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Abstract In the event of an accidental or intentional contaminant release in the atmosphere, it is impera-
tive, for managing emergency response, to diagnose the release parameters of the source from measured
data. Reconstruction of the source information exploiting measured data is called an inverse problem. To
solve such a problem, several techniques are currently being developed. The first part of this paper provides
a detailed description of one of them, known as the renormalization method. This technique, proposed by
Issartel (2005), has been derived using an approach different from that of standard inversion methods and
gives a linear solution to the continuous Source Term Estimation (STE) problem. In the second part of this
paper, the discrete counterpart of this method is presented. By using matrix notation, common in data
assimilation and suitable for numerical computing, it is shown that the discrete renormalized solution
belongs to a family of well-known inverse solutions (minimum weighted norm solutions), which can be
computed by using the concept of generalized inverse operator. It is shown that, when the weight matrix
satisfies the renormalization condition, this operator satisfies the criteria used in geophysics to define good
inverses. Notably, by means of the Model Resolution Matrix (MRM) formalism, we demonstrate that the
renormalized solution fulfils optimal properties for the localization of single point sources. Throughout the
article, the main concepts are illustrated with data from a wind tunnel experiment conducted at the Envi-
ronmental Flow Research Centre at the University of Surrey, UK.

1. Introduction

In the specific context of emergency situations due to accidental or intentional releases of hazardous CBRN
(Chemical, Biological, Radiological, and Nuclear) substances in the atmosphere, real-time concentrations
and meteorological measurements are used, by authorities, to help to assess risks and to optimize response
actions. Currently, at either local, continental, or global scales, these near-live measurements feed into mod-
els of atmospheric dispersion, to get a clear picture of the situation and provide basics for decisions. But, to
obtain a reliable computation from these various models, a suitable description of the source strength and
location is mandatory: if these source parameters are unreliable all the prediction of dispersion (and thus all
the subsequent emergency response steps and management actions), quickly become questionable. Since,
in most of the cases, an accurate description of the source is not available, source term estimation (STE)
algorithms can be employed. These algorithms use data assimilation techniques to combine measured data
with computer models for the purpose of determining the unknown source parameters. This task is called
the STE inverse problem.

Recently developed assimilation techniques, used to solve the STE inverse problem, have been reviewed by
different authors. Liu and Zhai [2007] divided the methods into three categories, i.e., forward, backward, and
probability inverse modeling methods, and Rao [2007] into two parts, i.e., forward and backward transport
modeling methods. Yee [2012] classifies the source estimation methods as deterministic optimization and
stochastic Bayesian approaches just as Zheng and Chen [2011] who distinguish optimization modeling
methods and probability modeling methods. These latter authors conclude with the observation that ‘‘as
prior information about unknown parameters is lacking, probability modeling methods are insufficient in
emergency situations.’’ In general, fast, safe, and reliable source estimates can be obtained from determinis-
tic methods, associated with either forward or backward dispersion models, with minimum a priori
information.
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In this paper, the deterministic assimilation strategy known as the renormalization method is reviewed and
extended to discrete inverse problems. This approach has been defined by Issartel [2005] to reconstruct
tracer source from air concentration measurements at continental scale only using measured data. It relies
on the networking of several detectors, on the use of adjoint transport equations (inverse modeling meth-
ods) and on the computation of a renormalizing weight function (also referred to as the visibility function).
It returns a continuous source estimate which is linear with respect to the observations and from which the
origin of the contaminant can be appreciated. It has been used for the retrieval of distributed areal emis-
sions at continental scale, from satellite measurements [Issartel et al., 2007]. Sharan et al. [2009, 2012] and
Issartel et al. [2011] extended it for the reconstruction of single ground-level point sources. They test it at
local scale, especially during low wind speed conditions. Recently, Singh et al. [2013] used it for the identifi-
cation of multiple-point sources releasing similar tracer, in which influences from the various emissions are
merged in each detector’s measurement. In the first part of this article, the main results and physical inter-
pretations of these previous works are summarized.

Then, the discrete counterpart of the renormalization method is presented. The linear relationship
between the measured concentration data and the source, represented by an integral equation, is trans-
formed into a system of discrete linear equations. The renormalized source estimate is then derived by
using an appropriate weight matrix. It is shown that this estimate corresponds to a minimum weighted
norm solution which can be expressed by using the concept of generalized inverse operator [Ben-Israel
and Greville, 2003].

Moreover, it is shown that this inverse operator satisfies criteria used in geophysics to define a ‘‘good
inverse’’ [Jackson, 1972] and that it fulfils several optimal properties for the localization of single point sour-
ces. This is demonstrated by using the so-called Model Resolution Matrix (MRM) formalism, initially defined
for discrete geophysical data analysis by Menke [1984] and currently used to evaluate solutions to the neu-
roelectromagnetic inverse problem [Grave de Peralta et al., 2009]. To the best of the authors’ knowledge,
this is the first comprehensive Source Term Estimation study that investigates the properties of a method
relative to the concept of MRM.

Throughout the paper, results computed from a series of dispersion experiments [Rudd et al., 2012] con-
ducted in a meteorological wind tunnel, under neutral condition, are provided for illustrative purposes.
Those data were obtained at the Environmental Flow Research Centre (ENFLO), in the frame of the DYCE
project [Lepley et al., 2011]. In all the trials, a gas mixture of 1.5% propane in air was released as a tracer over
a period of 15 min. The concentrations were measured by four fast-response flame ionization detectors
(FFIDs) at the frequency response of 200 Hz. The height of the sources and of the samplers was 0.1H, where
H is the boundary layer height. Eleven different configurations for the position of the FFIDs were tested
with the same wind speed (UH 5 2.5 m s21) and direction (aligned with the x axis). For a representative pur-
pose, only configurations 2 and 4, see Figure 1, have been used in this paper. The goal is not to analyze the
data set but rather to highlight the optimal reconstruction features of the method.

Figure 1. Arrangement of the EnFlo wind tunnel for the DYCE experiment [Rudd et al., 2012]: source and receptors positions for configura-
tions 2 and 4 (green filled circles and blue filled triangles). For determining the source characteristics, the full computational domain (not
represented here) extends 23H downstream from the actual source location.
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2. The Renormalization Method for Linear Inverse Problems

2.1. Inverse Problem Statement
Reconstruction of the release parameters exploiting data measured by a monitoring network is an inverse
problem, called the Source Term Estimation (STE) problem. Such a problem is necessarily addressed by use
of a model which describes our understanding of the relationship between the concentration measure-
ments, the known parameters of the problem (meteorological data, variables characterizing the atmos-
pheric domain and the receptors…), and the source parameters that we wish to estimate. In the approach
proposed by Issartel [2005], a receptor oriented (also designated as backward) model is used to establish a
mapping between the problem parameters and the measured data. The n actual measured concentrations
are assembled into an observation vector l 2 Rn (bold-face, lower-case letters refer to vectors, and italic
lower-case letters refer to vector components or scalar). The source parameters are represented, in the
domain of interest X, by r(x,t), a function of space x 5 (x,y,z) and time t, named the source function (or
emission function) with an intensity proportional to the release rate.

The known parameters are taken into account through sensitivity functions, or adjoint functions, ri(x,t)
(i 5 1…n), which describe the sensitivity of the ‘‘receptors’’ with respect to the ‘‘emissions’’ in the various
regions of X. Within the Eulerian framework, the functions ri are solutions of adjoint transport equations
and correspond to retroplumes scattered back in time upwind from detector locations [Issartel and Baverel,
2003]. They are obtained from physical modeling (backward dispersion models, see Figure 2) and
assembled into an adjoint vector r(x,t) 2 Rn. In this paper, for a matter of simplicity, the renormalization
technique is presented only for continuous releases and steady flow. For time varying releases, with time
varying functions, the reader is referred to Issartel et al. [2007]. The relationship between the measurements
mi (i 5 1…n), the source, and the sensitivity functions is expressed in a scalar form as:

li5

ð
X

rðxÞriðxÞdx (1)

2.2. Estimate of the Visible Part of the Source
The model (1) involves the scalar product hn; fi5

Ð
X nðxÞfðxÞdx, so that the source term can be decom-

posed as rðxÞ5r?ðxÞ1r==ðxÞ. r?ðxÞ is the source component orthogonal to the adjoint functions,
hr?; rii50, and r==ðxÞ is the parallel component, i.e., the ‘‘visible’’ component, which can be written as a lin-
ear combination of the ri(x)

r==ðxÞ5
XN

i51

ki riðxÞor r==ðxÞ5 kTrðxÞ (2)

in which the superscript T denotes the transposition and where the coefficients ki are the elements of the
vector k 2 Rn obtained as

Figure 2. Steady retroplumes, drawn with four colors, for configuration 2 of DYCE experiment (focus around the source position). The
Gaussian dispersion model proposed by Sharan et al. [1996] in the forward mode is utilized here for the computation of these sensitivity
functions by rotating the wind direction by 180� and assuming an unit release at the FFIDs’ locations [Singh et al., 2013].
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k5H21l (3)

H 2 Rn3n is a positive definite, symmetric, Gram matrix of coefficients Hij5hri; rji (bold-face, capital letters
refer to matrices, italic capital letters refer to matrix elements). By reporting (3) in equation (2), the continu-
ous source estimate is derived as

r==ðxÞ5lTH21rðxÞ (4)

We note that the source estimate given by (4) corresponds with a ‘‘normal solution’’ of an inverse problem
as defined by Bertero et al. [1985].

2.3. An Appropriate Weight Function to Minimize Artificial Information
It has been shown by Issartel et al. [2007] that r==ðxÞ contains artifacts, in the form of peaks corresponding
to a singularity of the adjoint functions associated with the points of measurement. These artifacts are
removed through a process called renormalization, which minimizes the excess entropy corresponding to
the artificial information unduly derived from the measurements. This is addressed by introducing, in the
model, a weight function f ðxÞ > 0 such that

ð
X

f ðxÞdx5n. The relationship between the measurements and
the source function is modified as:

li5

ð
X

rðxÞrf iðxÞf ðxÞdx with rf i xð Þ5 riðxÞ
f ðxÞ (5)

This expression involves a new weighted scalar product hn; fif 5
ð
X

nðxÞfðxÞf ðxÞdx and modified adjoint
functions rf iðxÞ such that

li5hr; rf iif (6)

Following the scheme defined in section 2.2, the estimate of the visible part of the source at position x is
obtained as:

r==f ðxÞ5lTH21
f rf ðxÞ (7)

Hf is the Gram matrix of the modified adjoint functions, with coefficients hrf i; rf jif . Issartel [2005] showed
that a unique weight function f ðxÞ5uðxÞ best avoiding inversion artifacts exists. This function is optimal in
the sense that it minimizes the excess entropy. It satisfies the property as

rT
uðxÞH21

u ruðxÞ � 1 (8)

From a practical point of view, the optimal weight function satisfying equation (8) is easily computed as the
converged value of upðxÞ from the following iterative scheme [Issartel et al., 2007]:

up11ðxÞ 5 upðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT
upðxÞH21

up rupðxÞ
q

with u0ðxÞ51 (9)

This function is currently interpreted as the visibility of the monitoring network characterizing the regions
well or poorly monitored. It is generally focused at the detectors locations and decreases with increasing
downwind distance from the monitoring network. This focus is illustrated by Figure 3 for the DYCE experi-
ment. If the value of the visibility function at a point is nearly zero, a source at that point will be hardly iden-
tified. That is to say, a source is detected with an enhanced probability if it falls in a high visibility region.
Therefore, the visibility function has also been interpreted as the prior distribution of the emissions appa-
rent to the monitoring system [Issartel et al., 2011].

2.4. Best Weight Function for Single Point Source Localization
The weight function uðxÞ plays a key role in the renormalization theory especially when measurements are
assumed to be generated from a single point source of unknown strength q and location x0, i.e., when the
source term may be written as rðxÞ5qd x2x0ð Þ. In this case, Sharan et al. [2009, 2012] and Issartel et al.
[2011] have shown that equation (6) can be written as

li5quðx0Þruiðx0Þ (10)

By applying equation (10) into the equation (7), we obtain
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r==u xð Þ5quðx0ÞrT
uðx0ÞH21

u ru xð Þ (11)

Now, using Cauchy-Schwartz inequality in equation (11), it is elementary to show that with the renormaliz-
ing condition (8), the maximum of the source estimate will coincide with the location of the point source
(since rT

uðx0ÞH21
u ru xð Þ � 1 only when x5x0). Once the source location is identified, the source strength at

source position x0 can be estimated as

q5r==u x0ð Þ=u x0ð Þ (12)

To obtain this estimate, additional information, i.e., information not contained in the measurement vector,
has been added to the problem. Here this ‘‘a priori information’’ quantifies an expectation about the charac-
ter of the source (single point source). This assumption may not be based on the actual data and depends
only on expert’s opinion. Since, in most of the cases, we are not able to identify reasonably a priori assump-
tion, a more general method must be used to construct the source estimate.

3. The Discrete Renormalization Technique

3.1. Discrete Approach
In this part, a discrete approach to obtain a numerical solution of the inverse problem, defined in section
2.1, is presented. In this approach, common in data assimilation, the problem is reduced to determine the
values of the source function on a grid of m points defined within the atmospheric domain. To that, the
continuous source function r(x) is transformed into a source vector, taken as a column, and denoted as
r 2 Rm. Assuming that the integral equation (1) can be represented by a discrete sum, the measurements
are related to the source vector by a system of linear equations:

l5Rr (13)

In this model, the elements of the n lines of the retroplumes matrix R 2 Rn3m correspond to the m discrete
values of the n adjoint functions (retroplumes) obtained from physical modeling. This matrix is easily com-
puted from analytical or numerical solutions of backward dispersion models as illustrated in Figure 2.

The estimation of the source from (1) is an ill-posed problem in the sense of Hadamard [1923]. As a conse-
quence, the discrete problem (13) is highly underdetermined with m, the number of unknown components

Figure 3. Classical black and white logarithmic representations of the visibility function uðxÞ for configurations 2 and 4. u decays upwind of
the monitoring network and becomes negligibly small after approximately X/H 5 21 and X/H 5 20.5, respectively, for configurations 2 and 4.
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of the source vector, always larger than n, the number of available concentration measurements. The under-
determination of (13) naturally implies the nonuniqueness of the inverse solution.

3.2. The Minimum Norm Solution (MNS) and the Moore-Penrose Inverse
Assuming, as proposed in section 2.2, that the source vector can be decomposed into two terms perpendic-
ular to each other, r5r?1r== with

r==5RTk and Rr?50 (14)

then the linear system (13) becomes

l5Rðr?1r==Þ5RRTk5Hk (15)

H5RRTis the Gram matrix already defined for the continuous inverse problem. Substitution of k, as
described in (3), into (15) yields the following expression for the ‘‘visible’’ part of the source

r==5RTH21l5RT RRT� �21
l5R1l (16)

The matrix RTH21 2 Rm3n, or RT RRT
� �21

, corresponds with the standard definition for the Moore-Penrose
pseudoinverse of the matrix R usually denoted as R1 [Penrose, 1955]. For a given R, this matrix is unique
and verifies the four Penrose equations:

ðaÞRR1R5R ðbÞR1RR15R1ðcÞðRR1ÞT5RR1ðdÞðR1RÞT5R1R (17)

One of the principal applications of pseudoinverses is to compute Least Squares Solutions (LSS) of underde-
termined systems of linear equations [Lewis et al., 2006]. The LSS of (13), i.e., r which minimizes kl2Rrk,
where k � k denotes the Euclidean norm, is not unique (underdetermination of the system). Every LSS is
obtained as:

r5R1l1ðIm2R1RÞs (18)

where s is an arbitrary vector of Rm and Im is the unit matrix of size m. It is obvious that r==5R1l also mini-
mizes krk among all the solutions given by (18). It can be concluded that the source estimate r== given by
equation (16) corresponds to the Minimum Norm (MN) solution of the system l5Rr.

3.3. The Model Resolution Formalism
Equation (16) gives the discrete counterpart of the nonrenormalized source estimate (4). The inverse
operator in it, R1, is called the Moore-Penrose pseudoinverse. Several criteria can be used to measure the
quality of an inverse operator: ‘‘an operator will be a good inverse’’ if it satisfies (i) RR1~In, (ii) R1R~Im,
and if (iii) ‘‘the uncertainties in the estimate are not too large, i.e., its variance is small’’ [Jackson, 1972]. The
first criterion ensures, in case of noiseless data, that the measurements predicted with the source esti-
mate (l̂5Rr==5RR1l) correspond with the true measurements. The second one ensures that the solu-
tion is as close to unique as possible. Indeed, from equation (18), it is easily seen that if R1R were equal to
the identity matrix (which cannot occur in underdetermined inverse problems), we would have a unique
estimate of the actual source. The third criterion, studied in section 3.7, is used to measure the stability of
the solution, i.e., the variation of the estimate as the measurements vary within their measurements
errors. It is obvious, from the definition of the Gram Matrix H, that in the particular case of the minimum
norm solution (16), the first criterion is exactly verified (RR15RRTH215HH215In). From a physical point
of view, the second criterion is the most important: the matrix P5R1R 2 Rm3m depends on R and then
includes all the substantial information used to define the inverse solution. It is an orthogonal projection
matrix

ðaÞPT5P ðbÞP25P ðcÞ trðPÞ5rank ðRÞ5n (19)

P constitutes the basic tool for the analysis of the quality of the estimated solution on each grid point and
is often referred to as the Model Resolution Matrix (MRM) [Menke, 1984]. Substitution of the measurement
vector, as described in (13), into (16) yields the following equation:

Journal of Advances in Modeling Earth Systems 10.1002/2014MS000385

TURBELIN ET AL. VC 2014. The Authors. 1249



r==5RTH21Rr5R1Rr5Pr (20)

This equation, fundamental for
underdetermined linear systems,
describes the relationship between
the estimate and the true-original
source vector. It shows that ‘‘our esti-
mates separate from the original val-
ues by the transformation P’’ [Grave
de Peralta et al., 2009]. The rows of P
are ‘‘windows’’ through which the real
solution is viewed: the matrix product
of the kth row of P and r gives the

kth element of r==, denoted as rk
==. A row of a MRM is known as a resolution kernel. It provides information

on how other components of r affect the reconstruction of the component associated to the row. An opti-
mal resolution kernel exhibits a narrow peak near the main diagonal of the matrix, see Figure 4. In this case,
rk
== is obtained as a weighted sum of the nearby values rj of the true source vector with j near k. From the

criterion proposed by Menke [1984], a resolution matrix with its largest elements near the main diagonal,
i.e., a MRM close to an identity matrix, indicates that all the components of the true source can be inde-
pendently identified.

Some authors [Grave de Peralta et al., 2009] prefer to center their attention on the columns of the matrix,
also called the point spread functions (PSFs). Indeed, if the maximum value of the columns coincides with
their diagonal element, the estimate shows optimal properties for single point source localization. By writ-
ing the j columns of P as vectors pj (j 5 1…m), the estimate can be written as

r==5p1r11 � � �1pjrk1 � � �1pmrm (21)

Thus, r== can be thought of as a weighted sum of the columns of P, the weighting factors being the j com-
ponents of the true source. For a single emission at the kth point of the domain, the source estimate is
r==5pjrk . If pk exhibits a narrow peak at the main diagonal then the maximum component of the estimate
corresponds to the location of the point source.

It can be concluded that an optimal MRM is a matrix close to an identity matrix, i.e., a symmetric matrix
with columns (or rows) having a single sharp maximum centered about the main diagonal. Optimal rows
indicate that each component of the true source is estimated independently of each other’s. Optimal col-
umns indicate that the location of all single point sources can be identified. Menke [1984] demonstrated
that the Moore-Penrose pseudoinverse, used to define the minimum norm solution (16), is optimal in the
sense that it minimizes the Dirichlet spread function, i.e., the difference between P and Im in the least
squares sense (spreadðPÞ5

Pm
i51

Pm
j51 ðPij2IijÞ2). However, the maxima for each row (or column, since P is

symmetric) are at the main diagonal only for points located very close to the receptors. Otherwise, the col-
umns are peaked at points far from the actual source point. Thus, the minimum norm solution tends to
force the solution as close as possible to the detectors’ locations. This ‘‘bias’’ can be removed by a suitable
weighting which causes the enhancement of some of the elements in P.

3.4. The Minimum Weighted Norm Solution and the Weighted Generalized Inverse
Let the matrix Wf 5diagðf1; f2;…; fmÞ 2 Rm3m be a diagonal weight matrix with components corresponding
to the m discrete values of a weight function f ðxÞ > 0. The following change of variable can be applied to
(13) leading to the following counterpart of equation (5):

l5RW21
f Wf r5Rf Wf r (22)

where Rf 5RW21
f is the modified retroplumes matrix. It can be verified that the weighted Gram matrix

used in equation (7), can be written as

Hf 5Rf Wf R
T
f (23)

and that the ‘‘visible’’ part of the source, parallel to the adjoint function, is now represented as

Figure 4. Plot of an ideal row of a MRM, adapted from Menke [1984].
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r==f 5RT
f H21

f l (24)

This estimate is the discrete counterpart of the estimate given by equation (7). If Hf is rewritten as
Hf 5RW21

f RT, equation (24) becomes

r==f 5W21
f RT RW21

f RT� �21
l (25)

The matrix Rf 15RT
f H21

f 5W21
f RT RW21

f RT
� �21 2 Rm3n is referred to as the weighted pseudoinverse [Naka-

mura, 1991] or weighted generalized inverse [Ben-Israel and Greville, 2003] of R. It verifies only three of the
four Penrose equations (17)

ðaÞRRf 1R5R ðbÞRf 1RRf 15Rf 1ðcÞðRRf 1ÞT5RRf 1 (26)

but, instead of (d), it satisfies:

ðd0ÞðWf R
f 1RÞT5Wf R

f 1R (27)

As a consequence of (27), Rf 1 is also known as a Wf weighted Moore-Penrose inverse, denoted by some
authors as R1

Wf
[Yang and Li, 2008].

Moreover, the two Hermitian positive definite matrices Wf 2 Rm3m and H21
f 2 Rn3n can be used to define

weighted vector norms. Given two vectors n 2 Rm and f 2 Rn, the Wf -weighted and H21
f -weighted vector

norms are, respectively, defined as

knkwf
5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nTwf n

q
5kw1=2

f nk and kfkH21
f

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTH21

f f
q

5kH21=2
f fk (28)

where k:k is the Euclidian norm. It is easily seen that the problem

minimize krkwf
subject to l5Rr (29)

has the unique minimizer given by equation (25) with the minimum value

kr==fkwf
5kRf 1lkwf

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lTH21

f l
q

5klkH21
f

(30)

It can be concluded that the estimate given by equation (25) corresponds to the minimal Wf -weighted
norm solution of the system l5Rr. It seems reasonable to use it as a source estimator since, in data inter-
pretation, it attributes no possible role to r?f about which nothing is known. But this raises the issue of
determining a ‘‘best’’ weight matrix.

3.5. Optimal Weight Matrix for Single Point Source Localization
By substituting (22) in place of l in expression (24), the relationship between r==f and r is obtained as

r==f 5RT
f H21

f Rf Wf r5Pf r (31)

As explained in section 3.3, the nonsymmetric matrix Pf 5RT
f H21

f R5Rf 1R 2 Rm3m is a Model Resolution
Matrix. By writing the j columns of the matrices R and Rf as vectors, respectively, denoted as rj and rf j5f 21

j

rj (j 5 1…m) 2 Rn, the components of Pf can be written as

Pf
ij5rf i

TH21
f rj5fjrf i

TH21
f rf j (32)

If the elements of Wf are chosen as the H21
f 2weighted norm of each column of R

fj5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rj

TH21
f rj

q
for j51…m (33)

then the diagonal elements of Pf are equal to the components of the weight matrix, i.e.,

Pf
jj5fjrf j

TH21
f rf j5fj (34)

Since Pf is a projection matrix, we have
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TrðPf Þ5
Xm

j51
fj5rankðRÞ5n (35)

We note that the conditions (33) or (34) can be rewritten as

rf j
TH21

f rf j51 for j51…m (36)

which corresponds to the renormalization condition for discrete inverse problems. The weights fj5uj sub-
ject to this condition are called the renormalizing weights and are the m discrete values of the weight func-
tion u(x) defined by equation (8). By using those weights as components of the matrix Wu, the j columns of
the MRM Pu, written as vectors p

u
j (j 5 1…m), are:

p
u
j 5uj

rT
u1H21

u ruj

�

1

�

rT
umH21

u ruj

0
BBBBBBBB@

1
CCCCCCCCA

(37)

Since the Cauchy-Schwartz inequality yields

jrT
uiH

21
u rujj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT
uiH

21
u rui

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT
ujH

21
u ruj

q
(38)

from (36) we obtain:

jrT
uiH

21
u rujj � 1 for all i and j51…m (39)

With the renormalization condition (36), the columns of the resolution matrix Pu reach their maximum
exactly at the main diagonal. This matrix is then close to an optimal resolution matrix described in section
3.3. In case of a single point source with an intensity q at the kth point of the domain, the source estimate
will be

r==u5p
u
k q5RT

uH21
u rkq (40)

As a consequence, the maximum component of this vector, rk
==u5ukq, will correspond to the location of

the actual point source, as illustrated in Figure 5 for the dispersion experiment. In this case, the maximum
value of the vector r==u=uk , i.e., rk

==u=uk, will be taken as the source intensity. It can be concluded that the
discrete renormalization technique is able to give a reliable estimate of the intensity and localization of any
single point source. This good feature is due to the discrete renormalization condition (36) which confers
optimal properties to the columns of the model resolution matrix.

3.6. Further Interpretations of the Method
The physical interpretation of the renormalizing weight function uðxÞ as a visibility function has already
been discussed in section 2.3. The value of this function at a given point, which constitutes the diagonal ele-
ment of both matrices Wu and Pu, quantifies the sensitivity of the receptors’ configuration on a source
located at this specific position. It decreases in the upwind direction and points out the lack of visibility for
the most distant sources. By using equations (23) and (36), it can be easily verified that

kpu
kkwu

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

uT
k Wup

u
k

q
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT

k H21
u rk

q
5Pu

kk5uk (41)

Thus, the norm of the estimate (40) is

kr==ukwu
5qkpu

kkwu
5quk and uk5

kr==ukwu

q
(42)

This feature highlights another physical interpretation of the weight value at the source location as the ratio
between the weighted strength of the ‘‘visible’’ part of a source (i.e., the Wu-weighted norm of r==u) and
the real strength of the source q.

Moreover, from the definitions (28) and (37), the norm (41) can also be rewritten as
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kpu
kkwu

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

k

Xm

j51
ðrT

ujH
21
u rukÞ2uj

r
(43)

which leads to the result that
Xm

j51
ðrT

ujH
21
u rukÞ2uj51. This means either that a few of the terms

ðrT
ujH

21
u rukÞ2uj takes relatively large values or that a lot of them take smaller values. From (36) and (39), we,

respectively, get rT
ukH21

u ruk51 and jrT
ujH

21
u rukj � 1for all j 6¼ k, and thus, the following two situations are

encountered: (i) if the value of uk is relatively small, i.e., in low visibility region, other components of p
u
k

have the same order of magnitude and the maximum of the source estimate is flat, (ii) if the value of uk is
relatively large, i.e., in high visibility region, the other components of p

u
k become relatively small and the

maximum of the source estimate is sharp. This means that the value of the visibility function at the source
location determines the sharpness of the maximum component of the source estimate: the maximum will
be more flat in regions poorly monitored by the detectors, implying that the source identification of a single
point source becomes ambiguous in that region.

3.7. Computation and Stability of the Solution
The renormalization condition expressed by equation (36) for discrete inverse problems can also be written
in a matrix form as

diagðrT
u1H21

u ru1; r
T
u2H21

u ru2;…; rT
umH21

u rumÞ � Im (44)

i.e., the diagonal elements of the square symmetric matrix PuW21
u are equal to one. As a consequence, the

computational algorithm (9) defined to compute the continuous weight function can be transformed to
obtain the discrete values of the visibility function. The values uj (j 5 1…m) can be computed as the con-
verged values of the components of the diagonal matrix Wfp (with Wf0 5Im) obtained from the following
iterative algorithm:

Wfp11 5 Wfp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðrT

fp1H21
fp

rfp1; r
T
fp2H21

fp
rfp2;…; rT

fpmH21
fp

rfpmÞ
q

(45)

It has been observed that the matrix Wfp converges uniformly to the matrix Wu with components satisfying
equation (36). The convergence of this algorithm has been proven by Issartel in an unpublished manuscript.

Once this optimum weight matrix has been obtained, the generalized inverse Ru1 can be computed and,
for a given set of measurements, the source vector can be estimated as

Figure 5. The renormalized estimate r==u for configurations 2 and 4. The actual source is located at the center of the domain (Xs 5 0 and
Ys 5 0). In those two cases, the maximum of the source estimate is very close to that position (with a better estimate of Ys due to the net-
works configurations). For configuration 4, the maximum values of the estimator are elongated along the mean wind direction indicating
that the source is located in a region with less visibility.
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r==u5Ru1l with Ru15RT
uH21

u 5W21
u RT RW21

u RT
� �21

(46)

Moreover, it has already been shown, equation (30), that the Wu-norm of the estimate r==u is equal to the
H21

u –norm of the measurement vector l. Thus, Ru1 also corresponds with the standard definition for a
weighted partial isometric matrix [Yang and Li, 2008]. This property is useful to study the stability of the
method. Perturbing the observations with a noise vector Dl, the estimate (46) is perturbed accordingly

r==u1Dr==u5Ru1ðl1DlÞ (47)

From which we obtain

Dr==u5Ru1Dl (48)

Any errors (noise) in the measurements will be mapped into errors in the source estimates. If small errors/
changes in the inputs (measurements) result in large errors/changes in the estimate, the method is
regarded as unstable. If small changes in the inputs lead to small changes in the results the method is called
stable. By using the vector norms previously defined, a relation similar to equation (30) is obtained

kDr==ukwu
5kRu1Dlkwu

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DlTH21

u Dl
q

5kDlkH21
u

(49)

In this case, the problem of computing r==u is said to be stable. Moreover, if the measurements have a dis-
tribution characterized by a covariance matrix VarðDlÞ, the covariance matrix of the source estimate can
be calculated in a ‘‘straightforward fashion’’ by:

Varðr==uÞ5RT
uH21

u VarðDlÞH21
u Ru (50)

4. Conclusion

In this study, the discrete counterpart of the renormalization method has been presented. It has been
shown that the source estimate r==u obtained by this approach represents the solution of the linear system
l5Rr with the minimal Wu-weighted norm. As a consequence, r==u can be written in terms of a weighted
generalized inverse (or weighted Moore-Penrose inverse) Ru1 . Since most of the approaches used to solve
the STE inverse problem give rise to solutions which can be expressed in terms of a generalized inverse
operator, we are now able to conduct an objective theoretical comparison of those approaches with the dis-
crete renormalization technique. Moreover, in recent years, the generalized inverse has become an impor-
tant topic in the researches on matrix theory and has been widely applied to the area of geophysics,
robotics, or neurosciences. Thus, existing numerical methods for an efficient computation of Wu and Ru1

should be evaluated and compared (it should be noted that the dimensions of those matrices are respec-
tively m3m and m3n and the storage, and processing time, resources for computing them can rapidly
become prohibitive as m increases).

It has also been shown that, when the components of the weight matrix Wu satisfy the renormalization con-
dition, this inverse operator satisfies criteria used to define good inverses: the measurements are predicted
exactly, the solution is as close to unique as possible and the solution is stable. Further, the reliability of the
inverse solution has been investigated by using the Model Resolution Matrix (MRM) formalism. In case of
noiseless observations generated from a point source, the maximum value of the source estimate corre-
sponds to the location of the point source. It has been demonstrated here that this good feature is due to
the discrete renormalization condition which gives optimal properties to the model resolution matrix. This
highlights an important property of this condition which was interpreted, in the previous cited works, either
as a minimum entropy criterion [Issartel et al., 2007] or as a condition to attribute a nonarbitrary statistical
status to the measurements, irrespective of any error (having their own statistical status) and prior assump-
tion [Issartel et al., 2011].

The renormalization technique has already been tested, and found to be working efficiently, with the con-
centration measurements obtained from dispersion experiments at local [Sharan et al., 2009, 2012] and con-
tinental [Issartel, 2005, Issartel et al., 2007] scales. Since the ultimate proof for any STE algorithms is the
practical validation, the discrete renormalization method has to be ‘‘tested’’ and ‘‘validated’’ against new
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Atmospheric and Tracer Data (ATD) sets or against data obtained from research studies from the past 50
years at local, regional, continental or global scale. In a future paper, the discrete renormalization technique
will be evaluated against the results of the recent dispersion experiment ‘‘Fusion Field Trial 2007’’ [Storwald,
2007].
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