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Abstract: This study considers load control in a multi-residential setup where energy scheduler (ES) devices installed in smart meters are
employed for demand-side management (DSM). Several residential end-users share the same energy source and each residential user has
non-adjustable loads and adjustable loads. In addition, residential users may have storage devices and renewable energy sources such as
wind turbines or solar as well as dispatchable generators. The ES devices exchange information automatically by executing an iterative dis-
tributed algorithm to locate the optimal energy schedule for each end-user. This will reduce the total energy cost and the peak-to-average ratio
(PAR) in energy demand in the electric power distribution. Users possessing storage devices and dispatchable generators strategically utilise
their resources to minimise the total energy cost together with the PAR. Simulation results are provided to evaluate the performance of the

proposed game theoretic-based distributed DSM technique.

1 Introduction

The smart grid presents several opportunities for end-users to save
energy and for the utility company to operate the grid in a more ef-
ficient, effective and reliable way. In recent years, much attention
has been paid to optimisation of energy consumption in smart
grid. Demand-side management (DSM) is one of the notable func-
tions in a smart grid that enables end-users to modify their demand
for energy through various methods, such as financial incentives
and education [1-6]. The deployment of DSM will motivate
end-users to utilise less energy during peak hours, or to shift the
time of energy use to off-peak times [1, 7-9], which will help
the utility company to reduce the peak load demand and reshape the
load profile. Consequently, end-users will save money on electricity
and the society will conserve electricity [5, 7, 10, 11].

Basically, the outcomes of DSM programmes depend on a
portion of the total load that can be controllable [1, 8, 12].
End-users consisting of adjustable loads, such as plug-in hybrid
electric vehicles (PHEVs) and dishwashers, offer significant
benefit to this end [5, 7, 11]. Moreover, end-users with storage
devices and dispatchable energy generators offer an exceptional op-
portunity to increase the percentage of controllable load. The
control of end-users demand and supply of energy can be done
through various methods such as financial incentives, new tariff
schemes and education. The end-users agree to involvement, if
they may be charged less for consuming electricity during
off-peak hours and paid for supplying electricity during peak
hours. Suppose the utility company pays more for user-generated
energy during peak hours of energy demand, and pay less for
off-peak power, and then end-users will be motivated to generate
more energy and consume minimum energy during peak hours,
which in turn achieves the main goal of DSM [3, 4, 8, 11].

Practically, to meet all energy demands from the end-users, the
grid capacity should be designed such that it satisfies the peak
power demand instead of just the average power demand [6,
13—15]. However, the utility company supplying energy to the
grid prefers to use the least expensive sources of energy to generate

This is an open access article published by the IET under the Creative Commons

Attribution License (http:/creativecommons.org/licenses/by/3.0/)

electricity (which might not be enough to meet the required grid
capacity) and use expensive energy sources only when the
demand increases [3, 4, 16]. When costly energy sources are
employed by the utility company, end-users will also pay high
prices for the energy. Thus, by strategically engaging end-users
in energy production, storage and shifting the energy consump-
tions of their adjustable load appliances, the utility company will
alleviate the use of expensive base load generators and both
end-users and the utility company will benefit from the strategy
[1, 8, 10, 12].

In addition, renewable energy sources (RESs) such as solar and
wind turbines play an important role in reducing the total load.
Typically solar and wind turbines (without some added component
for storage) are non-dispatchable because the sunlight or wind is
periodic and cannot be predicted and controlled [10, 12, 17].
With a rapid advancement of battery technology, it is likely that
storage devices will become an integral part of the means by
which energy generated from renewable sources can be stored
and utilised when needed. Storage devices can be used to store
some of the energy generated by renewable sources and discharge
them during peak hours.

Home automation systems play an important role in determining
the success of the proposed energy strategies. Through the use of
automation, the decision about the energy schedule, amount of
power consumption, charging and discharging as well as the
running of dispatchable generators can be facilitated. An automatic
scheme that requires minimum effort from the end-users is desired
since most end-users do not have knowledge and/or interest to
respond to the energy costs [8].

In this study, we present an energy scheduling strategy for the
future smart grid network. A distributed game-theoretic cost mini-
misation demand-side optimisation and energy scheduling scheme
that takes into account load uncertainty are presented. We consider
a scenario where the main source of energy is shared by several
end-users; some of the users are equipped with the RESs, some
with dispatchable distribution generators (DGs) and/or storage
devices. Each end-user is utilising an energy scheduler (ES)
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deployed inside the smart meters for the adjustable loads, charging
and discharging of their storage devices as well as generating
energy from the dispatchable generators.

The smart meters are linked to the electric power line and com-
munication network [5, 8, 11, 18]. The smart meters with ES
scheme communicate automatically by executing a distributed algo-
rithm to obtain the optimised energy schedule for each end-user [5,
7, 8, 11]. The DSM optimisation and scheduling problem is formu-
lated as a non-cooperative cost minimisation game among the
end-users and an iterative algorithm that optimises user energy
costs is proposed.

Unlike the methods in [5, 8, 11], where ES is considered for a
system with adjustable energy appliances without energy storage
and DGs, the proposed scheme considers a setup with both storage
devices, RESs as well as dispatchable generators. The scheme in
[12] includes the storage devices and dispatchable energy sources
as well as non-dispatchable energy sources; however, it does not
include energy shifting of adjustable appliances, which are crucial
in reducing peak-to-average ratio (PAR) energy costs of the
end-users as well as the cost incurred by the utility company. The
proposed algorithm includes optimisation of energy consumption
of adjustable appliances and that of the energy generators and storers.

The proposed iterative algorithm demands each end-user to give
some information related to his/her daily total load. Residential
users can exchange limited information related to their daily total
load (without giving detailed information regarding the energy con-
sumption of their appliances or their storage and production strat-
egies [8, 11]). A simple pricing mechanism can give motivation
for the end-users to cooperate (i.e. self-enforcing mechanism) [5,
11]. Thus, it is in the end-user’s personal interest to disclose local
information accurately to improve the overall system performance
and minimise his/her daily energy costs.

Simulation results demonstrate that, with our proposed distribu-
ted scheme, the ES can substantially minimise the PAR as well
as the daily energy cost of each end-user. Furthermore, by utilising
energy producers and storers, end-users without energy strategies
(dispatchable generators and storage devices) can also benefit and
pay less for the same daily total energy load.
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2 System model and problem statement

Fig. 1 depicts the smart power system model considered, where
each residential user has non-adjustable load appliances and adjust-
able load appliances. Non-adjustable load appliances include elec-
tric bulbs, TVs, refrigerators etc., and these are loads whose
instantaneous power or starting time cannot be adjusted.
Adjustable load refers to the loads whose instantaneous power,
starting time or both can be adjusted. Adjustable load appliances
include PHEVs, dish washers, washing machines etc. In addition,
some residential users possess storage devices, and/or RESs, DGs
or both (see Fig. 1).

We consider N multiple end-users connected to the electrical grid
from the same energy source. Each end-user has a smart meter that
communicates with several appliances per end-user as well as the
utility company via the advanced metering infrastructure. It is gen-
erally assumed that the cost of supplied energy from the utility
company is dictated in advance within a specified period of time
1, ..., T. Each time slot of the scheduling horizon can stand for,
for example, 1h, with 7=24 representing one day. For an
end-user n € N, let K, denote a set of adjustable load appliances.
For each device k£ € I, we define energy consumption scheduling
vector x, ;, £ [x,ll, PR x,{ «]. Here, x;’ « corresponds to the 1h
energy consumption scheduled for device k of user n, whereas
the energy consumption for non-adjustable load at slot ¢ is
denoted as y), .

2.1 Energy storage

The residential end-user » may have a storage device (such as a
battery). Let p!, >0, t=1, ..., T, be the available energy in a
battery at the end of slot # and p) ™ is the capacity of the battery.
The energy available at the beginning of the horizon can be repre-
sented as pg. The battery can be either charged or discharged
throughout the time slot ¢. Let b), be the energy discharged from
or charged to the battery at slot z. Here b}, < 0 represents that the
battery is discharging while ) > 0 represents that the battery is
charging. The charge/discharge variables and the accumulated
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Fig. 1 Links between connecting end-users and the smart grid
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energy in the battery at time slot 7 are given by the equation [9]
po=py b, =1 T (1

The variable &/, is constrained by the maximum charge and dis-
charge as b%* < b' < b™, also we assume that the batteries have
limited capacity, thus the energy supplied by the battery is no
more than the current consumed energy, that s,
by + Y i Xk +Ppo > 0. Every single battery has an efficiency
1, € (0, 1), 1mp1y1ng that if pn is accumulated at the end of the
time slot # — 1, then the discharge at time slot ¢ is constrained by
bl > —nnpﬁ,_l. With ES, residential users can utilise energy
storage devices to store energy during off-peak hours and discharge
them during peak hours [9].

2.2 Energy production

Apart from storage devices, some end-users own RES and/or dis-
tributed generators (DGs). Users deploy DG and/or RES to
produce energy rather than just consuming energy supplied by
the utility company. By integrating DG and/or RES, end-users
reduce their energy cost since they can produce energy to power
their own appliances, to sell it to the utility company or to charge
their batteries during peak hours. These energy sources are classi-
fied as dispatchable or non-dispatchable energy producers [12].
Typically, RESs such as solar and wind turbines (without some
added component for storage) are non-dispatchable, since the
supply of sunlight or wind is periodic and cannot be predicted
and controlled. Possessing only fixed (initial plus maintenance)
costs, they produce electricity at their maximum available power,
which indicates no optimal scheme regarding the production of
energy [12]. Conversely, dispatchable energy sources are those
sources that can be turned on or off or can adjust their energy pro-
ductions on demand; these include fuel generators, gas turbines or
internal combustion engines [12]. DGs are categorised as dispatch-
able energy sources, thus end-users possessing DGs are concerned
with the optimisation of their energy production strategies.

We denote the non -dispatchable energy generated by user
n per-time slot as gn . The d1spatchable energy generated by user
n per-time slot is denoted as gn 4- We introduce the production
cost function W(g,, 4)» Which pr0v1des the variable costs for produ-
cing a certain quantity of energy gn 4 at a time slot ¢, where
W(0) = 0.

Let g™ denote the maximum energy production capability for
end-user n during a time slot #. Then, energy production profile
per-time slot is bounded as

0<g,a<8" @

Here, g™ represents the quantity of energy produced when user n’s
energy source is operated throughout the time slot 7. Besides, the
cumulative energy production has to satisfy the constraint

T
ogha = 3)
t=1

where 0 < \7™ < T x g%, We define the non-dispatchable
energy productlon vector and the dispatchable energy production
scheduling vectoras g, , = (g:,,r),T andg, ; = (g, d),T , respectively.

The total hourly energy profile for user n € N can be defined as

Lo S x4 rh+ b~ — g @)
kEK,

and the daily total load for wuser »n is defined as
I,= 2 ..., lnT]. Here, [, > 0 if the energy flows from the

n> "n’

utility company to the end-user 7, else [/, < 0.
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2.3 Energy scheduler

The aim of utilising ESs is to minimise the operational costs and
PAR as well as the energy costs of the end-users. The involvement
of the end-users is a response to aspects such as incentive pricing,
tariff schemes etc. End-users participation may involve either active
behavioural changes or passive responses, using automation techni-
ques. For example, if someone chooses not to charge his/her PHEV
battery with regard to a period of high demand, he/she is only re-
scheduling (deferring) that use and will still charge his/her PHEV
battery later, thus the energy is consumed at a different time
instead of being minimised [9].
The total hourly energy consumption for n € N is given by

€, = Zx;,k + o+ b, (5)
KEX,

Hourly energy consumption of each user includes the energy con-
sumed by the devices as well as that consumed to charge the
battery. Since the net energy of the battery charge is zero at the
time of observation, the total energy used to charge the battery is
equivalent to the discharged energy.

Thus we have

hi=¢—ga—g, (6)

For users without generators, either gﬁw or gﬁ,’d can be set to zero
based on what they possess. Although RESs are intermittent and
uncertain, the use of storage devices can absorb this variability.
Thus, for end-users possessing both RES and storage device,
RES can improve the active participation of users with storage
devices.

Operation of the adjustable loads can be shifted to a different
time, so each residence selects the time interval [, 4, B, ] (i.e. be-
ginning time ,, ; and end time S, ;) that the energy consumption for
device k can practically be scheduled. We define the total energy
consumption for device k from user n as [8, 11]

Bk
= > X )

t=ay, i

and xj, ; = 0, VI & {Gys ..., Bus}-

Similar to [5, 8, 11], the proposed scheme does not intend to
change the amount of power consumed by appliances, but system-
atically control and adjust it to minimise the energy cost of the
end-users as well as to reduce the PAR that likely happen during
the peak hours. Thus, ES is about optimising energy consumption
over a number of factors, rather than just a simple ‘do not
consume at these hours” command.

Many devices may have some maximum power levels ;" as
well as the minimum power level 'ym > this sets the upper bound
and lower bound constraints on the ES vector x ..k for each
device [1], that is

Vil = 2 = W

S {an,k’ T Bn,k} (8)

The total load for N residences at each hour of the day is given by

L=y 1 ©)

nenN

Let C'(L,) denote the energy cost over a time slot £ This is the cost
that the utility company incurs to provide energy to the end-users or
the cost that the utility company pays to buy electricity from the
end-users. We also consider that the price of the same load may
differ at different times of the day [5, 7, 8, 11]. The cost paid by
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end-user 7 to buy electricity /; from the utility company (if , > 0)
or the cost paid to the end-user for selling the same energy load to
the utility company (if //, < 0) is given by

t

l
ALy (10)

The dispatchable energy production cost function is given by
W(y) = vy, where v is a constant. The cumulative expenses in-
curred by user n over the period of analysis T is given by

T

F(X &uar bn):Z(C’(m + Wi, d)) (11)

t=1

We define the total cumulative expenses of all users as

L) =) F(x,, &.a» by) (12)

nenN

where Z is an N x T matrix representing the daily total load of all
users, thatis, Z =7, ..., ZNT.

The multi-residential load control task amounts to minimising the
cumulative expense of electricity, that is

x, in I'a,, ....Zy)
81,d>-> 8N,d
bivos by
Buk
subject to X =E,;
T:u{mk
Yok S Xk < Vaks VEE{@ 1 -oos Buy)
t
Yo =0, Vt&{a,;, ..., By} (13)
Bl < bt <bh t=1, ..., T
po=p b, =1, ..., T
-1
b, > —m,p,
max
0< gn,d = &n
t
Zgn,d — /\;ﬂax

The constraints of the optimisation problem in (13) are linear, thus
if the objective function is convex then the problem can be solved
using convex optimisation techniques. The problem above is in a
centralised fashion, thus some modifications are required to solve
the problem distributively. A distributed approach is desirable in
order to address possible concerns regarding data privacy and integ-
rity [7].

3 Energy consumption game

We assume that the price that each user pays or receives is propor-
tional to his/her daily energy load. For each end-user n € N, let d,,
represent the daily price in dollars to be charged to the end-user n by
the utility company or the amount of money that user n € N
receives from the utility company for generating energy. Thus

VnEN (14)

T
d,oc> 1,
t

Using the proportionality constant, we can equate users’ energy
consumption and their bill as

d T l
—":Z"" Yn, m €N (15)

d, Y’
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From (15), we have

Zt 1

The total monetary expenses for all end-users can be expressed as

3 3 > Somen it by
m ( er . lt) n Z,T : lt ( )

meN meN

(16)

From (17), we can express d, as

T t
4, = e (Z dm>
ZmEN Z L, \meN

=0,) d,

meN

(18)

where

T
ch — Zt 1 l; _
ZmEN Zt 1 l£i7

ZT Zt
=1
Zz‘T:l llt'l + ZmEN\n Zz‘Tzl lltn

(19)

@, is not constant for daily energy because of the uncertainty of the
RESs such as solar or wind turbine in producing energy. At some
hours in a day, users with such generators might produce more
power than their own energy demand and thereby feed their
excess energy to the grid, which may lead to zero or negative aggre-
gate load [, for such a user 7.

From (18), it can be seen that the charge on each user depends on
his/her energy strategy and the strategies of other users. This leads
to the game theory among the users. In this game, users are players
and their strategies are their daily energy schedule. Next, we inves-
tigate different approaches of end-users in responding to the price
values.

The cumulative cost of user n F(x,, g, 4» b, )1is proportional to
his/her daily load, that is

T
F, &uar )oY 1 (20)

t=1

For the utility company to generate profit, it is expected that the cost
of electricity for the end-users d, to be equal or slightly higher than
the cumulative cost [8, 11], that is

dn > f(xna gn,da bn) (21)

where the left-hand side represents the total daily charge to the
end-users, whereas the right-hand side indicates the daily cumula-
tive cost. Following the inequality in (21), we can define

d,

p=p————=1 (22
f(xna gn,da bn)
For u =1, the billing system is budget balanced and the energy sup-
plier pays/charges the end-users equivalent amount corresponding
to their cumulative costs. From (18) and (22), it can be shown
that regardless of the value of 1

F(x,, 8n,d> b,)= CI)n Z F(x, 8m,d> b,) (23)
meN
3.1 Equilibrium among users

Given the daily total load for user 7 as Z,,, we define the daily total
load of other users as Z_, such that Z_, = Z\Z,,. The problem can
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be formulated as a non-cooperative energy cost minimisation game.
In game theory, a non-cooperative game is one in which players
make decisions independently [19]. The game consists of

e Player: a set of end-users n=1, ..., N.

o Strategies: energy scheduling vectors x,,, g, 4 b, for all end-users
with adjustable load devices, dispatchable generators, battery or
both.

e Payoff functions P,(Z,, Z_,) = —F(x,, &, 4 b,), define the
user payoffs for the joint strategies.

To maximise payoff, the goal of the users is to minimise the
expected overall cost of energy. From (23), the payoff can be
expressed as

Pn(Zn’ Ifn) = _q)n Z ‘7:(xm5 gm,d’ bm) (24)

meN

Using (12), the payoff of user n can be expressed as
Pn(In’ Z—n) = _q)nF(I) (25)

End-users attempt to determine their energy strategies to minimise
the cost paid to the utility company or maximise their profit. Using
Nash equilibrium, we can characterise how players play a game [8,
11]. The optimal performance with regard to energy cost minimisa-
tion achieves at Nash equilibrium of power consumption game. The
Nash equilibrium of this game always exists. The energy consump-
tion variable (Z};, Vn € N) is in a Nash equilibrium of the game if
for every user n € N

P,(Z,, I%,) = P,(Z,; I%,) (26)

Once the energy scheduling game is at unique Nash equilibrium,
none of the end-users would attempt to diverge from the schedule
(Z;;, Vn € N). Moreover, the user cannot influence the value of
@, with the choice of their strategies.

3.2 Distributed algorithm

Suppose all other end-users fix their corresponding energy schedule
Z_,, then the end-user » can maximise his’/her own payoff by
solving the local optimisation problem

max P.Z,;ZI_)

Xp>8&n,d> bn
Ba, i )
Z xn,k = En,k

=,

V;}i,?fx;’kfy‘,:akx, vt E {a, , .-
Vi & {a, 1 ooy Byt
P < <bh =1, ..., T
pi=pt b, =1, ..., T

b, = —m,p, "

max

t
0 = gn,d = &n
r t max
X;gn,d = /\n
=

0 <\ <Txgh 27

subject to

i) Bn,k}

t
Xy = 0,
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This is equivalent to the minimisation of the cost function

X5 8n,d> by mEN\n

min (Dn<-7:(xn> gn,d> bn)+ Z F(xm’ gm,d’ bm))

Bnk ,
Z xn,k = En,k

t:an,k

i t
Yok <Xk < Voks VIE{a,, ..
vt $ {an,k’ R ﬁn,k}
oS <pl <ph t=1, ..., T

subject to

B Bn,k}

t
Xy = 0,

t
0< 8n,d =&
I t
max
X;gn,d = /\n
=

0 <\ <Txgh (28)

We assume that each end-user has a predetermined amount of
energy consumption and active end-users have some limit in the
capacity of generating power for each particular day, thus even
with the uncertainty of the RESs in generating power, user influence
on the value of @, is minimum. Consequently, the value of @, can
be assumed to be constant for daily consumption. Under this
assumption, (28), can be written as

min f(xm gn,d’ bn)+ Z ‘F(xm’ gm,d’ bm):F(I)

Xu> &n,d> bn meN\n

> x;,k =E,

1=y, i

subject to
YR <X SR, VIE{a,, ...
x;,k = 0’ Vi % {an,ks T Bn,k}
P < b <pt t=1,...,T
pi=pt b, t=1,...,T
b, > —n,p;
0<gi=g™
r t max
X;gn,d = )\n
1=

0 <A™ <Txg 29)

5 Bn,k}

The optimisation problem in (29) is equivalent to the optimisation
problem in (13). The problem in (29) can be solved distributively.
The following is the proposed algorithm to solve the optimisation
problem in (29) distributively.

The proposed algorithm requires only some limited information
exchange between end-users when each of them attempts to maxi-
mise his/her own benefit. From Algorithm 1 (see Fig. 2), end-users
minimise the optimisation problem in (29) based on the random
order sequence S by optimising their load scheduling for adjustable
loads x,, storage devices, dispatchable generators or both, such that
the objective function I'(Z) is strictly decreasing, that is,
I(Z°) < (Z).

Each user minimises the cost function with respect to l,g, vie T,
whereas the load of the other users (ie. > e, L, vVteT)is
fixed. User n broadcasts its new load [, ¥t € T (without giving
detailed information about his/her storage strategies, generators
strategies or energy consumption of his/her appliances) provided
that the objective function is decreasing. The energy consumption
schedule for users Z is updated and the next user in the generated
sequence minimises the objective function in (29) with respect to its
local load. This process is repeated until none of the users can
improve their payoff by scheduling his/her load. The parameter €,
is a small fraction value for adjusting the cost function at the begin-
ning of the algorithm to make the first two cost functions I'(Z°)
and I'(Z") different.
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Algorithm 1:

Initialise Z” randomly, and calculate the corresponding cost function T'(Z") ;
Initialise counter ¢ = 1 and set T(Z¢) = T'(Z") — ¢ ;
while T'(Z¢) < T(Z°') do
Generate a random sequence S for N users ;
for n « 1 to N do
I, =Z(8(n),:) andI_,=T\T, ;
Optimise I'(Z,,,T_,,) and update T;
Convey a control message to make Z,, known to all ES units and update I;
end
Increment the counter, ¢ +— ¢+ 1 ;
Update the cost function I'(T*) = T'(Z,,, Z_,,)
end

Fig. 2 Performed by every user n € N'

The fact that each user broadcasts its load schedule implies that
each user reveals his/her strategy to all other users. The Nash equi-
librium exists if no users change their strategy, despite knowing
the actions of the other users [19]. From the algorithm it is clear
that the termination will be reached when there is no change in
cost function. Users are in Nash equilibrium since each user is
making the best decision, taking into account the decisions of
the others.

4  Simulation results

Simulation results are presented to access the performance of the
proposed ES algorithm. We evaluate our distributed demand-side
optimisation in a scenario consisting of N=1000 end-users each
having random devices from 15 to 25 non-adjustable loads and
15 to 25 adjustable loads. Non-adjustable loads have a fixed sched-
ule and consume energy continuously; examples of these devices
are electric stove, electric bulbs, refrigerators and TV. The adjust-
able loads include electrical appliances with flexible schedule
such as PHEVs, dish washers, washing machines, clothes driers etc.
Out of N users, 10% of them possess either storage devices,
RESs, DGs or both. These users are termed as active users
because they can utilise ES together with the energy storage
devices and/or their energy generators to optimise their interests.

1200 T T

The daily usage of adjustable and non-adjustable devices is set to
be similar to those in [8, 9]. The average daily consumption of each
user ranges from 12 to 16 kWh, and for users with storage devices the
capacity of each user is between 2 and 5 kWh. We also considered
that the RESs can produce a maximum of 6 kWh in a day. Users
with dispatchable generators can produce up to 8 kWh in a day.

We consider that the higher energy demand (peak) occurs during
day time, from 8:00 to 00:00, and the low energy peak occurs at
night-time, from 00:00 to 8:00. This implies that the cost for day
time covers the first 16 h of simulation and night-time cost covers
the last 8 h of simulation. The selected cost function is quadratic
given by C'(L,) = ®p,,, x L} for day time and C'(L,) = @, ¥
L? for night-time. We select Dot = 3Py

First, we examine a scenario where RESs together with ES are
deployed compared with one without ES and RESs. Fig. 3
depicts hourly energy consumption and cost for users with RESs
(i.e. 10% of the users possess RESs) compared with those
without RESs. When ES is not deployed, the cost of electricity
as well as the energy drawn from the utility company is reduced
for users possessing RESs compared with the scenario where all
users rely only on the utility company. However, RESs alone,
without any optimisation scheme to effectively manage the
hourly energy consumption of the users appliances, do not neces-
sarily reduce the PAR. Using smart meters running the ES, users
can optimally minimise the amount they pay to the utility
company as well as PAR [2]. As it can be seen, the users
without ES pay much more during the peak hour and they pay
much less during the off-peak because they cannot shift their
loads to the off-peak hours. Fig. 3 shows that the utilisation of
the ES can help to shave off the peak load. The grid cost
per-time slot depicted in Fig. 3b suggests that the ES helps in redu-
cing the cost by shifting the adjustable loads to the valley of the
energy cost. The results also show that the use of ES and RESs
minimises the PAR as well as the daily energy cost. This is
because, for each time slot, the deployed ES controls shiftable or
adjustable load devices to operate at a certain power within the spe-
cified operational time of the appliances while taking the advan-
tages of the energy generated by the RESs.
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Fig. 3 Scheduled energy load when the RESs and ES units are deployed as well as when they are not deployed

a Comparison of the aggregate load of N users for different energy strategies

b Hourly cumulative energy cost of the aggregate load
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Next, we compare a scenario where some users possess RESs
and/or storage devices and/or dispatchable generators or both.
Again for N=1000, only 10% of them possess storage and/or

generators. For a fair comparison, we considered that at the end
of the day, each storage device remains with its initial charging
state. Fig. 4a depicts the aggregate energy consumption per-time
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a Comparison of the aggregate load of N users for different energy strategies

b Hourly cumulative energy cost of aggregate load
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slot # when ES is deployed. From the results, it is clear that there is
no peak load, which implies that the utilisation of the ES can help to
shave off the peak load. Moreover, from the results, it is obvious
that deploying ES and energy generators together with energy
storage devices significantly shaves the peak power and results
into a stable grid. Both utility company and individual consumers
benefit from the strategy as they can all maximise their payoffs.

Users with RES cannot directly optimise their energy production
as they produce energy based on their capacity and the weather. On
the contrary, users with dispatchable generators and/or storage
devices strategically produce electricity or store electricity to opti-
mise their payoffs. Fig. 4b shows that users with dispatchable gen-
erators produce power only when the cost of buying energy from
the utility company is higher than that of generating energy with
their dispatchable energy sources. These users can produce
energy to power their own appliances or to sell it to the utility
company. Similarly, users with storage devices (see Fig. 4b) stra-
tegically charges their devices during the low rate time and dis-
charge their storage devices during the peak hours where the cost
from the utility company is higher. In addition, the use of energy
storage devices has a potential in increasing revenue earned by
RESs by storing the excess produced energy and discharge it
during the peak hours. It should be noted that charging and dischar-
ging are mutually exclusive (cannot occur at the same time) opera-
tions within the same time slot.

Most of the utility companies charge their customer based on the
total hourly load they supply to the customers. Thus, users without
energy generators or storage devices can benefit from the strategies
as long as there are some active users who strategically generate and
store energy. The grid cost per-time slot is depicted in Fig. 4¢c. From
the results, it is clear that the ES helps in reducing the cost by shifting
the adjustable loads to the valley of the energy cost. The use of energy
storers and generators can further reduce the total cost of energy.

To realise the effect of deploying various energy strategies, we
compare hourly load and the hourly energy cost. Fig. 5 shows the ag-
gregate load for different strategies. From this figure, it is clear that
ES minimises the PAR as well as the daily energy cost. By employ-
ing ES together with other energy strategies such as energy storage
and/or dispatchable energy generators, the PAR and the daily cost
of energy can further be minimised. Users utilising both ES and
storage devices schedule their storage devices to be charged during
low-price off-peak hours and discharge stored energy during peak
hours to further minimise their consumption cost. The result also
illustrates the influence of each energy strategy in optimising the util-
isation of energy. Increasing the capacity of the deployed strategies
may lead to better performance; however, there is a tradeoff
between the initial costs as well as operational costs and the
performance.

5 Conclusion

This paper demonstrated a game theoretic-based distributed DSM
scheme, where end-users utilise ES and various energy strategies
to minimise daily energy costs of the end-users as well as the
utility costs. We verified that difference in pricing mechanisms
employed by utility companies gives incentive for users to trade
energy. Furthermore, increasing the hourly load results in increas-
ing unit costs since more expensive energy sources are brought
online. Thus, end-users deploying ES with energy strategies such
as dispatchable energy generators and/or energy storers may sub-
stantially minimise the daily energy price of the electricity.
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Simulation results show that there is a significant reduction in the
cost by just shifting the adjustable loads and strategic utilisation
of energy storers and/or energy generators.
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