover some form of relationship between input system
parameters and output classes so that knowledge of the discovery
can be used to estimate whether the system is operating with
islanding.

Logistic Regression (LR) can be said to be the most widely
used machine-learning [8] binary classification algorithm in the
internet field. This algorithm has clear principle, simple code
implementation, good classification effect, and strong universality.
However, no research has been done in the field of power system
islanding detection. If the LR algorithm can be introduced into
island state detection, it can provide a new way for islanding
detection.

Here, we first set up a distributed generation model, and set up
the islanding event according to the possible state of the islanding
and the non-islanding fault that may affect the islanding detection.
Second, we select the feature quantity that has a high correlation
with the islanding detection target based on the set of island
operation events, the simulation data were obtained under different
island operation conditions and the corresponding feature
quantities were extracted. Then, the gradient regression method
was used to train the logistic regression model under the
environment of TensorFlow (TF). Finally, it is concluded that the
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Fig. 1 Dypical DG topology

Fig. 2 Predict function image curve

islanding detection method based on logistic regression described
has high accuracy and certain generalisation ability. Here, we
introduce the deep learning framework of TF to introduce deep
learning into the field of power system protection. For more
complex problems, this method can be continuously improved and
will have a broader application prospect in the future.

2 Distributed generation model established

Logistic regression method is a typical data mining classification
algorithm. To train the logic regression classifier, a series of data of
power system operation, including the data of the island state and
the data of the non-island state, need to be obtained. These two
types of data in combination with the state tags are used for
classifier training.

Shown in Fig. 1 is a typical distributed generation system.
Using Simulink tools in Matlab simulation software to establish the
power system simulation model, as shown in Fig. 1, the distributed
power DRI is the target power supply. The model equates EPS to
infinity power. System island operation state is divided into, single
island and global island, two kinds of island forms: target DG
feeder on single or multiple nodes off, then the target DG into the
island running state, for example, the circuit breaker cb-DR1 is
disconnected, the DR1 and period load brought into island
operation; circuit breaker cb1 open end, then the entire distributed
generation system into the global island operation.

To be able to train the classifier as comprehensively as possible,
you need to pick as many running events as possible to get the
data. At the same time, the selected events can be used to
characterise the various operating states that may occur on the
islanding system. During the island event setup, set the event
generator to generate 72 events. The 50% (36) of these incidents
are island incidents and the other 50% are non-island incidents.
These 72 events were generated by a combination of eight possible
events under nine network operating loads. The eight events are:
(1) cbl off; (2) cb3 off; (3) cb-DR2 off; (4) cb-DR3 off; (5) three
phase faults on the PCC-LV bus consisting of cbl, cb3 and cb4
isolation clear; (6) TL1 ground fault occurs and the three phase
fault on line TL1 is cleared by disconnecting TL1 from both sides;
(7) ground fault of load circuit L3 cleared by cb-L3; (8) cb4 off.
The nine operating loads are: Normal EPS (Power System) Load,
Minimum EPS Load, Maximum EPS Load, Normal DG Load,
Minimum DG Load, Maximum DG Load, Nominal DRI
Generation (85%), Minimum DR1 Generation (50%). The largest
DRI generation (100%). Incidents 1, 2, 5, and 6 are island events,
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while incidents 3, 4, 7, 8 are non-island incidents. These events are
used to generate islanding feature information on the cb-DR1 (DRI
circuit breaker).

At the same time, it is assumed in the simulation event that the
protective devices at the circuit breakers cbl, cb2, cb3, cb4 and cb-
L3 are ideal instantanecous components and that the proposed
method assumes that the protective devices have worked well
together. Therefore, the order of disconnection between protective
devices is not part of the methodological study here.

3 Method selection
3.1 Classification of island features

System parameters can include all sensitive system metrics that are
affected by the islanding operation and can be measured locally.
According to the characteristics of data sensitive to the island
condition proposed in [5], the following four system parameters are
selected to model the proposed method. The selected system
parameters, the corresponding pattern vectors, and the data model
in the database are given by the following mathematical

expressions:
= (20,20

{Xi,y),i=1,2,...,N} 2)

among them, i — event number, N — The total number of incidents,
X; — the ith pattern of the incident vector, f; — The frequency of the
ith event, V; — The voltage change of the ith event, (A f/Af); — The
rate of change in frequency of the ith event, (AP/Af); — The rate of
change of the voltage of the ith event, y,y,, ys; ...V ...y, is a
variable corresponding to each type of event. The possible output
can be defined as a set {¢y, ¢;}, such as a y; = ¢, = 0 non-islanding
state and y; = ¢, = 1 an islanding state.

In its general form, it is a schema database that contains the
entire data model for all events and gets the values from the set of
dimension real numbers. Its system parameters (or features) can be
represented by the following expressions:

X = {X1,X2,X3, X4} 3)
among them,
X1={X(1),i=12,... N} 4)
X2 ={X2),i=12,...N} (5)
X3 ={X(3).i=12,...N} (6)
X4 = {X4),i=1,2,...,N} 7

3.2 Logistic regression classification algorithm

There are only two of our outputs, O or 1, that correspond to the
non-island state 0 and the island state 1 in the islanding detection
system.

|0 g <05

1 g(2>0.5 ®)

Therefore, the prediction function g(z), we use Sigmoid function,
the function is:

8() = (€))

1+e*

The corresponding function image is an S-curve with a value
between 0 and 1, as shown in Fig. 2.

For the case of a linear boundary, the boundary function can be
constructed as follows:
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O+ O + 0,5, = Y O =0'x (10)
i=0

n represents the number of selected features.
Construct the prediction function as:

1

e ay

ho(x) = (0" x) =

hg(x) The value of the function represents the probability that the
result is 1, and the probability of the system is in islanding
operation. Therefore, the result of classification for x can be
expressed by the following formula.

P(y|x;0) = (hp(x))’(1 = hy(x))' ™ (12)

Take the likelihood function as:

L) = [[Po*|x";0)
. (13)
= T o> (1 = gty ="
Log likelihood function is:
1(0) = log L(0)
(14)

= ) ("log hg(x®) + (1 — y)log(1 — hy(x "))

i=1

The classifier parameters make the log-likelihood function reach
the maximum, then 6 is the best parameter.

6 is to obtain that this paper uses the gradient descent method,
the construction criteria function is as follows.

J©O) = - %1(6) (15)

According to the gradient descent method available 6 update
process:

0,:= 0, aa%jJ(a), (j = 0-n) (16)

a for the learning step, seeking partial derivative for the learning
step, seeking partial derivative

0 1 ¢ i NN
35/ = %Zl (o) = y )" an
Therefore, (16) can be written as
1 ¢ ' iy G
0;:=0;— a— 3" (hy(x) =y (18)
=1

Bringing the obtained  back into the predictive function g(z), the
classification model is trained.

4 Example analysis

According to the islanding events set in Chapter 2, the
corresponding settings are made on MATLAB. The distributed
power DR1 is simulated for 72 times and the corresponding set of
72 characteristic data at cb-DR1 are recorded. According to [9],
islanding target, DG trip time should not exceed 0.2 seconds.
Therefore, it is considered that the islanding condition detection
event should be completed within 0.2 s, so the data recording time
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of 0.15 s is selected. The sampling rate of change rate data is set to
eight cycles, that is, 0.8 ms.

72 sets of data, see the schedule, of which the first 56 sets of
data as training data see Schedule 1, the latter 16 sets of data as
validation data in Schedule 2.

The 56 groups of data are classified and aggregated, the
horizontal axis is the event number, the vertical axis is the
eigenvalue of each data, and the data are processed by per
unitisation, wherein 1-14 and 29-42 groups of events are island
events and others are non-island events shows in Fig. 3.

It can be seen that the frequency change and frequency change
rate of the non-islanding events in group 19 are very close to those
of islanding events, respectively, and the islanding thresholds are
not well handled and easily misjudged.

In the TF environment, 56 sets of training data are used to train
the logistic regression classifier. It can be seen from the simulation
results that the voltage does not change much in the isolated island
and non-isolated island. Therefore,

X; = {fﬁ Vi (%)f (%)'}

is chosen as the modelling parameter, i=56; n=3; the selected
training step a=0.001, the number of iterations m = 10,000 times,
6,=-0.6291306,  6,=0.23079669,  6,=0.47317266, 0=
1.27615726. Incident event data characteristic value is
x=x +x +x3, after data processing, the predicted function
scatter characteristic diagram is shown in Fig. 4:

As can be seen from Fig. 4, some non-island operation data g(z)
output > 0.5, it cannot be effectively classified. Increase the number
of iterations m = 20,000, have 6,=-1.23738182, 0,=0.43590146,
6,=0.86694384, 0;=2.03876638, after the data are processed to
predict the function scatter characteristics shown in Fig. 5:

It can be seen from Fig. 5 that all of g(z) output results <0.5 are
all non-islanding operation events and g(z) output results>0.5 are
all island operation events.

Fourteen sets of validation data were categorised using trained
prediction functions (seven non-island cases and seven island
cases).

The predicted results of the 14 sets of test data are shown in
Fig. 6.

The results of the test are shown in the following Tables 1-3.
The results are as follows: The accuracy of the proposed method
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Table 1 Performance of logistic regression

Classifier The total The correct Correct
number of number of rate
incidents categories

logistic 16 16 100%

regression

for classification of existing data is 100% for both non-island case
and island case, and has good generalisation ability.

However, this result does not prove that the proposed method
has no shortcomings. First of all, although this paper tries to
simulate a variety of islanding and non-islanding events possibly
occurring in the system as far as possible, the total amount of
islanding events set is limited after all. At the same time,
distributed power only considers the synchronisation. The power
supply of the generator, without regard to the grid-connected DG
via the inverter, poses a certain challenge to the validity of the
method if the grid structure is more complicated and the operation
status is more diversified.

To deal with the more complex operating environment, we can
improve from two aspects. One is that we can choose more kinds
of feature data, allocate the weight of each feature data reasonably,
improve the prediction ability and increase the threshold
redundancy. Second, when more data features based on the
introduction of the theory of deep learning into the prediction
model to improve the model's ability to regress complex non-linear
data characteristics.

5 Conclusion

Based on the idea of machine-learning, this paper introduces the
logic regression algorithm into the islanding detection, and trains a
prediction function using the feature data under the TF
environment. The prediction function is used to detect whether the
islanding occurs or not, and good results have been obtained. The
advantage of using the proposed method is that based on the
inherent professional knowledge, the idea of machine-learning can
automatically mine the logic behind the events and reasonably
distribute the weight indexes of different characteristic data so as to
improve the redundancy of system island detection thresholds
redundancy, and as the amount of data increases, the accuracy of
monitoring can be predictably enhanced. At the same time, this
paper introduces the TF environment into the field of power system
processing, and uses its built-in data processing module to improve
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Table 2 Training data for logistic regression
Serial number f/Hz (df/dt)/(Hz/s) (dP/dt)/(MW/ Island status

s)
1 0.210  0.00967 5097 1
2 0.2192  0.00975 4965 1
3 0.2593  0.00996 7332 1
4 0.2577  0.00994 5030 1
5 0.282 0.010 8252 1
6 0.280 0.010 9006 1
7 0.271 0.010 9085 1
8 0.224  0.009755 5374 1
9 0.216  0.009645 6204 1
10 0.216  0.009737 8909 1
1 0.222  0.009745 5696 1
12 0.264 0.01 12662 1
13 0.225  0.00977 5296 1
14 0.201  0.009625 6319 1
15 0.0573 0.003233 463 0
16 0.0563 0.004611 478 0
17 0.0549 0.005608 445 0
18 0.0195 0.001681 437 0
19 0.1993 0.009466 1215 0
20 0.0605 0.004829 466 0
21 0.0591 0.005930 283 0
22 0.0202 0.001697 380 0
23 0.0184 0.001728 380 0
24 0.0285 0.002992 415 0
25 0.0208 0.001648 371 0
26 0.0322 0.002302 366 0
27 0.1324 0.008367 441 0
28 0.0909 0.006389 699 0
29 0.2230 0.009741 5642 1
30 0.2109 0.009649 6206 1
31 0.2018 0.009605 10221 1
32 0.2219 0.009745 5668 1
33 0.2685 0.01 12,687 1
34 0.2039 0.009755 6040 1
35 0.1984 0.009587 7417 1
36 0.2196 0.009795 8400 1
37 0.2202 0.009759 9329 1
38 0.2131 0.009715 12,445 1
39 0.2466 0.009728 8511 1
40 0.2385 0.009902 7461 1
41 0.2594 0.009940 7697 1
42 0.2195 0.009495 8400 1
43 0.0289  0.00226 86 0
44 0.0291 0.002186 93 0
45 0.0516  0.003396 202 0
46 0.0279 0.003319 232 0
47 0.0356 0.003747 240 0
48 0.0341 0.002508 147 0
49 0.0461 0.003090 362 0
50 0.0909 0.007657 550 0
51 0.0828 0.007735 598 0
52 0.0446 0.006643 490 0
53 0.0826 0.007731 534 0
54 0.0755 0.007397 478 0
55 0.1004 0.006796 532 0
56 0.0753 0.007366 1108 0

the modelling and training speed and provide the operating
platform for the application of more sophisticated depth learning
algorithms.

2299

This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



Table 3 Testing data for logistic regression

Serial number flHz (df/dt)/(Hz/s) (dP/dt)/(MW/s) Island status
1 0.277 0.0101 11,753 1
2 0.282 0.01 10,732 1
3 0.198 0.009545 12,104 1
4 0.200 0.009559 6730 1
5 0.0049 0.007063 285 0
6 0.015 0.001399 458 0
7 0.1255 0.008435 869 0
8 0.1886 0.009545 732 0
9 0.1917 0.009515 12,130 1
10 0.1969 0.009531 6663 1
11 0.2132 0.009715 12,445 1
12 0.2137 0.009712 6807 1
13 0.0699 0.004385 485 0
14 0.0245 0.003187 206 0
15 0.1400 0.008314 1508 0
16 0.1546 0.008869 1179 0
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