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Abstract To better understand the behavior of quasi-equilibrium-based convection parameterizations at
higher resolution, we use a diagnostic framework to examine the resolution-dependence of subgrid-scale ver-
tical transport of moist static energy as parameterized by the Zhang-McFarlane convection parameterization
(ZM). Grid-scale input to ZM is supplied by coarsening output from cloud-resolving model (CRM) simulations
onto subdomains ranging in size from 8 3 8 to 256 3 256 km2. Then the ZM-based parameterization of verti-
cal transport of moist static energy for scales smaller than the subdomain size (w0h0ZM) are compared to those
directly calculated from the CRM simulations (w0h0CRM) for different subdomain sizes. The ensemble mean
w0h0CRM decreases by more than half as the subdomain size decreases from 128 to 8 km across while w0h0ZM

decreases with subdomain size only for strong convection cases and increases for weaker cases. The resolu-
tion dependence of w0h0 ZM is determined by the positive-definite grid-scale tendency of convective available
potential energy (CAPE) in the convective quasi-equilibrium (QE) closure. Further analysis shows the actual
grid-scale tendency of CAPE (before taking the positive definite value) and w0h0CRM behave very similarly as
the subdomain size changes because they are both tied to grid-scale advective tendencies. We can improve
the resolution dependence of w0h0 ZM significantly by averaging the grid-scale tendency of CAPE over an
appropriately large area surrounding each subdomain before taking its positive definite value. Even though
the ensemble mean w0h0CRM decreases with increasing resolution, its variability increases dramatically. w0h0 ZM

cannot capture such increase in the variability, suggesting the need for stochastic treatment of convection at
relatively high spatial resolution (8 or 16 km).

1. Introduction

Moist convection is a crucial component of the global atmospheric circulation. Because the spatial resolu-
tion of atmospheric general circulation models (GCMs; �100 km in the horizontal for current generation
models) is too coarse to explicitly represent the dynamics of individual convective clouds, moist convection
is usually parameterized.

The development of convection parameterization for atmospheric models started more than half a century
ago and huge progress has been made since then [see Arakawa, 2004 for a recent review]. Among many
other achievements along the way, the ‘‘moist-convective quasi equilibrium’’ (QE hereafter) hypothesis pro-
posed by Arakawa and Schubert [1974, AS74 hereafter] is an influential concept for almost all subsequent
convection parameterizations [see also Yano and Plant, 2012].

In the context of convection parameterizations, the original QE hypothesis states that if the timescale of
convective adjustment is much shorter than the timescale of large-scale processes in the environment, then
the atmosphere goes through a series of quasi equilibria with respect to moist convection as the destabili-
zation by large-scale processes is quickly removed by convective adjustment. In convection parameteriza-
tions, the idea of QE is usually expressed in terms of the convective available potential energy (CAPE or
simply A) in the following way. Given
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where we use subscript ‘‘g’’ to denote CAPE change due to grid-scale processes—equivalent to the large-
scale processes in the conceptual development of QE—and ‘‘s’’ to denote CAPE change due to subgrid-
scale processes, equivalent to the convective adjustments. A or CAPE is defined as

A5

ðpb

pt

RdðTvp2�T vÞ d ln p; (4)

where Rd is the gas constant for dry air, Tvp is the virtual temperature of an air parcel moving upward (usu-
ally adiabatically) from near the surface (essentially a certain parcel initiation level), and �T v is the virtual tem-
perature of the environment, usually taken to be that of the grid-box mean in a parameterization. pb and pt

are the pressures at the parcel initiation level and at the level of neutral buoyancy, respectively. Alterna-
tively, A can be replaced by other measures of vertically integrated buoyancy for a rising parcel, like the
cloud work function used by AS74. In the context of convection parameterizations, the term ‘‘large-scale
processes’’ is often used to denote processes other than those treated by the convection parameterization,
including both grid-scale advection and other processes parameterized using grid-scale variables, like radia-
tion, surface and planetary boundary layer (PBL) processes. For clarity, we will refer to these nonconvective
processes as environmental processes.

The accuracy of the original QE hypothesis rests upon the degree of separation of scales in space and time
between convective and environmental processes [see, e.g., AS74; Lord and Arakawa, 1980]. Recent studies
by Yano et al. [2000] and Neelin et al. [2008], however, claim that there is no characteristic time scale for con-
vective adjustment, which makes the separation of time scales questionable. Mapes [1997] also argues that
since gravity waves excited by convective heating can traverse a typical GCM grid box very quickly (in less
than 1 h), diagnostic evidence for equation (2) found in observational and modeling studies using time
averages of dA/dt and (dA=dt)g [e.g., Xu and Arakawa, 1992] cannot be seen as a proof of the original QE
hypothesis [see also Arakawa, 2004, section 5e], although his argument does not disprove the original QE
hypothesis either.

In recent studies [e.g., Neelin et al., 2008; Plant and Craig, 2008], the QE hypothesis is more often interpreted
as a statistical balance between environmental and convective processes in a convecting air column, which
is an idea that goes back to the beginning of convection parameterization studies [see also Arakawa, 2004],
rather than a deterministic and causal relationship between large-scale forcing and convective adjustment.
Plant and Craig [2008] assume a statistical equilibrium between an ensemble of noninteracting convective
elements described by a stochastic model, and its environment. Even though the statistical properties of
the assumed equilibrium are still derived using the original QE concept, the existence of the equilibrium is
supported by ‘‘the law of large numbers’’ in statistical mechanics (i.e., a large number of convective ele-
ments, see also Williams [2005]). Neelin et al. [2008] demonstrated that even though QE can describe the
observed relationship between precipitation and the tropical atmospheric state (given by column inte-
grated moisture or CAPE) in a statistical sense, there is significant deviation from a deterministic QE even if
we average over a large domain (200 km). This again supports the consideration of a stochastic (nondeter-
ministic) parameterization for convection.

Both the original mechanistic and the more recent statistical interpretations of QE assume it operates over a
large ensemble of convective elements, i.e., over a horizontal domain that contains such a large ensemble
(usually taken to be several hundred kilometers in each direction). Therefore, convection parameterizations
based on QE are generally not designed with resolution-awareness in mind. This means that as they are
applied at higher and higher resolutions, there is no guarantee that these parameterizations will automati-
cally account for the changing partition between grid-scale and subgrid-scale transports (and sources/sinks)
of heat and moisture as resolution changes [see, e.g., Jung and Arakawa, 2004]. Most likely, due to various
simplifying assumptions specific to coarse resolutions, parameterizations will overestimate the subgrid-
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scale effects and ‘‘double-count’’ some portion of the overall convective adjustment when model resolution
is increased from what the parameterizations are designed for. This potential double-counting problem is
the subject of a recent study by Arakawa and Wu [2013, see also Wu and Arakawa, 2014], in which they pro-
posed a way to remove double-counting by scaling down the ‘‘full’’ convective transport calculated from
the original QE closure using a diagnosed convective updraft fraction.

In the present study, we perform a detailed analysis of the resolution-dependent behavior of subgrid-scale
vertical transport produced by a QE-based convection parameterization, namely the Zhang-McFarlane con-
vection parameterization [Zhang and McFarlane, 1995, ZM hereafter]. Based on our analysis, we propose a
simple algorithm to avoid double-counting and improve the resolution dependence of parameterized
subgrid-scale vertical transport under the QE framework. Our results also emphasize the need for stochastic
formulations to improve the representation of convective variability at high resolutions.

2. Methodology

Moist static energy (h) is defined as h 5 cpT 1 gz 1 Lqv, where cp is the specific heat of air at constant pres-
sure, T is temperature, g is gravity, z is height, L is the latent heat of vaporization, and qv is water vapor mix-
ing ratio. In a large-scale numerical model, the budget equation for grid mean h, �h, can be written as
follows,

q
@�h
@t
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1�w
@�h
@z
Þ2 @

@z
ðqw0h0 Þ1�H; (5)

where q is the grid mean air density, �u; �v ; �w are the grid mean velocities, and �H is a place holder for dia-
batic heating terms. The second term on the right-hand side is the vertical divergence of w0h0 , the subgrid-
scale vertical transport of h, or convective transport of h, as commonly referred to in convection parameter-
ization literature. This term represents the effect of unresolved convective mixing on the mean state, and it
will be the focus of our analysis. We assume that the horizontal divergence of eddy flux in the model grid
box is negligible when deriving equation (5).

Our analysis consists mainly of comparing, at different resolutions, w0h0 calculated directly from CRM simu-
lations (referred to as w0h0CRM hereafter) with w0h0 parameterized by the ZM parameterization in a diagnos-
tic single column model (SCM)-like setup (referred to as w0h0 ZM hereafter), where the input to ZM, i.e., the
grid-mean state variables and advective tendencies, are calculated from the same CRM simulations.

2.1. CRM Simulations
We analyze simulations of tropical convection from two different CRMs.

2.1.1. Idealized Simulation of Tropical Convection
The first CRM simulation we analyze is the case with background shear analyzed in Arakawa and Wu [2013].
This is an idealized case with thermodynamic forcings (i.e., vertical profiles of heating and moistening)
based on the Global Atmospheric Research Program (GARP) Atlantic Tropical Experiment (GATE) phase III.
The CRM is the 3-D vorticity equation model of Jung and Arakawa [2008] with a three-phase cloud micro-
physics parameterization [Krueger et al., 1995]. The horizontal domain is 512 3 512 km2 with periodic
boundary conditions. The horizontal grid spacing is 2 km. There are 34 layers in the vertical with model top
at approximately 19 km. The lowest model layer is 100 m deep. The lower boundary condition is ocean sur-
face with fixed temperature at 300 K. A constant cooling rate of 2 K d21 is specified to mimic radiative cool-
ing. The winds are nudged toward a prescribed profile typical of Tropical Ocean and Global Atmosphere
Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) with a 2 h time scale. The readers are
referred to Arakawa and Wu [2013] and Jung and Arakawa [2010] for more details on the setup.

The simulation is 24 h long with constant forcing. We analyze snapshots taken at 20 min intervals from the
last 12 h of the simulation, when the simulated convection reaches a quasi-steady state. The mean precipi-
tation rate is 2.58 mm d21 over the analyzed period. We will refer to this simulation as IDEAL.

2.1.2. Simulation of Tropical Convection in the DYNAMO Period
The second CRM simulation is performed with the Weather Research and Forecasting (WRF) [Skamarock
et al., 2008] model (version 3.4.1). The horizontal domain is 1100 3 1100 km2 and covers the area from
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using horizontal grid spacing of 2 km.
There are 28 vertical layers with the
model top at approximately 20 km.
The lowest model layer is approxi-
mately 100 m deep. The simulation
uses the Rapid Radiative Transfer
Model for General Circulation Models
(RRTMG) [Iacono et al., 2000] for long-
wave radiation, Dudhia [1989] for
short-wave radiation, the Morrison 2
moment scheme [Morrison et al., 2005]
for microphysics, and the University of
Washington PBL scheme [Bretherton
and Park, 2009]. The lateral and lower

boundary conditions are supplied by ERA-interim 6 hourly analyses. The simulation period is 1–28 Novem-
ber 2011. Temporal snapshots are written out every 10 min.

The geographical region and time period of the simulation is chosen such that comparisons with in situ
observations collected during the 2011 Atmospheric Radiation Measurement (ARM) Madden Julian Oscilla-
tion (MJO) Investigation Experiment (AMIE) and Dynamics of the MJO (DYNAMO) field campaign (October
2011 to February 2012) [Yoneyama et al., 2013] can be made. Hagos et al. [2014a, 2014b] compared WRF
simulations with almost identical setups against both satellite observation and in situ radar measurements
collected during the AMIE/DYNAMO campaign and found good agreement in terms of precipitation, cloud,
and cold pool features associated with convective activities.

We will refer to this second simulation as REAL. Figure 1 shows the time series of domain-averaged precipi-
tation rate from REAL together with Tropical Rainfall Measuring Mission (TRMM, 3B42 product) satellite
observations [Huffman et al., 2007]. The simulation tends to overestimate precipitation during the drier part
of the month but reproduces the timing and strength of strong deep convection episodes in the domain
relatively realistically. We also see that the precipitation rate in REAL is always less than that in IDEAL, indi-
cating stronger convection in IDEAL. There is considerable precipitation variability within REAL because of
the time-varying forcing. An MJO event propagates into the model domain around 22 November, giving
rise to several strong precipitation episodes. In IDEAL, there is little variability in precipitation due to its con-
stant forcing.

We choose to use 2 km grid spacing, which is common among recent work on similar topics. But, studies
have shown that simulations with this grid spacing still can produce unrealistic features of cloud-scale tur-
bulence compared to simulations using grid spacings on the order of 100 m [e.g., Bryan et al., 2003].

2.1.3. Evaluating w0h0 CRM

To evaluate w0h0 at different resolutions from these CRM simulations, we follow the basic procedure of Ara-
kawa and Wu [2013]. First we divide the CRM domain into equal-size subdomains and then define �w ; �h,
and wh in each subdomain as averages of w, h, and wh over all CRM grid points in the subdomain. Then
w0h0CRM is given by wh2�w�h. w0h0CRM is calculated this way at different resolutions (i.e., different subdomain
sizes, 838; 16316; 32332; 64364; 1283128, and 256 3 256 km2).

2.2. The Zhang-McFarlane Convection Parameterization and the Calculation of w0h0 ZM

ZM parameterizes the convective transport term in equation (5) as

qw0h05Muðhu2�hÞ1Mdðhd2�hÞ; (6)

where hu and hd are in-updraft and in-downdraft moist static energy, Mu and Md are the bulk updraft and
downdraft mass fluxes (see equation (1) in ZM). In ZM, the mass flux model calculates all the unknowns in
equation (6) once the cloud-base updraft mass flux Mb is given. Mb is calculated using a variant of equation
(3):

Figure 1. Domain-averaged precipitation rate (mm h21) time series from REAL
(black) and TRMM satellite observation (red). The gray line indicates the mean pre-
cipitation rate from the last 12 h of the IDEAL case.
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MbF5
max ðA2A0; 0Þ

s
; (7)

where F is the rate of CAPE (A) removal by convection per unit Mb, and is given by the mass flux model; A0

is an empirical constant representing the ‘‘equilibrium state’’ CAPE; and s is the convective adjustment time
scale, also a constant. The left-hand side of equation (7) can be seen as –(dA=dt)s, i.e., the removal of CAPE
by subgrid-scale convective processes, while the right-hand side can be interpreted as a simple approxima-
tion to (dA=dt)g, where a fixed convective adjustment time and a fixed ‘‘equilibrium state’’ CAPE is assumed.
Equation (7) is the so-called ‘‘closure equation’’ in ZM.

Following previous diagnostic evaluations of QE-based convection parameterizations like Lord [1982] and
Xu and Arakawa [1992], we use the following variant of equation (7)) as the closure:

MbF5
dA
dt

� �
g1

� max
dA
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g
; 0

" #
(8)

(dA=dt)g includes contributions from environmental processes like surface forcing, radiative heating, and
grid-scale advection, as discussed in Emanuel [1994, pp. 480–483] and Zhang [2003]:
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where �T b and �T t are mean temperatures at the parcel initiation level and at the level of neutral buoyancy,
respectively, and �heb is the mean equivalent potential temperature at the parcel initiation level, where the
mean is defined over the particular subdomain being analyzed. The first term on the right-hand side comes
mainly from surface forcing. The last two terms on the right-hand side, ð@�T v=@tÞR and ð@�T v=@tÞG, are grid
mean virtual temperature tendencies due to radiation and grid-scale advection. Traditionally, all microphysi-
cal processes for cumulus clouds are considered subgrid-scale and absorbed in (dA=dt)s or MbF.

To determine w0h0ZM, we calculate mean state variables, mean radiative heating rates, and mean heating/
moistening rates due to surface and PBL eddy fluxes for each subdomain in the CRM domain, as explained
earlier. We also calculate grid-scale, i.e., subdomain-scale, advective tendencies of temperature and mois-
ture from grid (subdomain) mean variables. Then we evaluate (dA=dt)g by calculating the change rate in A
due to grid-scale advection, radiation, and surface and PBL eddy fluxes using equation (9). F is an output
from the ZM mass flux model once the mean state variables are specified. Equation (8) then gives us Mb.
With Mb, the ZM mass flux model produces w0h0ZM using equation (6), as explained above (see also ZM and
equations (3) and (8) therein).

The procedure we follow to calculate w0h0CRM and w0h0ZM is summarized in Figure 2. The calculation is
repeated for all available temporal snapshots in each simulation. The maximum subdomain size we choose
is 256 3 256 km2 for DYNAMO and 128 3 128 km2 for IDEAL, and the minimum is 8 3 8 km2 for both
simulations.

3. Results

We compare the resolution-dependent behavior of w0h0CRM and w0h0 ZM for the following two aspects: (1)
ensemble means, using angle brackets to indicate ensemble means over all subdomains, e.g., hw0h0CRMi and
hw0h0 ZMi, and (2) probability density functions (PDFs). For the first aspect, we expect the ratio of hw0h0 i to
the total transport hw0h01�w �hi to decrease as we reduce the subdomain size, i.e., increase the resolution,
since more of the total transport becomes resolved. For our analysis based on CRM simulations, when the
subdomain size is reduced to the CRM grid size, all transport is due to resolved motion and this ratio goes
to zero (if we look at free troposphere levels and ignore contributions from CRM subgrid-scale turbulence
parameterization). For the second aspect, we expect the shape of the PDF for w0h0 to be flatter and have a
longer tail for extreme values as we reduce subdomain size as found by, e.g., Craig and Cohen [2006].

3.1. Ensemble-Averaged Subgrid-Scale Vertical Transport
Figure 3 shows the vertical profiles of hw0h0CRMi and hw0h0ZMi for REAL and IDEAL. The ensemble mean is
taken over the entire domain and for all available temporal snapshots. Please note that our definition of the
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ensemble mean is different from that in Arakawa and Wu [2013] who define their ensemble over subdo-
mains with convective updrafts. With our definition the ensemble mean will always be over the same sub-
domains for w0h0CRM and w0h0ZM even if ZM does not trigger deep convection in all the right subdomains.
The raw hw0h0ZMi is only half the magnitude of hw0h0CRMi for the largest subdomain size in both cases. This

Figure 2. A schematic showing the procedure we follow to calculate w0h0 ZM and w0h0 CRM .

Figure 3. Vertical profiles of hw0h0 CRMi (solid) and hw0h0 ZMi (dashed) for the (a) IDEAL and (b) REAL case. Different colors indicate different
subdomain sizes. hwhi is indicated by gray circles for each case.
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is likely caused by an overestimation of F in equation (8), i.e., the rate of CAPE consumption by unit mass
flux, which could be due to discrepancies in the mass flux model. These discrepancies do not affect our
analysis in the following which mainly focuses on (dA=dt)g1 and (dA=dt)g (see also Figure 4 and our discus-
sion thereof). Our conclusion concerning the convection closure in ZM is also quite independent of F and
the details of the mass flux model. In Figure 3, in order to compare the resolution-dependent behavior of h
w0h0CRMi and hw0h0ZMi more easily, we multiply the actual hw0h0ZMi by a constant (in the vertical and for all
subdomain sizes) so that its value at the 6 km level is the same as that of hw0h0CRMi for the largest subdo-
main size (128 km for IDEAL and 256 km for REAL). The 6 km level is chosen because we take the convective
transport through the middle troposphere as representative of the overall deep convection strength. Other
notable differences between the ZM and CRM flux profiles are that (1) the depth of convection in ZM is
underestimated by 1–2 km in both simulations; and (2) partly because the ZM scheme is designed to be a
deep convection parameterization and no mass flux is allowed to detrain below the minimum moist static
energy level in the middle troposphere, ZM misses the transport maximum due to convective elements
that detrain before they reach the middle troposphere in both cases. Presumably, this missing part of the
transport would be handled by a separate shallow convection scheme.

In Figure 3, we see that for both cases hw0h0CRMi behaves as we discussed above: for subdomain size of 128
or 256 km unresolved motion is responsible for most of the vertical transport within the domain, while for
8 km subdomain size it only accounts for about half of the total vertical transport through the middle tropo-
sphere (e.g., the 6 km level). Note the total vertical transport, hw0h0CRM1�w �hi, does not change with chang-
ing subdomain size. On the other hand, the resolution dependence of hw0h0ZMi in Figure 3 shows an
interesting difference between the two cases. For the REAL case (Figure 3b), there is almost no resolution
dependence, i.e., ZM is double-counting vertical transport at high resolutions, but for the IDEAL case (Figure
3a) the decrease of hw0h0 ZMi with decreasing subdomain size is quite realistic compared to the decrease of
hw0h0CRMi.

To further investigate the origin of the resolution dependence of hw0h0 ZMi, we compare the resolution-
dependent behavior of hw0h0ZMi at the 6 km level with that of hðdA=dtÞg1i (see equation (8)) for both IDEAL
and REAL in Figure 4. To produce Figure 4, the entire REAL simulation period is divided into 53 12 h seg-
ments, each the same length as IDEAL. This makes the comparison between IDEAL and REAL more direct
and demonstrates the variability within the REAL simulation. These 12 h REAL segments are then sorted by
their corresponding hw0h0CRMi (averaged over each 12 h segment), and grouped into quartiles. This way, the
different quartiles represent the changing behavior across the range of convection strengths as measured
by hw0h0CRMi. Averages over individual quartiles are shown in light blue lines while the total ensemble (all
quartiles) average is shown in dark blue. First of all, we see that, for both IDEAL and REAL, hðdA=dtÞg1i (Fig-
ure 4b) dictates the resolution-dependent behavior of hw0h0ZMi (Figure 4a). In other words, in the ZM
scheme, the closure assumption (equation (8)) determines the resolution-dependence of hw0h0 i. Second,
different quartiles in REAL behave very differently: Quartile 4 with the largest hw0h0CRMi shows a similar
though weaker decrease in hw0h0ZMi and hðdA=dtÞg1i with decreasing subdomain size compared to IDEAL
while Quartile 1 with the smallest hw0h0CRMi shows a steep increase.

The resolution dependence of hðdA=dtÞg1i is quite different from that of hðdA=dtÞgi itself, which is shown in
Figure 5a. IDEAL and the quartiles of REAL all show a consistent decrease of hðdA=dtÞgi with decreasing sub-
domain size. Furthermore, hðdA=dtÞgi displays a resolution-dependent behavior similar to hw0h0CRMi (Figure
5b), even though the spread is larger.

We can explain this similarity between hðdA=dtÞgi and hw0h0CRMi through equation (9). If we apply ensemble
averaging to equation (9), we get�
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�
: (10)

Emanuel [1994, pp. 482–483] pointed out that in the tropical atmosphere the three terms on the right-hand
side of equation (10) are usually of the same order of magnitude. The first two terms (due to surface warm-
ing/moistening and radiative cooling respectively) are usually positive and do not change with changing
subdomain size. The third term, due to grid-scale advection, is dominated by vertical advection in the tropi-
cal atmosphere [see, e.g., Emanuel, 1994, pp. 483]. We can approximate this term as follows,
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where hv is the virtual potential temperature, hv0 is the reference state virtual potential temperature, and zt

and zb are the cloud top and base heights. The Boussinesq approximation is used. The divergence of hori-
zontal eddy transports is assumed to be negligible and hw0h0v jz5zt

i taken to be zero. Only the last term on
the right-hand side of equation (11) varies with subdomain size and it decreases with subdomain size in a
way similar to hw0h0CRMi (not shown). Ideally hðdA=dtÞgi could go to zero, like hw0h0CRMi, when all the insta-
bility or the production of CAPE due to surface and radiative forcing (the first two terms on the right-hand
side in equation (10)) are removed by resolved motion (the last term).

Why does hðdA=dtÞg1i behave differently from hðdA=dtÞgi as resolution increases? Comparing Figures 4b
and 5a, we see that the difference between hðdA=dtÞgi and hðdA=dtÞg1i increases with decreasing subdo-
main size and decreasing strength of convection. This is because the possibility of having negative (dA=dt)g

is bigger with smaller subdomain size and weaker overall convection. The ensemble average, hðdA=dtÞgi,
decreases as resolution increases but remains positive for convectively active regions. However, for each
individual subdomain, as its size decreases, the chance of finding negative (dA=dt)g increases even for con-
vectively active regions. This drives the increasing disparity between hðdA=dtÞgi and hðdA=dtÞg1i, hence the
increasing disparity between hw0h0CRMi and hðdA=dtÞg1i, as resolution increases. Our interpretation of this
disparity is that as resolution increases, QE holds less well over individual grid boxes: the chance of convec-
tively active grid boxes (the activity measured by w0h0CRM) being associated with negative (dA=dt)g

increases.

To remedy this disparity and to apply the QE-based closure at high resolutions in a way consistent with its
presumption, we propose a simple algorithm to replicate the resolution awareness of (dA=dt)g when
determining w0h0 ZM: instead of using the local (dA=dt)g calculated in an individual subdomain, we use a spa-
tial average of (dA=dt)g, denoted as ðdA=dtÞg , over all subdomains in a large area centered on the subdo-
main for which the convective transport is being determined: 128 3 128 km2 is used in the following
calculations and we find small sensitivities when changing the averaging area to 64 3 64 km2 or 256
3256 km2. The reasoning behind this design is that (1) we expect the explanation for the resolution

Figure 4. Scale dependence of (a) hw0h0 ZMi at 6 km level and (b) hðdA=dtÞg1i. The values for different subdomain sizes are normalized by
the value for the subdomain size of 128 km (i.e., DX 5 128 km). The quartiles of REAL are constructed according to the strength of convec-
tion measured by w0h0 CRM at the 6 km level. The forth quartile has the strongest convection strength. Please refer to the text for details of
how the quartiles are constructed for the REAL case.
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dependence of hðdA=dtÞgi through equations (10–11) to be generally applicable to ðdA=dtÞg , (2) QE as
expressed in equation (3) holds for the averaging area so that ðdA=dtÞg will be positive for active convection
regions. With this simple algorithm, we lose information about the grid-scale forcing at each grid box
(which we cannot exploit within the QE framework) but w0h0 ZM calculated using ðdA=dtÞg represents the
actual expected value from the QE closure. The closure equation (equation (8)) becomes,

MbF5
dA
dt

� �
gm1

� max
dA
dt

� �
g

; 0

" #
: (12)

w0h0 ZM calculated using this new closure will be denoted as w0h0ZM;m. Figure 6 shows the resolution
dependence of hw0h0 ZM;mi at the 6 km level. In both cases, the resolution dependence of hðdA=dtÞgi is
reproduced in hðdA=dtÞgm1i and hw0h0ZM;mi. For the REAL case, the resolution dependence of hw0h0 ZM;mi is
quite similar to that of hw0h0CRMi: hw0h0ZM;mi decreases 40% as the subdomain size decreases from 128 to
8 km while hw0h0CRMi decreases 50%. For the IDEAL case, the good resolution-dependence with the origi-
nal closure we see in Figure 4b is also reproduced by the new one. These results show that by using the
simple averaging algorithm within the QE framework, we can, to a large extent, reproduce the changing
partition between grid-scale and subgrid-scale vertical transport and therefore avoid the double-
counting between these two.

The spread we see in hðdA=dtÞgi (Figure 5a) is still present in Figure 6 and the slope for the total ensemble
average (the dark blue line) toward small subdomain size is less steep than that of hw0h0CRMi in Figure 5b

(40 versus 50 % decrease from 128 to
8 km). We do not know the exact causes
for these differences. One cause could be
that the contribution from microphysical
processes are all included in (dA=dt)s, not
explicitly in (dA=dt)g. So even if subgrid-
scale transport goes to zero, (dA=dt)s (and
with it (dA=dt)g) does not. This could lead
to slower decrease of hðdA=dtÞgi than
that of hw0h0CRMi when the subdomain
size is reduced.

3.2. The PDFs
A good convection parameterization
should reproduce not only the overall
strength but also the variability of
subgrid-scale vertical transport due to
convection in terms of the PDF. A

Figure 5. Scale dependence of (a) hðdA=dtÞgi and (b) hw0h0 CRMi at 6 km level. The values for different subdomain sizes are normalized by
the value for the subdomain size of 128 km (i.e., DX5128 km).

Figure 6. Scale dependence of hw0h0 ZM;mi at 6 km level. The values for differ-
ent subdomain sizes are normalized by the value for the subdomain size of
128 km (i.e., DX5128 km).
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common problem for convection parameterizations nowadays is the underestimation of such variability,
hence the call for stochastic convection parameterizations [e.g., Lin and Neelin, 2003; Buizza et al., 1999]. In
this subsection, we compare the PDFs of w0h0ZM and w0h0CRM for different subdomain sizes.

Figure 7 shows the PDFs of w0h0ZM and w0h0CRM at the 6 km level for different subdomain sizes for the REAL
case. The lower plots are blowups of the upper plots near the peak of the distribution. The general shape of
the PDF of w0h0CRM is quite comparable to those of convective heating in Shutts and Palmer [2007]. The
change of the PDF of w0h0CRM with changing subdomain size is also generally consistent with previous stud-
ies. For example, the increase in the probability density of zero convective eddy transport and the decrease

of the probability density near the ensemble
mean (i.e. near 1 on the normalized x axis in
Figure 7c) with decreasing subdomain size can
be seen in other CRM simulations [e.g., Plant
and Craig, 2008, Figure 1 only the second fea-
ture] and theoretical calculations [e.g., Keane
and Plant, 2012, Figure 16].

For w0h0ZM, we see from the upper plots that
ZM underestimates the extension and magni-
tude of the PDF in the tail. This underestimation

Figure 7. The PDFs of w0h0 CRM (a, c) and w0h0 ZM (b, d) at the 6 km level for the REAL case. (c) and (d) Blowups of (a) and (b) near w0h050.
The x axes are normalized by the ensemble average value.

Table 1. Variance, Skewness and Kurtosis of Normalized w0h0 CRM and
w0h0 ZM (bold values in parentheses) at 6 km Level for Different Sub-
domain Sizes for the REAL Case

Subdomain Size (km) Variance Skewness Kurtosis

256 1.25 (0.73) 1.59 (1.29) 2.72 (1.39)
128 2.57 (1.28) 2.82 (2.09) 11.08 (5.75)
64 5.21 (2.03) 4.05 (2.88) 23.41 (11.69)
32 12.10 (2.98) 6.12 (3.77) 53.73 (20.34)
16 30.85 (3.79) 9.69 (4.92) 132.19 (37.81)
8 79.21 (4.14) 15.69 (7.14) 349.17 (107.94)
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is quite drastic for small subdomain sizes (the blue lines). At 8 km grid spacing, the maximum of w0h0ZM is
more than 5 times smaller than that of w0h0CRM even after normalization. In the lower plots, we see that, for
w0h0CRM, as the subdomain size decreases from 256 to 8 km, the probability density near 1 (i.e., the mean
value) decreases by almost two orders of magnitude. For w0h0 ZM, however, the decrease is barely 50%. Table 1
lists the variance, skewness, and kurtosis of w0h0CRM and w0h0ZM at 6 km level normalized by their respective
ensemble mean values for different subdomain sizes. The dramatic difference in terms of variance and kurto-
sis between w0h0CRM and w0h0ZM for 8 and 16 km subdomain sizes quantifies the differences we see in the
PDF shape. We argue that the need for a stochastic formulation to better reproduce the realistic variability of
subgrid-scale transport gets more important at higher resolution for QE-based parameterizations even though
it is unclear from our analysis whether the difference in the PDFs is due to the deficiency of QE in capturing
the deterministic portion (determined by grid-scale forcing) of the overall variability or the lack of nondeter-
ministic variability (not determined by grid-scale forcing). Since the averaging algorithm suggested in the pre-
vious subsection leads to even narrower PDF shape (not shown), a stochastic formulation to enhance the
variability would be even more desirable.

Even though the causal relationship behind equation (3) is difficult to elucidate, it has been shown by many
studies [e.g., Xu and Arakawa, 1992] that parameterizations based on equation (3) perform well for large
grid sizes in a diagnostic setup like ours. This can be seen in Figure 8. Figure 8 shows the joint PDFs of
w0h0 ZM and w0h0CRM at the 6 km level for different subdomain sizes for the REAL case. Note the magnitude
difference between w0h0ZM and w0h0CRM discussed earlier. The correlation coefficient between w0h0 ZM and
w0h0CRM at the 6 km level is 0.89 for 128 and 256 km subdomain sizes. This correlation coefficient increases
to 0.91 if we calculate the total CAPE change rate (dA/dt in equation (1)) for each subdomain and subtract it
from (dA=dt)g following Xu and Arakawa [1992]. There are of course noticeable deficiencies even for large
subdomain sizes. We see in all the plots (1) a spike at w0h0 ZM50, indicating that deep convection can

Figure 8. The two-dimensional PDF of w0h0 CRM and w0h0 ZM (both divided by cp) at the 6 km level for the REAL case for different subdomain sizes. The correlation coefficients between
w0h0 CRM and w0h0 ZM are displayed at the corner of each plot.
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develop where the QE-based closure fails to ‘‘predict’’ any convection, and (2) a smoothed maximum along
w0h0CRM50 near the origin (i.e., for small w0h0 ZM values), suggesting that ZM tends to produce some weak
convection where the CRM produces none. As we move toward higher resolution (smaller subdomain size),
the correlation between w0h0ZM and w0h0CRM drops significantly; for a subdomain size of 8 km, the coefficient
is only 0.54. In the plots for 8 and 16 km, the joint PDF looks like a spread fan, indicating bad point-by-point
correlation. In other words, applying deterministic QE directly at high resolutions will not reproduce the var-
iability of subgrid-scale transport even with ‘‘perfect’’ grid-scale input. We argue this is another justification
for the use of a stochastic formulation to enhance the variability of subgrid-scale transport with QE-based
parameterizations. Furthermore, it can be argued that with such bad correlation between simulated and
parameterized subgrid-scale transport at high resolutions, potential degradation at individual points due to
the averaging algorithm we proposed above is inconsequential. By adding stochastic formulations, we may
be able to reproduce the overall variability of w0h0 .

4. Concluding Remarks

In this study, we have used a diagnostic approach to analyzing the resolution dependence of convective
transport produced by the QE-based ZM convection parameterization. If we were to do the resolution-
dependence analysis in a prognostic setup where we directly compare regular simulations running with the
ZM parameterization and cloud microphysics/macrophysics parameterizations at different grid spacings, we
would not be able to isolate the resolution dependence of convective transport from that of cloud micro-
physics/macrophysics. By feeding the convection scheme ‘‘perfect’’ grid-scale state variables diagnosed
from CRM simulations, we also avoid amplification of errors due to known issues in the QE closure and the
ZM scheme, e.g., deficiency in the triggering of convection (see Figure 8 and discussion thereof). Our diag-
nostic methodology enables us to temporarily ignore these issues and focus on a quantitative assessment
of the resolution dependence of the subgrid-scale vertical transport produced by ZM. We find that,

1. Ensemble mean subgrid-scale vertical transport diagnosed from CRM simulations (w0h0CRM) decreases by
more than half in magnitude as horizontal resolution increases from 256 to 8 km. This is consistent with
previous studies [e.g., Arakawa and Wu, 2013; see also Figure 15 in Arakawa and Jung, 2011].

2. The resolution-dependent behavior of ensemble-averaged subgrid-scale vertical transport produced by
ZM (w0h0 ZM) is dictated by that of the positive-definite grid-scale CAPE tendency, (dA=dt)g1, in the QE clo-
sure (equation (8)).

3. Ensemble-averaged (dA=dt)g decreases with increasing resolution, quite similar to the resolution-
dependent behavior of w0h0CRM while ensemble-averaged (dA=dt)g1 decreases with increasing resolution
only for strongly forced cases but increases steeply for relatively weakly forced cases. The similarity
between (dA=dt)g and w0h0CRM occurs because both of them are tied to the resolution dependence of
grid-scale advective tendencies of temperature and moisture. The difference between (dA=dt)g and
(dA=dt)g1 is due to the increasing chance of (dA=dt)g becoming negative for individual subdomains as
the subdomain size decreases (resolution increases) and the overall convection strength decreases, even
though (dA=dt)g averaged over a large enough area (e.g., 128 3 128 km2) remains positive.

4. A simple spatial averaging of (dA=dt)g over all subdomains over a large area (e.g., 128 3 128 km2) around
the subdomain of interest before taking its positive-definite value (equation (12)), can reproduce the reso-
lution dependence of (dA=dt)g in w0h0 ZM. This averaging links the subgrid-scale convective transport on
the original grid (too fine for QE to hold) to the ensemble mean grid-scale forcing over a larger area over
which QE can be consistently applied while retaining the resolution awareness of (dA=dt)g calculated on
the original grid. It provides a simple but physically based way of avoiding double-counting of grid-scale
and subgrid-scale vertical transport for QE-based convection parameterizations.

5. Underestimation of the variability of subgrid-scale vertical transport by ZM is more severe at higher reso-
lutions and reproducing point-by-point the unresolved structure of convection at high resolutions (e.g.,
8 km) is impossible with a deterministic QE closure.

Based on these findings, we emphasize the following two points for QE-based convection parameteriza-
tions. First, to avoid double-counting of resolved and parameterized vertical transport at ‘‘gray-zone’’ resolu-
tions, we need modifications to the original QE closure. Arakawa and Wu [2013] propose that
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double-counting can be avoided by incorporating a formulation for convective updraft fraction into a tradi-
tional convection parameterization. Our simple algorithm (point 4 above) also provides a way to avoid
double-counting for diagnostic QE closures. Second, stochastic formulations like those of Keane and Plant
[2012; see also Plant and Craig, 2008, Keane et al., 2014] and Bengtsson et al. [2013], which can produce real-
istic variability of subgrid-scale transport across different resolutions, may be necessary for QE-based
parameterizations.

There are a few unresolved issues before our proposed algorithm can be implemented in a meaningful way
in a QE-based convection parameterization for high-resolution models. First, we need to predict/diagnose
the area fraction (i.e., we need to avoid the r� 1 assumption) covered by convection so that microphysics
formulations, like those by Gerard et al. [2007] and Wu and Arawaka [2014], can consistently handle convec-
tive and stratiform clouds coexisting in a single grid box given the fraction covered by each. Second, the
algorithm we propose is based on diagnostic QE or so-called ‘‘strict’’ QE. Even though there are different
views [e.g., Kuang, 2008], previous studies have argued for the importance of small time lags between con-
vective adjustment and environmental processes [see, e.g., Mapes, 2000] and the need to avoid strict QE
[e.g., Khouider and Majda, 2006] for realistic simulations of tropical convectively coupled waves and the
MJO. Given our diagnostic methodology in the current study, accounting for such small time lags, e.g., by
including the temporal tendencies of CAPE following Xu and Arakawa [1992], would not affect the overall
performance of the ZM scheme in our diagnostic tests. We are currently exploring ways to incorporate our
algorithm in a prognostic closure [e.g., Pan and Randall, 1998]. And last, we need to test the algorithm under
a broader range of conditions, particularly in the midlatitudes to ensure its advantages are robust outside of
the tropical regime tested in the current study.
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